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Abstract: The Internet of Things (IoT) and wireless sensor networks (WSNs) utilize their connectivity
to enable solutions supporting a spectrum of industries in different and volatile environments. To
effectively enhance the security and quality of the service of networks, empirical research should
consider a variety of factors and be reproducible. This will not only ensure scalability but also enable
the verification of conclusions, leading to more reliable solutions. Cooja offers limited performance
analysis capabilities of simulations, which are often extracted and calculated manually. In this paper,
we introduce the Build–Launch–Consolidate (BLC) framework and a toolkit that enable researchers to
conduct structured and conclusive experiments considering different factors and metrics, experiment
design, and results analysis. Furthermore, the toolkit analyzes diverse network metrics across various
scenarios. As a proof of concept, this paper studies the flooding attacks on the IoT and illustrates
their impact on the network, utilizing the BLC framework and toolkit.

Keywords: RPL; framework; tool; flooding; cybersecurity; Denial of Service; wireless sensor
networks; Internet of Things

1. Introduction

Wireless sensor networks (WSNs) are networks consisting of sensing devices of dif-
ferent sizes, and sensing and computational abilities. These sensors collaborate to sense,
collect, and process raw information in the sensing area and transmit the processed informa-
tion to the observers [1]. The Internet of Things (IoT) refers to a network of physical devices,
vehicles, and appliances embedded with sensors, software, and network connectivity.
These smart devices have the ability to collect and share data by communicating with one
another, and with other internet-enabled devices such as smartphones and gateways [2,3].
The IoT is considered the foundation for the fourth Industrial Revolution (IR 4.0) [4].

Protecting WSNs and the IoT from security threats and attacks is a primary research
area to safely unlock their full potential. Performing impact analysis enables the identifi-
cation of vulnerabilities and development of effective solutions. As a matter of fact, IoT
devices are candidate targets for cyber attacks, including Zero Day [5–7] and Denial-of-
Service (DoS) attacks. DoS attacks aim to bring the service provided by the network to a
halt [3]. An example of a DoS attack is a flooding attack, where a malicious node in the
network generates a large number of packets that disrupt the node’s neighbors’ ability to
process further packets, rendering a portion of the network unavailable.

WSNs are particularly vulnerable to such attacks because of their inherent limitations
and protocol implementations. Accordingly, the performance of these networks and
their resilience against threat actors are continuously evaluated by scholars. Different
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studies [8–12] have considered the impact of certain attacks (including flooding) on the IoT
as well as the overheads associated with deploying mitigation for these attacks.

To maximize the potential of WSNs and the IoT and ensure their reliability and
performance, it is vital to consider carefully and tailor network topologies and physical
specifications to the unique requirements of each scenario.

Empirical studies require the ability to be replicated to verify findings and confirm
conclusions. In the WSN context, replicating experiments is necessary to reflect the impact
of any change in the network configuration, report different behaviors, and, consequentially,
draw different conclusions [13]. Therefore, manual placement and configuration for a
relatively large number of sensor nodes might be tedious, time-consuming, and lacking in
accuracy [14]. For instance, Cooja [15], the simulation tool provided by Contiki [16], offers
limited choices of automatic placement (either linear or ellipse) in addition to manual and
random placement. In addition, Cooja does not provide network performance metrics
for the entire network, which need to be extracted and calculated. Therefore, structured
frameworks are essential so that research studies in a specific field can converge in terms of
findings and by building on shared foundations. To fully understand the impact of an attack,
it is crucial to analyze the network under various attacker positions, network topologies,
and software/hardware implementations. Random configurations and placements may
be utilized in experiments, but they have limited generalization, are difficult to replicate,
and may be biased. If not controlled in a research experiment, these elements pose a
potential confounding factor that hinders the conclusiveness and generalization of the
findings. The lack of a consistent and structured approach, and automated tools that
provide replication and reporting of WSN experiments motivated us to develop the Build–
Launch–Consolidate (BLC) framework and toolkits. BLC enables researchers to conduct
replicable experiments under predefined conditions, leveraging systems and methods that
ensure replicable research and robust findings by addressing the following:

• The framework provides a systematic approach to conducting experiments by enabling
the user to run simulations on Cooja using a replicable setup of node types and their
precise position.

• The framework can be used to establish a more accurate understanding of different
attacks on WSNs and their impact by considering different attack scenarios, network
topologies, and attacker placements.

• Additionally, BLC automatically collects three popular metrics to measure the perfor-
mance of the network, namely, the Packet Delivery Ratio (PDR), End-to-End (E2E)
delay, and Power Consumption (PC). It can also be expanded to accommodate addi-
tional metrics with proper configuration.

