
Citation: Kim, Minkun, David

Lindberg, Martin Crane, and Marija

Bezbradica. 2023. Dirichlet Process

Log Skew-Normal Mixture with a

Missing-at-Random-Covariate in

Insurance Claim Analysis.

Econometrics 11: 24. https://doi.org/

10.3390/econometrics11040024

Academic Editor: Marc S. Paolella

Received: 28 May 2023

Revised: 6 October 2023

Accepted: 9 October 2023

Published: 12 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

econometrics

Article

Dirichlet Process Log Skew-Normal Mixture with a
Missing-at-Random-Covariate in Insurance Claim Analysis
Minkun Kim 1,* , David Lindberg 2, Martin Crane 1 and Marija Bezbradica 1

1 ADAPT Centre, School of Computing, Dublin City University, D09 PX21 Dublin, Ireland;
martin.crane@adaptcentre.ie (M.C.); marija.bezbradica@adaptcentre.ie (M.B.)

2 Department of Statistics, University of Florida, Gainesville, FL 32611, USA; dlindberg@ufl.edu
* Correspondence: minkun.kim@adaptcentre.ie; Tel.: +353-089-459-8519

Abstract: In actuarial practice, the modeling of total losses tied to a certain policy is a nontrivial task
due to complex distributional features. In the recent literature, the application of the Dirichlet process
mixture for insurance loss has been proposed to eliminate the risk of model misspecification biases.
However, the effect of covariates as well as missing covariates in the modeling framework is rarely
studied. In this article, we propose novel connections among a covariate-dependent Dirichlet process
mixture, log-normal convolution, and missing covariate imputation. As a generative approach, our
framework models the joint of outcome and covariates, which allows us to impute missing covariates
under the assumption of missingness at random. The performance is assessed by applying our
model to several insurance datasets of varying size and data missingness from the literature, and the
empirical results demonstrate the benefit of our model compared with the existing actuarial models,
such as the Tweedie-based generalized linear model, generalized additive model, or multivariate
adaptive regression spline.

Keywords: Bayesian nonparametric model; heterogeneity; missing at random; log-normal sum
approximation; aggregate insurance claims; clustering; generative model; latent class

1. Introduction

In short-term insurance contracts, predicting insurance claim amounts is essential
for major actuarial decisions such as pricing or reserving. In particular, the development
of a full predictive distribution of aggregate claims is fundamental to understanding
potential risks. However, it is often not easy to develop the loss distribution properly
due to its complex distributional features, such as high skewness, zero inflation, hump
shape, and multi-modality. It is known that such complexity stems from the presence of
diverse, interconnected unknown risk classes and uncertainty in loss events. Accordingly,
there have been many attempts by actuaries to develop loss models, accommodating
multiple risk classes and quantifying the uncertainty. This includes the parametric mixture
modeling approaches based on log-normal, Weibull, Burr, Pareto, etc. distributions to
capture the various aspects of the loss of data (see Hogg and Klugman 2009). The parametric
approaches have been popular because they are conceptually simple, relying on established
statistical principles. However, the reality is that we never know how many true risk classes
are associated with the loss of data we have. Therefore, it is not surprising that many
parametric approaches are often met with model misspecification biases. With respect to
this, a Bayesian nonparametric (BNP) approach has been gradually recognized to solve such
distributional conundrums in insurance loss analysis. The major difference between the
traditional parametric models and the BNP is that the parametric model is built upon a fixed
number of risk classes imagined by actuaries, while the BNP does not allow the number of
risk classes to be fixed but instead lets the data determine the number of risk classes. In
other words, the BNP framework theoretically supports an infinite number of clusters or
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parameters until it finishes investigating every corner of the parameter space with the Monte
Carlo simulation technique. Aligned with such conceptual appeal, there have been several
BNP frameworks studied and applied in actuarial practice recently, such as the Gaussian
process, Dirichlet process, and Pitman–Yor process. (e.g., Suwandani and Purwono 2021;
Hong and Martin 2018; Shams Esfand Abadi 2022). Focusing on the Dirichlet process prior,
Hong and Martin (2018) recently developed the Dirichlet process mixture (DPM) model
as a BNP approach that maximizes the fitting flexibility of the loss distribution with the
presence of unknown risk classes. In this paper, as an extension of their work, we attempt
to go beyond the search for the maximized fitting flexibility, addressing the issues that
arise from the presence of covariates, missing data, and aggregate losses (total amount of
losses). The implication is that the predictive distribution for the expected aggregate claims
developed under Hong and Martin’s Dirichlet process framework cannot obviate the chance
of model misspecification bias with the incorporation of covariate effects and log-normal
convolution. For example, as covariates add new information that differentiates the data
points of the outcome variable, a new structure can be introduced into the data space, and
this increases the within-cluster heterogeneity (see Neuhaus and McCulloch 2006). That
aside, the incorporation of missing covariates may exacerbate the existing heterogeneity.
Additionally, given that the outcome variable describes the aggregate losses, rather than
individual claim amounts, it is difficult to compute the log-normal convolution as it does
not have a closed-form solution. In this regard, our study extends their work by addressing
the following research questions:

