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Figure S1. Phylogenetic tree and protein domain analysis of AtTIR1/AFB and FveTIR1/AFB.

(A) Maximum likelihood tree of AtTIR1/AFB and its homologs FveTIR1/AFB. Numbers on each branch represent the
corresponding bootstrap probability values obtained in 500 replications. Proteins marked with red color represent
FveTIR1/AFB proteins.

(B) Amino acid sequence alignment of FveTIR1/AFB and AtTIR1/AFB proteins. F-box and LRR domains were indicated

respectively.
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Figure S2. Expression pattern and subcellular localization of FveAFB5.

(A,B) Quantitative reverse-transcription polymerase chain reaction (qQRT-PCR) analyses (A) and eFP gene expression

heatmap (https://bar.utoronto.ca/efp_strawberry/cgi-bin/efpWeb.cgi (accessed on 10 March 2022)) (B) of FveAFB5 in the

different tissues of strawberries.

(C) Subcellular localization of FveAFB5-GFP fusion protein in Nicotina benthamiana leaf epidermis cells. p35S::GFP acts

as negative control. Scale bar, 50 pm.
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Figure S3. FveAFB5 interacts with FvelAA proteins in vivo.
The interaction between Fve AFB5 and FvelAA proteins was determined by bimolecular fluorescence complementation
(BiFC) imaging assays in Nicotiana benthamiana leaves. nYFP, N-terminal region of bimolecular fluorescence; cYFP, C-

terminal region of bimolecular fluorescence. Scale bar, 100 pum.
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Figure S4. Fue AFB5 overexpression leads to more lateral root.

(A-C) Identification of FveAFB5 overexpression transgenic plants. (A) Main components of FueAFB5 overexpression
vector pK7WG2D.1-FveAFB5. (B) PCR verification of FveAFB5 overexpression transgenic plants, “+” represents the
vector as a positive control, and “-” represents H4 as a negative control. (C) qRT-PCR identifies FveAFB5 gene expression
in the FeAFB5 overexpression transgenic plants.

(D,E) Root phenotype (D) and quantification analysis of the lateral root density (E) in FueAFB5 overexpression
transgenic plants. One-way ANOVA, * represent significant difference at P < 0.05 (n = 9). Scale bars, 1 cm. The

experiments were repeated at least 3 times and showed similar, consistent results.
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Figure S5. FueAFB5 overexpression shows hypersensitive to auxin during primary root and lateral root development
(A) Root phenotype in H4 and FveAFB5 overexpression lines under auxin treatment with different concentrations.
(B,C) Quantification analysis of the primary root length (B) and lateral root density (C). Scale bar, 1 cm. Two-way

ANOVA, different letters represent significant difference at P <0.01 (n =9).
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Figure S6. FoeAFB5 mutation shows resistance to auxinic herbicides dicamba and quinclorac.
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(A—C) Resistance phenotype of fveafb5 mutants to 1 pM or 10 uM auxinic herbicides dicamba and quinclorac. (A) H4
and fveafb5 mutants treated with 1 uM or 10 uM dicamba and quinclorac concentrations for 5 days were observed. (B-
C) Quantification analysis of the root elongation phenotype under dicamba (B) and quinclorac (C) treatment
respectively.

(D-F) The resistance phenotype of fveafb5 mutants treated with 10 pM or 50 pM auxinic herbicides dicamba and
quinclorac. (D) H4 and fveafb5 mutants treated with 10 uM or 50 uM dicamba and quinclorac concentrations for 5 days
were observed. (E,F) Quantification analysis of the root elongation phenotype under dicamba (E) and quinclorac (F)
treatment respectively. Scale bar, 1 cm and two-way ANOVA, different letters represent significant difference at P<0.01

(n=9). The experiments were repeated at least 3 times and showed similar, consistent results.
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Figure S7. FveAFB5 mediates transcriptome reprogramming under auxinic herbicides picloram treatment

(A) Heatmap shows the different fold changes of the down-regulated DEGs in H4 and fveafb5-1 mutant under picloram
treatment. (B) Gene Ontology (GO) analysis shows the down-regulated DEGs in the H4 and fveafb5-1 mutant under
picloram treatment. GO analysis only shows the top 19 GO terms according to g value. The size of the pie chart area

represents the number of enriched genes. Photosynthesis-related categories were marked by red characters.
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Supplementary Table Sets

Supplementary Table S1. List of primers used in this study.

All primers used for genotyping, generation of the constructs and qRT-PCR are listed. The purposes
of these primers are listed in the left. The name and sequence of these primers are displayed in the
right. F, forward; R, reverse.

Supplementary Table S2. List of up- and down-regulated genes at stage 2 fruit development stage
in foeafb5 compared with H4.

Data includes both up- and down-regulated genes at stage 2 fruit development stage in fveafb5
compared with in H4. Differentially expressed genes (DEGs) (padj < 0.05, CPM > 1, Log:FC > 1 for
up-regulated and Log:FC < -1 for down-regulated) were normalized and extracted.
Supplementary Table S3. List of up- and down-regulated genes after 5-day picloram treatment
in H4.

Data includes both up- and down-regulated genes after 5-day picloram treatment compared with
blank treatment in H4. Differentially expressed genes (DEGs) (padj < 0.05, CPM > 1, Log2FC > 1 for
up-regulated and Log2FC < -1 for down-regulated) were normalized and extracted.
Supplementary Table S4. List of up- and down-regulated genes after 5-day picloram treatment
in foeafb5.

Data includes both up- and down-regulated genes after 5-day picloram treatment compared with
blank treatment in fveafb5. Differentially expressed genes (DEGs) (padj < 0.05, CPM > 1, Log:FC > 1
for up-regulated and Log:FC < -1 for down-regulated) were normalized and extracted.
Supplementary Table S5. GO enrichment analysis of FveAFB5-activated up-regulation DEGs at
stage 2 fruit development stage.

Supplementary Table S6. GO enrichment analysis of FveAFB5-activated up-regulation DEGs
after 5-day picloram treatment.

Supplementary Table S7. GO enrichment analysis of FveAFB5-repressed down-regulation DEGs

after 5-day picloram treatment.