The BLC framework can be scaled and leveraged for faster replication of empirical
studies on further attacks on the IoT and improve the quality of published research in the
field. To demonstrate the effectiveness of our framework and tools, we utilize them to
analyze flooding attacks on WSNs and their propagation and impact on different network
topologies. The framework and tools were initially developed to conduct and report on the
experiments for various DoS attacks in [17]. The rest of this article is organized as follows.
For clarity and completeness purposes, Section 2 covers related research on frameworks
and tools related to WSN and IoT experiments, as well as works in the literature that
studied the impact of Routing Protocol for Low-Power and Lossy Networks (RPL) attacks
under different network topologies and attacker positions. In Section 3, we present our
proposed BLC framework for conducting replicable experiments in a structured approach,
including the tools that help at each stage. As a demonstration of the effectiveness of
utilizing this framework, Section 4 provides an empirical analysis and evaluation of the
impact of flooding attacks on a WSN considering different topologies. Finally, Section 5
concludes the manuscript and envisions new directions.
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2. Related Work

In this section, we will delve into studies that consider different network topologies
and configurations when they analyze the impact of RPL attacks, given that our framework
considers these as major factors when studying different attacks. We will also highlight
various frameworks designed for the purpose of extracting and managing data from
wireless sensor networks.

2.1. Performance Analysis Considering Attack Scenarios, Placements, and Network Layouts

The literature includes a wealth of studies on the effect of different treatments and
attacks on WSNs. Unfortunately, few of these considered a structured approach and limited
potential confounding factors to provide more comprehensive insights. For example,
the study presented in [11] drew conclusions on the differences between blackhole and
grayhole attacks based on a network of random distribution, without considering the effect
of other factors. Ramya and Vamsi [18] conducted an experiment to study a blackhole
attack in various network sizes and attacker placements. They found that the impact of the
attack on packet delivery was inversely proportional to the number of nodes and directly
proportional to the number of attackers. Several studies have investigated the impact of
various attacks on different topologies. For instance, Ref. [9] is an evaluation study of
rank attacks on a grid topology network. The study considered dispersed adversary nodes
at random over the grid in each multiple-attacker scenario. The analysis considers how
the assault affected various network nodes. The findings show that an attack may have
a significant negative effect on the network’s performance, particularly if it is carried out
in an area with a high forwarding load or involves several attackers [9]. Version attacks
have been considered by multiple studies to investigate the effects of the topology on the
attack’s impact. Other studies [19,20] investigated version attack detection in the context
of cluster-based, random, and grid topologies. Their findings show that the scalability
of their detection solution was reduced in randomly generated topologies compared to
the grid topology. However, more realistic cluster-based topologies exhibit performance
comparable to grid topologies. Moreover, the authors of [21] employed grid and random
node placement techniques in their work to study how the performance of the mitigation
changes with the topological properties. Under version attacks, the study noted that the
amount of control messages approximately doubled for a grid corner network, and it tripled
for a random network [21]. The rationale was that a grid topology had more consistent
node densities than random placement, which resulted in topologies with varying node
densities. Because of it having longer links than others, grid topology showed the highest
average power consumption values for the attack-free condition [21].

Hachemi et al. [22] conducted a study to investigate the impact of sinkhole attacks on a
network consisting of 10 nodes in a tree layout with one attacker. The study was conducted
in three scenarios, and it noted that the DODAG Information Object (DIO) messages within
the network increased significantly as the attacker was placed further in the network and
closer to the sink node. Although the Quality of Service metrics of the network were not
measured in multiple studies, the overall findings suggest that the network became less
stable, which is evident in the frequent DODAG formations. This study provides valuable
insights into the potential vulnerabilities of networks to sinkhole attacks and highlights the
need for further research to develop effective countermeasures to mitigate such attacks.

Rai and Asawa [23] studied the implications of a decreased rank attack on a simulated
network in a grid pattern. Although the paper assessed varying attacker placements with
regard to the sink, it did not explore the differences in the aftermath. Nonetheless, the
findings of the study show that the attack had more impact when the attacker was placed
in an active network area [23].

Alternatively, in [24], the study tackled a node reset attack, which includes both local
repair and version attacks under a binary tree and mesh topologies. In the binary tree
topology, each node has only one way to the sink. As a result, removing each node causes
the graph to split. In the mesh topology, each node has many nearby nodes, and the
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removal of any node will not lead to a partition of the graph. The results in [24] illustrate
that mesh topology increases overall energy consumption but marginally less than that
of binary tree topology. Because of the mesh topology, when a node reset happens, some
nodes may already be utilizing alternate paths. Affected nodes might adapt their routes to
avoid missing nodes. To the best of our knowledge, version, local repair, and rank attacks
are the only attacks to have been studied under different topologies.

Table 1 provides a summary of the studies that take into account multiple attack
scenarios, placements, or network layouts.

Table 1. Summary of studies that consider multiple attack scenarios, placements, or network layouts.

Ref. Studied Attacks Attacker Placements Network Layout Performance Metrics

[11] Blackhole, grayhole Random position Random
Control overhead, network

lifetime, power
consumption

[18]
Blackhole, flooding, and

grayhole Mobile Mobile
Network lifetime, power

consumption, PDR,
throughput

[9] Decreased rank Each network node position Grid
Control overhead, E2E

delay, power consumption,
throughput

[19] Version Each network node position Cluster-based, random, and
grid Scalability

[21] Version Each network node position Grid and random
Control overhead, E2E

delay, power consumption,
PDR

[22] Decreased rank
Three positions: close to the
sink, in the middle, and at

the network’s edge.
Tree Control overhead

[23] Decreased rank Multiple fixed positions Grid E2E delay, PDR

[24] Version and local repair Fixed position Binary tree and mesh Power consumption

2.2. Approaches and Tools for Analyzing WSNs’ Performance

Several researchers have developed tools to replicate nodes’ places and types system-
atically in RPL networks. Moreover, other tools have been designed to collect network
performance parameters.