• RQ1. If an additional unobservable heterogeneity is introduced by the inclusion of
covariates, then what is the best method to capture the within-cluster heterogeneity in
modeling the total losses, comparing several conventional approaches?

• RQ2. If an additional estimation bias results from the use of the incomplete covariates
under missing-at-random (MAR) conditions, then what is the best way to increase the
imputation efficiency, comparing several conventional approaches?

• RQ3. If an individual loss is distributed with log-normal densities, then what is the
best way to approximate the sum of the log-normal outcome variables, comparing
several conventional approaches?

2. Discussion on the Research Questions and Related Work

Let Yi, i = 1, 2, . . . , N be the independent claim amount (reported by each policyholder
for a single policy) random variable, defined on a common probability space (Ω,F , P) from
a certain loss distribution, such as a log-normal distribution. Let X be a vector of the covari-
ates and N(t) be the total claim count, denoting the number of individual claims for a single
policy up to time t (policy period). The aggregate claim Sh(t) for a single policy h given
time t can be expressed as a convolution, where Sh(t) = ∑

N(t)
i=1 Yi = Y1 + Y2 + . . . + YN(t)

(assuming that each policy h is a group policy referring to the insurance coverage provided
to a group of individuals under a single policy). At the end of the policy period t, let S̃(t)
be the total aggregate claim amounts from the total policies received by an insurer. Then,
S̃(t) = ∑H

h=1 Sh(t) = S1(t) + S2(t) + . . . + SH(t), in which H is the total number of inde-
pendent policies in the entire portfolio. Note that both convolutions described so far are
built upon the assumption that the summands—Yi, i = 1, 2, · · · , N(t) and Sh, h = 1, 2, · · · ,
H—are mutually independent and identically distributed (to maintain the homogeneity of
each loss).

The involvement of covariates and the lack of closed-form solutions for the log-normal
sum bring about several challenges that violate the assumptions for an accurate estimation
of the total aggregate losses S̃(t). To begin with, the use of covariates gives rise to an
additional within-cluster heterogeneity. Kaas et al. (2008) described a standard aggregate
loss modeling principle, denoting that the expected aggregate claims E[Sh] are obtained
by the product of the mean claim counts and severities, where E[Sh] = E[N]E[Y]. With
the inclusion of covariates X, however, a new unknown structure or heterogeneity is in-
troduced into the data space of Yi, and this means that Y1|X1, Y2|X2, · · · , YN |XN within
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a single policy can still be independent but cannot be identically distributed. Therefore,
E[Sh|X] 6= E[N|X]E[Y|X], and the total aggregate losses S̃(t) becomes difficult to compute
with the conventional collective risk modeling approach. In addition, assuming that the
severity Yi follows a log-normal distribution, the computation of S̃(t) becomes quite diffi-
cult, as its convolution Sh is not known to have a closed form (see Beaulieu and Xie 2003).
Another challenge is the missing covariates in Sh|X. As shown by Ungolo et al. (2020),
the missing covariates under the missing-at-random (MAR) assumption lead to biased
parameter estimations because the uncertainty in the estimation results of the parameters
describing the outcome Y is heavily affected by the quality of the covariates X. Again, in
this case, S̃(t) cannot be computed properly.