The authors in [25] introduced Multi-Trace, which is an extension of the Cooja simu-
lator that offers multi-level tracing capabilities. These capabilities allow for data logging
at varying levels while keeping track of a collective time. The proposed system also in-
cludes customized scripts to expand a simulation into different ones with varying sizes,
distributions, and logical implementations. Because all generated simulations reflect the
same scenario, implying that all simulations are following the same timeline, the generated
logs and results can be tracked through a global timestamp. However, this tool does not
provide additional abilities to select other topologies for placing the network’s nodes.

Additionally, George et al. [26] introduced ASSET—an IDS for RPL that addresses
13 different types of attacks, such as blackhole, flooding, replay, and rank attacks. The
system uses diverse profiles to combat these issues. The application plane offers a user-
friendly interface for real-time visualization and monitoring of the IoT topology. It also
identifies potential IoT nodes that may act as attackers. It is important to note that this
tool does not automatically place network nodes, and the results are presented at the node
level rather than the network level. Another study [27] presented a software built on top of
Cooja called ViTool-BC, which allows real-time visualization of the network construction
and connection behavior. In addition, ViTool-BC offers a heatmap of energy consumption
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traces and battery depletion. Therefore, this tool helps researchers monitor and analyze
the available routing protocols in Cooja. It is important to note that this tool does not
provide the ability to replicate nodes’ placement in the network. Additionally, other metrics
like the PDR and E2E delay are not visually presented in a heatmap. Moreover, it lacks
consolidation of the network’s performance results.

PyFUNS [28] is a framework that allows for rapid development of WSN-based applica-
tions through Python and CoAP APIs without requiring specialized expertise in embedded
systems development. It abstracts networking and native codes, allowing the developer
to focus more on the application development [28]. When evaluating the framework’s
performance, it is noted that the authors considered evaluating it in different topologies
(star, tree, and mesh), running different applications and different placements. Another
study introduced a multi-protocol Software-Defined Networking platform for the IoT called
MINOS [29]. This platform utilizes appropriate interfaces for centralized network control of
diverse and resource-constrained IoT environments. In addition, the introduced graphical
user interface provides a bespoke dashboard and real-time visualization tool. The main
focus of this tool is handling mobility and heterogeneity in the experimentation setup. The
calculated metric in this platform is the PDR and control overhead.

A summary of studies that offer tools for analyzing the performance of WSNs is
provided in Table 2.

Table 2. Summary of studies that provide tools for analyzing WSN performance.

Ref. Tool Base Capabilities Limitations

[25] Multi-Trace Cooja simulator
Multiple levels of data logging;

generating multiple simulations from a
single scenario.

Node placement and topology
selections are not provided.

[26] ASSET Cooja simulator
Real-time visualization of topology;

provides 13 types of RPL attacks.
Manual node placement; summary

results are not provided.

[27] ViTool-BC Cooja simulator
Real-time visualization of network
connections; heatmaps of energy

consumption, and battery depletion.

Node placement and topology
selections are not provided; PDR,

latency, and control overhead are not
reported.

[28] PyFUNS Python and CoAP API
Allows multiple topologies and

placements; and provides energy and
latency metrics.

PDR and control overhead are not
reported.

[29] MINOS Not specified
Real-time visualization of network

connections; provides PDR and control
overhead.

Power consumption is not reported; the
results are presented at the node level.

3. Framework Overview

In this section, we introduce a BLC framework that enables researchers to conduct
replicable experiments under predefined conditions. The framework provides a systematic
approach to conducting conclusive experiments on WSNs by considering varying factors
that may impact its results’ generalization. In the case of studying the impact of mali-
cious attacks on WSNs, a researcher can leverage this framework to conduct structured
experiments by considering different attack scenarios, network topologies, and attacker
placements. The attack scenarios may be scaled in breadth by covering different attacks, or
in depth by considering varying numbers of attackers carrying out the same attack. Fig-
ure 1 provides an illustration of the considerations of this framework. Further, we propose
a set of tools that aid a researcher to conduct experiments according to this framework
through the precise positioning of network nodes in the network, identifying their types,
and extracting and summarizing key metrics.
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Figure 1. Visual representation of BLC framework.

Contiki [16] provided a Java-based simulator called Cooja [15], which facilitates
network debugging and performance analysis, including power tracing and profiling.
However, each scenario needs to be configured manually by specifying nodes’ types and
locations, run separately, and analyzed accordingly. The results collected during each
simulation period provide detailed information about each node in the network. These
results are often fragmented, limited, and hard to consolidate either at a holistic level or at
an individual level. Analyzing both simultaneously is expected to provide further insights
into how the overall network behaves during experiments. The framework offers structure
and tools built upon three main components, as shown in Figure 2.

The Builder provides flexible and precise generation of Cooja automated simulation
files. It can handle different classes of nodes and place each node with precision to form
consistent topologies with different scenarios. The Launcher allows the running of simula-
tion files produced by the builder in masses, with proper labeling and storing of output log
files. The Consolidator consolidates all output files into one master worksheet leveraging
Power Query. It analyzes and calculates the metrics and statistics of each scenario. These
metrics can be interpreted through tables and charts and can also be exported to CSV files.
These statistics can also be used to generate heatmaps for further analysis of the network’s
state using the builder. We will discuss in detail how each component works, what are the
inputs it needs, and what outputs it produces.

Figure 2. Process flow of interactions for proposed tools to execute and analyze simulations.
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3.1. Builder

The builder facilitates the experiment setup by allowing the definition of different
node/mote types and their position for the simulation to ensure the provision of cus-
tomized and replicable experiments. To achieve this, the builder utilizes CSC files saved
by Cooja simulation (which includes XML descriptors of the simulation environment).
Each simulation file contains full configuration data, such as required Cooja extensions,
simulation parameters, and information about each mote, such as type and position, as
illustrated in Figure 3. In addition, the simulation file includes pointers to Contiki process
source files that run for each mote type, allowing the builder to build the simulation with
the correct source files for each type of node.

Figure 3. CSC XML structure highlighting fragments generated by our builder.

The CSC file also includes exact coordinates for each mote as it is placed in the simula-
tion hyperplane. The builder tool can be used either to position each node programmatically
or to use prebuilt methods to build two classes of layouts, which are (1) a binary layout,
where each node extends the network’s coverage to a maximum of two additional nodes,
and (2) a grid layout, where nodes are structured such that they are arranged in columns
and rows. Both layouts are implemented by default, but the builder can still be scaled to ac-
commodate different layouts and topologies. Both layouts offer contradicting trade-offs as
the binary layouts favor covering a larger area with a finite set of devices, whereas the grid
maximizes redundancy because it avails more paths to the sink for each node at the cost of
the area covered. The aim is to obtain more comprehensive insights of our experiment by
expanding its scope to cover two contrasting layouts that may exhibit contrasting behavior
and produce different results.

Figure 4 shows how our builder determines the coordinates of each node recursively,
based on a previously generated one through the illustrative arrows. In our implementation,
nodes in the binary layout are characterized by having a maximum of one potential parent.
The distance between the nodes (d) is fixed as the maximum distance for transmission
range, and the angle where nodes branch is a constant 90◦. The builder tool is capable
of generating such networks recursively. Each node branches with two new child nodes,
noting the angle of the branch vector. The coordinates for the child nodes created at each
branch are calculated algebraically based on their parent’s coordinates and the angle of the
parents’ branch vector. Before introducing a new node to the network, the prebuilt graph
is traversed to ensure that the node to be added is not close to any other node (besides
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its parent) to avoid cycles and enforce the binary layout rule. If another node is found in
proximity, the new node is not added, leaving its parent with only one child.

Figure 4. Branching approach as implemented by the builder for the grid layout (left) and the binary
layout (right).

However, the grid layout is characterized by its grid-like distribution. In our approach,
central nodes will have up to eight neighbors and potential parents. Our builder can have
the node at the edge of the layout or position it toward the center. Provided with the
number of rows and columns, the builder will build the network by generating coordinates
for each node until the network is fully built. It is worth noting that the distance is shorter
among vertically and horizontally adjacent nodes compared to diagonally adjacent nodes.
Because the distance between a node and its diagonal neighbors is equal to d (the maximum
distance), the builder uses basic trigonometry to calculate the distance between a node to
its other neighbors, which is d/

√
2. Both layouts can be adjusted programmatically with

manually specified coordinates. Further, the user may use direct access to functions for
branching at specific points, allowing for more hybrid topologies to be created and merged.

Further, the user can specify which nodes run which source file. Once all parameters
are specified, the user can generate the XML excerpt for the simulation parameters, which
can be inserted between < simulation > tags on any existing Cooja simulation file. The
user can use the builder to generate as many Cooja simulation files as needed, each with its
own parameters according to the experiment design. The simulation files can be run by the
launcher to conduct experiments and collect datapoints for analysis. The builder can be
leveraged once more to build powerful heatmaps to analyze the network’s performance in
each simulation once simulations are run and data points are collected. The builder can also
use performance data collected from a simulation to generate a heatmap of the network for
each collected metric. This is achieved as the tool capitalizes on its prior knowledge of the
positioning of nodes in the network. The heatmap serves as a powerful visual aid to spot
the changes in the collected metrics.

3.2. Launcher

We also leverage a launcher to streamline the conducting of our experiments, which
is a bash script used to run simulations on Cooja while labeling output logs and packet
captures for future use and analysis. Once the builder generates simulation files, the
launcher runs each simulation independently without loading the Cooja GUI. Thus, the
launcher offloads resources on the host machine and allows experiments to run more
efficiently. This feature proved to be vital for sizable simulations consisting of a large
population of nodes as well as simulations where expensive processes are run (such as
flooding attacks), which would overcome memory issues.