Compounding all this, we propose the Dirichlet process log skew-normal mixture
to model Sh|X. We aim to cope with the within-cluster heterogeneity as suggested by
Braun et al. (2006); Hong and Martin (2018) while employing the log skew-normal approx-
imation studied by Li (2008) to compute each Sh|X and the sum of log-normal random
variables ∑

N(t)
i=1 Yi|X. When it comes to the problem of missing covariates, we exploit the

generative capability of the Dirichlet process to capture the latent structure of data, which
allows for a rigorous statistical treatment of MAR covariates.

2.1. Can the Dirichlet Process Capture the Heterogeneity and Bias? RQ1 and RQ2

Figure 1 illustrates the unpredictable and heterogeneous nature of the aggregate losses
Sh and how this can be addressed by the Dirichlet process. A series of independent,
identically distributed Sh developed by Yi for each policy h can be observed and collected
within a certain policy period t. However, the presence of unsettled amounts of losses Y∗h
incurred from unknown policyholders or other unobservable features of the policyholders
often increase the heterogeneity of each aggregate loss Sh as well as the total aggregate
losses S̃h(t). This is because any policyholders in different risk classes can raise claims at
any time over a fixed time horizon t, and their unsettled claim amounts (i.e., random Y∗h )
will not be known in advance. In order to understand the aggregate losses Sh properly, one
might need to answer questions such as “How much is Y∗h ?” and “By which policy or risk
class Y∗h is incurred?”

Figure 1. A series of independent and identically distributed aggregate losses Sh for each policy h and
the emergence of unsettled losses Y∗h tied to unknown policyholders that increases the heterogeneity
of Sh (left). The DPM as a mixture model to accommodate the inherent heterogeneity of Sh (right).

With respect to this, Hong and Martin (2018) presented a DPM framework that takes
into account such sources of heterogeneity via the extensive simulation of Sh and the
investigation of multiple mixture scenarios of Sh. By associating each unobservable loss
Y∗h with every possible risk-clustering scenario built upon an infinite dimensional para-
metric structure, their DPM optimizes the prediction values for the future amount of St.
Braun et al. (2006) also carried out a useful study of the DPM in insurance practice to cap-
ture unobservable heterogeneity in the loss data, such as intracorrelation between claim
amounts Yi in the different risk classes. In short, no matter how complex the distribu-
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tion of the loss is, the DPM is capable of accommodating any distributional properties—
multi-modes, skewness, heavy tails, etc.—resulting from unobservable heterogeneity and
therefore dramatically minimizes model misspecification biases.

Having said that, however, if considering covariates X to better understand the
different risk classes, then one might introduce an additional source of heterogeneity into
the scene, which prevents each cluster Sh from being identically distributed. In regard to
this, Huang and Meng (2020) pointed out that the covariate effect can be incorporated into
the DPM framework by considering the weight of the mixture component to be covariate-
dependent rather than constant. This allows the mixture model to keep each risk class
homogeneous while identifying the unique loss patterns (relationship between the loss
amount and the risk factors) of different types of policyholders. The research on covariate-
dependent weights includes a series of stick-breaking method studies on regression, time
series, loss distribution fitting problems, etc. in insurance. Sethuraman (1994) presented
the general stick-breaking framework to construct a prior distribution over an infinite
number of mixture components, ensuring that the mixing weights are probabilities and
their distribution is discrete with a probability of one. Griffin and Steel (2006, 2011) studied
the order-based stick-breaking method that allows the mixing weights to vary over the
covariate effect. They ordered the mixing weights according to a covariate-dependent
ranking and associated risk classes for similar covariate values with similar orderings.
Rodriguez and Dunson (2011) developed the probit stick-breaking process, aiming to
diversify families of prior distributions while preserving computational simplicity. They
suggest that the covariate effects can be integrated with the probit transformations of normal
random variables to produce mixing weights, which is the replacement for the characteristic
beta distribution in the stick formulation. The stick-breaking-based mixing weights can
be used in determining the clustering structures in the time series or regression analysis.
Bassetti et al. (2014) and Billio et al. (2019) studied applications of the stick-breaking process
to hierarchical prior development for the coefficients of autoregressive time series models.
Hannah et al. (2011) and Richardson and Hartman (2018) proposed combining the stick-
breaking-based prior with the Gaussian density to build a regression model.