Specifically, the launcher is a bash script that interfaces with Cooja through commands.
It requires the simulation name in the format “< simulation_name > .csc” as input. As the
simulation concludes, the launcher locates the newly generated logs and properly labels
and saves them with the proper name of the simulation. Both files are stored properly,
ensuring they are not overwritten in the next simulation. If the simulations are run in a
virtual machine, it is worth considering storing the results in a shared folder between the
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guest and host machines to enable faster access and allow the analysis of each scenario’s
results while the next simulation is running.

3.3. Consolidator

The consolidator consolidates all output files into one master workbook leveraging
Power Query. The consolidator relies on the logs generated by the simulations to calculate
different metrics. This implies that the source code for the network’s nodes is programmed
to output readings of desired metrics beforehand. Accordingly, log outputs include times-
tamps of these readings and events. Readings for each metric are collected by a specific
query designed to parse for it. Readings for each metric are then stored separately for
further analysis. The consolidator preprocesses all the log files resulting from simulations
and records individual messages by simulation, timestamp, node ID, and output message.
Each message is checked against a match of a predefined signature for each metric.

Our existing implementation collects three popular metrics for measuring the perfor-
mance of the network; namely, PDR, E2E delay, and power consumption. The consolidator
can be expanded to accommodate additional metrics with proper configuration. PDR is
a key indicator for the quality of message transmission and reception, and by extension,
the availability of the service provided by the network. E2E delay, conversely, looks at
the degradation of the service resulting from delayed packets. Both measures rely on the
nodes logging timestamped messages of sending and delivering data packets, which are
read by the consolidator for each metric. Increased power consumption is detrimental to
the lifespan of the network because it quickly depletes the nodes’ batteries. We estimated
power consumption using PowerTrace [30] and the ENERGEST module. Both are used to
track—at the node level during run time—how long each hardware component has been
on (e.g., CPU and transmitter). If we know the rate of energy consumption for each indi-
vidual component when it is used, then we can use both to calculate an estimated power
consumed at a specific interval. These rates are often documented as part of the hardware
specification for individual node types and can vary among different manufacturers and
architectures. Table 3 illustrates the specification factors used for the Zolertia Z1 motes
according to the datasheet [31]. Readings of power consumption rates are collected by
reading logged messages by the nodes. The consolidator allows easy modification of these
factors to scale to different hardware.

Table 3. Simulation environment parameters.

# Parameter Value

1 Number of motes 34 + 1 Sink
2 Malicious motes 0 or 1
3 Mote type Zolertia Z1
4 Mote distribution Binary or Grid
5 Tx and Rx success ratios 1.0
6 Duration 30 Min

At the core of the consolidator are master lists that include all simulations and their
average readings for all nodes for each metric. In addition, the consolidator includes one
worksheet that includes holistic average readings for all metrics for all simulations as a
summary of experiment results, as illustrated in Figure 5. The consolidator also outputs
separate sheets (one for each metric) that include node-level average readings for each
experiment. These can be exported to CSV files for further analysis. Because the layouts
of these networks were already built using the aforementioned builder, the same tool
can be fed with resulting CSV results to help generate visual heatmaps. For example,
if an experiment included 6 simulations (1 for each combination of scenario–placement–
topology) to collect 3 metrics, we would have 18 heatmaps, each showing average readings
of each node in each simulation. This proved to be a strong analysis tool and allowed us to
visually trace the impact of each attack or treatment throughout the network structure.
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Figure 5. Consolidator process map.

4. Case Study: Analyzing Flooding Attack

In this section, we will examine the impact of a flooding attack on RPL networks
considering different topologies, leveraging the framework and tools proposed in Section 3.

4.1. Flooding Attack

A flooding attack is a form of DoS attack that aims to degrade or completely bring
the service provided by the network to a halt. There are many forms and methods for
carrying out a flooding attack that exploits weaknesses in the communication protocols
stack. One such attack is a DODAG Information Solicitation (DIS) flooding attack. As
per RPL specifications, the actual topology of a network is built dynamically as nodes
in the network exchange information with each other. DIS messages are sent (usually
as multicast) by new nodes to solicit information on available networks and candidate
parents. Adjacent nodes already in the network respond by sending DIO messages to
advertise their information [32]. After receiving DIO messages from neighbor nodes, the
new node stops sending further solicitation messages and views all senders as prospective
parents [33]. However, in a DIS flooding attack scenario, a malicious node would keep
sending DIS messages excessively, overwhelming other nodes in the network and forcing
them to generate additional DIO messages, which disrupts their ability to handle their
roles in passing benign traffic, leading to congestion across existing links [34]. In our
implementation of the attack, the malicious node is assumed to have infiltrated the network
and acts as normally as other nodes until the attack is triggered. Flooding attacks are a
classic example of DoS attacks. Their footprint on RPL networks has been studied widely
and is shown to cause significant disruption to the networks in PDR, throughput, and
power consumption [35,36]. Almomani and Alkasasbeh [37] compared flooding attacks to
other DoS attacks (namely blackhole, grayhole, and scheduling attacks) and demonstrated
in a simulated experiment that they cause severe damage to the target network’s lifetime
and service availability.