In this article, we use a generalized representation of the stick-breaking process de-
veloped by Sethuraman (1994) to incorporate the covariate effects into the mixing weight.
This is because, with the inclusion of the covariates subject to missingness, the advanced
stick-breaking approaches listed above cannot be viable solutions. On the contrary, the
DPM with Sethuraman’s stick-breaking formulation offers a useful bedrock (such as a
multi-purpose joint distribution) for a MAR covariate treatment. As a generative mod-
eling approach, the DPM framework coupled with Sethurman’s stick-breaking method
models both the outcomes Sh and covariates X jointly to produce cluster memberships.
This is used as key knowledge to identify the latent structure of the data and thus estimate
the missing information (see Shahbaba and Neal 2009). For example, in the domain of
medicine research, Roy et al. (2018) developed a novel imputation strategy for the MAR
covariate using the joint model of the BNP framework. A further survey of imputation
methods based on the nonparametric Bayesian framework can be found in the work of
Si and Reiter (2013) and the references therein.

2.2. Can a Log Skew-Normal Mixture Approximate the Log-Normal Convolution? RQ3

The log-normal distribution has been considered a suitable claim amount Yi distri-
bution due to its nonnegative support, right-skewed curve, and moderately heavy tail to
accommodate some outliers. However, if one generalizes the individual claim amount Yi
by introducing a log-normal distribution, then the convolution computation for Sh fails
because the exact closed form for the log-normal sum is unknown.

Furman et al. (2020) presented several existing methods for the log-normal sum ap-
proximation that have been studied in the literature. This includes the moment-matching
approximation approaches such as minimax approximation, least squares approximation,
log-shifted gamma approximation, and log skew-normal approximation. The distance mini-
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mization approaches—minimax approximation or least squares approximation—described
by Beaulieu and Xie (2003); Zhao and Ding (2007) are conceptually simple, but they require
fitting the entire cumulative densities to the sum of the claim amounts, which can be
computationally expensive and fail easily when the number of summands Yi increases. The
log-shifted gamma approximation suggested by Lam and Le-Ngoc (2007) has less strict
distributional assumptions, but it is not particularly accurate at the lower region of the
distribution. In our study, special attention is paid to the possibility of the log skew-normal
approximation method for the sake of simplicity. A skew-normal distribution as an exten-
sion of a normal distribution has a third parameter to naturally explain skewness apart from
the other parameters (for a location and spread). Li (2008) pointed out that one can exploit
the third parameter of the skew-normal distribution to capture different skewness levels of
each summand. By taking the log of the skew-normal densities, we can approximate Sh,
the sum of the log-normal Yi. Using the log skew-normal as the underlying distribution for
Sh in the DPM framework, one can eliminate the need to compute the cumulative density
curve, and its closed-form density and the optimal distribution parameters for Sh can be
easily obtained by the moment-matching technique. For further details, see Li (2008) and
the references contained within.

2.3. Our Contributions and Paper Outline

The contributions of this study are twofold. First, we propose a new method to
efficiently model the sum of log-normal outcome variables representing the aggregate
insurance losses Sh. Using the log skew-normal model in the BNP framework, we cope
with the (1) lack of a closed form for the log-normal convolution and (2) heterogeneity in
the log-normal random variable at the same time. Second, we tackle the adverse impact
triggered by the inclusion of covariates X into the aggregate loss modeling framework.
This encompasses the added heterogeneity across Yi and the missing information fed by the
MAR covariates X. To our knowledge, there have been no previous attempts to estimate
the log skew-normal mixture within the BNP framework or use the DPM to handle the
MAR covariate in insurance loss modeling.

The rest of this paper is structured as follows. In Section 3, we describe the proposed
modeling framework for Sh, assuming a log-normal distributed Yi and the inclusion of
both continuous and discrete covariates X. This section also presents our novel imputation
approach for the MAR covariate within the DPM framework. Section 4 clarifies the final
forms of the posterior and predictive densities accordingly. Section 5 presents our empirical
results and validates our approach by fitting to two different datasets with different sam-
ple sizes drawn from the R package CASdatasets and the Wisconsin Local Government
Property Insurance Fund (LGPIF). This is followed by a discussion in Section 6.

3. Model: DP Log Skew-Normal Mixture for Sh|X
3.1. Background

Consider that there are multiple unknown risk classes (clusters) across the claim Yi
information within each policy, and then the individual aggregate claims Sh for the policy
h would have diverse characteristics that cannot be explained by fitting a single log skew-
normal distribution. In order to approximate the distribution that captures such diverse
characteristics in Sh, we seek to investigate diverse clustering scenarios. To this end, as
suggested by Hong and Martin (2018), we exploit the infinite mixture of log skew-normal
clusters and their complex dependencies by employing a Dirichlet process. The Dirichlet
process produces a distribution over clustering scenarios (with clustering parameters):

{θj, wj} ∼ G

G ∼ DP
(
α, G0

)
where G denotes the clustering scenarios, and the important components of G are as follows:

• θj: the parameters of the outcome variable defined by cluster j.
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• wj: the parameters of the covariates defined by cluster j.

G, as a single realization of the joint cluster probability vector {G(A1), G(A2) . . .}
sampled from the DPM model, takes independent partitions A1, A2, . . . of the sample space⋃∞

k=1 Ak = A of the support of G0. Through sufficient simulations of G, the Dirichlet
process investigates all possible clustering scenarios rather than relying on a single best
guess. The overall production of G is controlled with two parameters: the precision α and a
base measure G0. The precision α controls a variance of sampling G in the sense that larger
α generates new clusters more often to account for the unknown risk classes. The base
measure G0, as the mean of DP(α, G0), is a DP prior over the joint space of all parameters
for the outcome model, covariate model, and the precision α, as shown in Ghosal (2010).

Note that the original research on DPM by Hong and Martin (2018) mainly focused on
the random cluster weights ωj that were not tied to the covariates X. On the other hand,
in our model, the covariate effects are incorporated into the development of the cluster
weights ωj. All calculations for the development of the DPM modeling components in this
paper are based on the principles introduced by Ferguson (1973), Antoniak (1974), and
Sethuraman (1994).

3.2. Model Formulation with Discrete and Continuous Clusters

If the goal of modeling is to perform prediction and uncertainty quantification with
the presence of heterogeneity (resulting from previously unseen risk factors), then the
DPM framework exploits the generative process to this end. This process provides all the
necessary components to construct the predictive distribution, using the infinite clustering
scenarios based on the joint distribution of observed outcomes, covariates, as well as hidden
variables. Let the outcome be S = {S1, S2, . . . , SH}, denoting the H different aggregate
claims (incurred by the H different policies). We assume that the covariate x1 is binary and
x2 is Gaussian, and then our baseline DPM model can be expressed as follows:

Sh|x1h,x2h, β j, σ2
j , ξ j, β̃ j

∼ δ(XT
h β̃ j) 1(Sh = 0) +

[
1− δ(XT

h β̃ j)
]

LogSN
(
XT

h β j, σ2
j , ξ j

)
x1h|πj ∼ Bern

(
πj
)

x2h|µj, τ2
j ∼ N

(
µj, τ2

j
)

{θj, wj, ωj} ∼ G

G ∼ DP
(
α, G0

)
(1)

where j is the risk class index, Xh = {x1h, x2h} for the covariates, θj = {β j, σ2
j , ξ j, β̃ j} for

parameters describing the outcome, and wj = {πj, µj, τ2
j } for parameters explaining the

covariates. Sh is modeled as a mixture of a point mass at 0 with positive values distributed
with a log skew-normal density to address the complications of zero inflation in the loss
data, while δ(XT β̃ j) models the probability of the outcome being zero using a multivariate
logistic regression. Variable Definitions has a brief description of all parameters used in
this study.