4.2. Simulation Environment

We carried out the flooding attack in a simulated environment using Cooja and Contiki,
leveraging our aforementioned framework tools to build the network and analyze our
simulations. Our virtual simulation consists of two layouts (binary and grid), as discussed
in Section 3, and two scenarios (one with an attacker and another without an attacker
as a baseline scenario), making a total of four simulations. Each simulation consists of
35 nodes (34 sensors and one sink). Each sensor node records some observations and sends
its supposed readings to the sink, which in a real application would analyze the different
readings and act accordingly. The position of the attacker in central areas of each network,
as illustrated in Figure 6, is neither directly adjacent to the root node nor at the edge of the
network. Further details on the specifications of our setup are summarized in Table 3. After
we had set up the environment, we ran all of our four scenarios using the launcher script.
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Afterward, we compared the performance of our network when attacked to our original
baseline. This experiment aims to compare the effect of a treatment (applying flooding
attack) while controlling one potential confounding variable (network topology).

Figure 6. Layouts in our experiments highlighting the sinks’ and attackers’ positions.

4.3. Results and Analysis

The outcomes of our experiment are summarized in Table 4, where we compare
the results of each attack scenario to the baseline for the respective network layout. For
each metric, a darker red shading for a cell indicates a larger deviation from the most
favorable reading.

We distinguish both layouts in the baseline scenario. We note that both performed
differently, with the binary topology being the most efficient across all metrics. Starting
with PDR, we note that on average, it was marginally better in the binary layout compared
to the grid layout. After a closer look at Figure 7, we can determine that the marginal
difference is mainly driven by the extended time needed to build the grid layout and its
DODAG because both layouts performed virtually the same after minute 3. For the average
E2E delay, we noted significant delays in the grid layout equal to 35% more compared
to the binary layout. The delays were particularly higher for the first 3 min but rapidly
decreased thereafter and slightly fluctuated throughout the rest of the simulation, as visible
in Figure 8. However, the grid layout still experienced more delays more often than not on
average compared with the binary network.

Last, we can see that the binary network showed more efficient power consumption
compared to the grid layout throughout the experiment, as illustrated in Figure 9. In
fact, there were periods when the power consumption for the grid layout was double and
triple that for the binary (e.g., minutes 1, 6, and 21). Over the duration of the experiment,
the grid layout had a 46% higher power consumption rate compared to the binary. We
attribute this to the increased exchange of control messages in the grid layout because of its
increased density.

The results consolidated by our consolidator (shown in Table 4) show that both layouts
were impacted when exposed to flooding attacks to a varying degree. To facilitate quick
analysis, particularly for larger experiments, the background color of the cells gets redder
as the score gets worse for each metric. We note that the grid layout was more impacted by
the attack when compared to the binary layout, implying that having more dense networks
where a node has more neighbors helps the propagation of the flooding messages to a
larger population of the network.
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Figure 7. PDR performance for grid and normal topologies under normal conditions.

Figure 8. E2E performance for grid and normal topologies under normal conditions.

Figure 9. PC for grid and normal topologies under normal conditions.

Table 4. Experiment results as shown by the consolidator.

Scenario
Binary Grid

Avg PDR
(%)

Avg E2E
(ms)

Avg PC
(mW)

Avg PDR
(%)

Avg E2E
(ms)

Avg PC
(mW)

Normal 98% 1027 0.52 96% 1385 0.76
Flooding

Attack 79% 1177 0.80 54% 2389 1.67

Impact (%) −19% +15% +55% −44% +72% +120%

Looking at the network’s population to analyze the impact on different nodes can help
us better understand the attack’s propagation and consider the severity when distributing
our sensors and planning our mitigation approach. To that end, we will analyze the changes
in each metric for each topology in more detail, leveraging the heatmaps generated by our
framework and toolkit. There is one heatmap for each metric–topology–attack combination,
where each heatmap plots all nodes as colored circles in their corresponding coordinates
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and highlights potential links as lines. The sink node is colored in light green, whereas
the attacker node is highlighted in pink. Other nodes are labeled with their node number
as well as the change in the analyzed metric compared to the normal baseline. The nodes
themselves are also colored based on the severity of that change for easier interpretation. If
there is no change, the node is transparent. As the change becomes more significant, the
more saturated the color of the node becomes. If the change reflects an improvement, the
color changes to green. If the change reflects a deterioration, the color changes toward red.
Thresholds for the significance and polarity of interpreting these changes are defined for
each metric and can be customized. If there are no readings for that specific node, the node
is labeled with “No data” and colored in gray.

4.3.1. Impact on Packet Delivery Ratio

Table 4 shows that the PDR for the binary layout network decreased by 19% under the
flooding attack, compared to a 44% decrease in the grid layout. Moreover, Figures 10 and 11
illustrate the average PDR for each node of the binary and grid layouts, comparing the
attack’s impact with the normal baseline. In a regular scenario, most of the nodes in both
layouts achieve a PDR score of 100%. The binary layout exhibits a minimum PDR of 90%, as
shown in Figure 10, whereas the grid layout shows a minimum PDR of 83%, as illustrated
in Figure 11. On the other hand, under the flooding attack, multiple nodes in both layouts
failed to deliver any data packets and scored 0% PDR. We utilized the heatmaps generated
by our tools to analyze how individual nodes performed during each simulation, which
gives us insights into how the attack propagates. Figure 12 shows a heatmap for the
changes in the PDR across the binary network nodes after the attack compared to the
normal baseline scenario (without the attack). Figure 13 shows the same comparison for
the grid layout network.

Figure 10. Average PDR for nodes in the binary layout, comparing normal and attack scenarios.

Figure 11. Average PDR for nodes in the grid layout, comparing normal and attack scenarios.

Starting with the binary layout, Figure 12 demonstrates that the child nodes of the
attacker failed to deliver any messages to the sink. The attacker’s parent, however, was
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not impacted, but the average PDR of its other branch (nodes 12, 19, and 30) was notably
decreased by 23% on average. The same can also be noted—to a lesser degree—for the
further outer branch (nodes 6, 11, 18, 28, 29), which showed a decrease in PDR by an
average of 11.8%. The other half of the binary layout showed no significant changes.

Figure 12. Heatmap of binary layout, highlighting percentage change in average PDR post attack.

Figure 13. Heatmap of grid layout, highlighting percentage change in average PDR post attack.
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As for the grid layout, as Figure 13 reveals, we can see that 13 out of 33 benign
nodes (excluding the sink and the attacker) had a decrease in PDR by 50% or more. The
most impacted nodes are those closer to the attacker and further away from the sink. We
notice that nodes adjacent to the attacker but closer to the sink (nodes 13, 14, and 15) are
significantly less impacted compared to those that are further from the sink (nodes 24,
23, 25). Apparently, node 18 changed its parent as the experiment progressed and lost
all subsequent packets. The effect of the attack in this layout propagated to a larger and
further population compared to the binary layout. For example, it reached node 5, which is
one hop away from the sink and two hops away from the attacker.

4.3.2. Impact on End-to-End Delay

The average E2E delay for binary layout networks, as demonstrated in Table 4, fol-
lowing the flooding attack increased by 15% compared to the normal scenario, unlike
the grid layout, where delays in message delivery increased by 72%. Figures 14 and 15
provide boxplots that detail statistics for E2E readings for all messages sent by each node
of the binary and grid layouts, under the normal and attack scenarios. Each data point
represents the E2E delay of one delivered message throughout each simulation. For each
node, scenario pair, we plotted a box representing the interquartile range (bounded by Q1
and Q3), a line indicating the median, a cross indicating the arithmetic mean, and whiskers
extending the minimum and maximum values (excluding outliers, which were plotted as
individual dots). These figures aim to compare the impact of the attack with the normal
baseline. Irrespective of the attack, the minimum delay the nodes recorded in both layouts
was 27 milliseconds. However, the maximum delay observed in a normal scenario for the
binary layout was approximately 7 s, in contrast to the roughly 14 s delay logged under
attack, as depicted in Figure 14. Nodes 20, 21, 31, 32, and 33 had no messages delivered
when their parent (node 13) was carrying the attack. Accordingly, Figure 14 does not plot
any readings. As for the grid layout, its maximum delay reached up to 28 s in normal
network operations and 30 s when the network was under attack, which is illustrated in
Figure 15. Nodes 26, 27, and 28 in the attack scenario for the grid layout had a single
message delivered, and thus, the mean and median are plotted using the same value. A
closer look provides further insights into how each network behaved under the attack, as
illustrated in Figures 16 and 17 for the binary and grid layouts, respectively.

Figure 14. Boxplot visualizing E2E of the binary layout nodes, comparing normal and attack scenarios.
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Figure 15. Boxplot visualizing E2E of the grid layout nodes, comparing normal and attack scenarios.

Because the child nodes of the attacker in the binary layout had a PDR of 0%, there were
no messages to be delivered and, consequentially, no delay to be measured as presented
in Figure 16. Although the attacker’s parent witnessed 30% additional delays, its other
branch (consisting of nodes 12, 19, and 30) were the most impacted. Across the network,
node 30 recorded the largest average delay of 4101 ms ms, followed by node 19 with a
delay of 2477 ms, which corresponds to an increase of 278% and 119%, respectively, from
their baseline levels. It is noted that the impact of E2E delays spilled over to other branches
and impacted a larger proportion of the network. Furthermore, some nodes in further
branches recorded notable improvements (e.g., nodes 9, 23, 25, and 4), which slightly offset
the average delay of the overall network. It is observed that these nodes are on the other
branch away from the attacker. This emphasizes the role of the heatmap in helping us break
down the impact on the network and obtain insights that would not have been visible if
we measured the performance as an overall.

Figure 16. Heatmap of binary layout, highlighting percentage change in average E2E post attack.
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Figure 17. Heatmap of grid layout, highlighting percentage change in average E2E post attack.

As for the grid layout, shown in Figure 17, we notice an increased spread of impacted
nodes across the network, demonstrating the ripple effect of the flooding attack. Twenty-six
nodes witnessed increased delays by more than 100% as a result of the attack. Almost
all nodes suffered extensive delays, including some nodes that are close to the sink. For
example, node 3 is adjacent to the sink and recorded a 422% increase in delays. Although
the attacker’s direct neighbors were significantly impacted, node 18 showed a 40% im-
provement in E2E delay. After further examination, this was shown to be a measurement of
the only packet that was delivered according to the PDR heatmap (4% PDR in Figure 13).

4.3.3. Impact on Power Consumption

The flooding attack increased the power consumption in binary networks by 55%
as presented in Table 4. At the same time, the same metric for the grid layout increased
by 120%. The boxplots in Figures 18 and 19 present detailed statistics for the power
consumption of each node in both layouts (binary and grid, respectively). Each data point
represents one 20-s reading of power consumption by the node. A total of 90 readings
were collected for each node throughout each simulation. These boxplots compare the
impact of the attack with the normal baseline. The minimum power consumption for
both layouts was around 0.09 mW, and this was seen in both normal and attack scenarios.
However, the maximum consumption increased from about 5.5 mW in the normal scenario
to 12.5 mW under flooding attacks, presented in Figure 18. For the grid layout, the
maximum consumption increased from about 7.3 mW in the normal scenario to 11.8 mW
under flooding attacks, shown in Figure 19. A drill-down into the performance of individual
nodes is summarized in Figure 20 for the binary layout, and Figure 21 for the grid layout.

Although both binary and grid layouts were impacted to varying degrees, we notice a
common pattern in both layouts: the nodes closer to the attacker are more affected by the
attack and thus have a shorter lifetime. In the case of the binary layout, the child nodes of
the attacker (nodes 20 and 21) had the most increase in terms of power consumption (by
846% and 505%, respectively). Similarly for the grid layout, adjacent nodes to the attacker
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showed the highest increase in power consumption across the network. This can be seen
through nodes 23, 18, and 24, which increased by 388%, 320%, and 274%, respectively.

Additionally, we also notice that some nodes further away from the attacker showed a
slight decrease in power consumption. This is applicable to both the binary layout (e.g.,
nodes 2 and 3), and the grid layout (e.g., nodes 6 and 23). However, one major distinction
between the two layouts is that the effect of power consumption was more contained in
the binary layout compared to that of the grid layout. In the binary layout, Figure 20
points out that the average power consumption for the nodes in the right-hand branch
where the attacker is located increased by 130%, whereas that of the left-hand branch away
from the attacker did not show visible changes. The same cannot be said for the grid
layout, Figure 21, because some nodes closer to the sink and further from the attacker
demonstrated a significant increase in power consumption, such as node 10, which showed
an increase by 212%. The lifespan of the sink and its surrounding nodes is critical for
the lifetime of the overall network because it serves the only link for further nodes to get
their messages transmitted. Accordingly, we believe that a flooding attack would have a
devastating impact if the attacker is positioned closer to the sink.

Figure 18. Boxplot visualizing PC of the binary layout nodes, comparing normal and attack scenarios.

Figure 19. Boxplot visualizing PC of the grid layout nodes, comparing normal and attack scenarios.



J. Sens. Actuator Netw. 2024, 13, 17 19 of 22

Figure 20. Heatmap of binary layout, highlighting percentage change in average PC post attack.

Figure 21. Heatmap of grid layout, highlighting percentage change in average PC post attack.

5. Conclusions and Future Works

In this paper, we presented a structured framework for conducting replicable simu-
lations to study WSNs. It calls for the consideration of different factors when assessing
the network performance, such as different nodes’ distribution, source codes (including
attack scenarios), and node placements. The framework is complemented with tools that
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help with conducting experiments by considering different stages, from building each
simulation to carrying out the experiments until consolidating the results and analyzing
its outcomes. We demonstrated the adoption of such a framework when studying the
impact of flooding attacks on two contrasting network topologies (grid and binary). The
results showed that the flooding attack had a lesser effect on the binary layout network
than the grid layout. After the attack, the PDR decreased by 19% for the binary layout
and 44% for the grid layout. End-to-end delay increased by 15% for the binary layout and
72% for the grid layout. Additionally, power consumption increased by 55% for binary
networks and 120% for the grid layout. These outcomes emphasize the need to consider
network layouts since different topologies showed varying impacts. As a future work,
we intend to scale our tools to consider further network topologies (such as Linear, Ring,
and Random). Further, we aim to embed applicable capabilities of our tools to interface
directly with Cooja for easier and faster conduction of experiments by building on the
architecture of ViTool [27], which is modular, scalable, and interfaced with Cooja stack.
Further, our study of a flooding attack has demonstrated the attack’s detrimental impact
on the performance of the overall network. We also noted that individual nodes were
impacted differently to varying degrees, with some nodes recording improvements in their
average readings. Accordingly, we believe the framework and tools proposed offer an
opportunity for a new approach to analyzing the impact of attacks, which focuses on the
behavior of individual nodes.
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