When considering a Dirichlet process log skew-normal mixture to house the multiple
unknown risk classes in Sh, it is necessary to differentiate the forms of the mixture compo-
nents, depending on the types of clusters they use: discrete and continuous. While keeping
the inference of the cluster parameters data-dominated, the DPM first develops discrete
clusters based on the given claim information and then extrapolates certain unobservable
clusters of claims by examining the heterogeneity (or hidden risk classes) of each cluster. In
this process, the DPM develops new continuous clusters additionally and assesses them
with some probabilistic decision-making algorithms, rendering the parameter estimations
computationally efficient and asymptotically consistent (see Hong and Martin 2017).

The discrete mixture components (clusters) in the DPM framework have the standard
form that is useful in accounting for the observed classes, such as policy information
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for aggregate losses Sh (see Diebolt and Robert 1994). In calculating the discrete cluster
probabilities, we assume that the nonzero outcome and covariates are distributed with the
densities denoted by

fLSN
(
Sh|XT

h β j, σ2
j , ξ j

)
=

2
Shσj

φ
( log Sh − XT

h β j

σj

)
·Φ
(

ξ j ·
log Sh − XT

h β j

σj

)
(2a)

fBern
(
x1h|πj

)
= π

x1h
j
(
1− πj

)1−x1h (2b)

fN
(
x2h|µj, τ2

j
)
=

1√
2πτ2

j

exp

{
− 1

2τ2
j

(
x2h − µj

)2
}

(2c)

where φ(·) and Φ(·) are standard normal probability and cumulative density functions for
the log skew-normal density, respectively. To model the outcome data Sh|Xh for the policy
h, the DPM takes the general form of the mixture

f (Sh|Xh, θ) =
∞

∑
j=1

ωj

(
δ(XT

h β̃ j) 1(Sh = 0) +
[
1− δ(XT

h β̃ j)
]

fLSN(Sh|Xh, θj)
)

(3)

where j is the cluster index, θj = {β j, σ2
j , ξ j, β̃ j} and wj = {πj, µj, τ2

j } are the outcome and
covariate parameters to explain the risk clusters, respectively, and ωj, for the functions of
the covariates ωj(Xh|wj), represents the cluster component weights (mixing coefficient)
satisfying ∑∞

j=1 ωj = 1. However, when the total number of mixture components J ≤ H is
determined later from the data we have, the new continuous clusters can be introduced
by G0 (with its infinite-dimensional parametric structure) in order to tackle the additional
unknown risk classes. This involvement of G0 can address the within-class heterogeneity in
Sh by confronting the current discrete clustering result and investigating the homogeneity
more closely. As the new clusters are considered countably infinite, their corresponding
forms for the outcome and covariate models to obtain the continuous cluster are given by

f0(Sh|Xh) =
∫

f (Sh|Xh, θ) dG0(θ) (4a)

f0(x1h) =
∫

fBern(x1h|w) dG0(w) (4b)

f0(x2h) =
∫

fN(x2h|w) dG0(w) (4c)

They are also known as a “parameter-free outcome model” and a “parameter-free
covariate model”, respectively, for developing the new continuous cluster mixture. Given
a collection of outcome-covariate data pairs D = {Sh, Xh}H

h=1, the DPM puts together
the current discrete clusters and new continuous clusters to update the mixture form in
Equation (3), with help from the Monte Carlo Markov chain method (using sufficiently
simulated samples of the major parameters θj, wj). Consequently, the sample G described
in Equation (1) becomes G = f (Sh|Xh, D) = ∑∞

j=1 ωj · δzj , where δzj denotes discrete
clusters and the continuous cluster as a point mass distribution at the random locations
sampled from G0. Aligned with such flexible cluster development, the form of the predictive
distribution can be molded based on the knowledge extracted from G and the finite number
of clusters J as follows:

f (Sh|Xh, θ, w, α) =
ω∗J+1

ω∗J+1 + ∑J
j=1 ω∗j

· f0(Sh|Xh) +
∑J

j=1 ω∗j · f (Sh|Xh, θj)

ω∗J+1 + ∑J
j=1 ω∗j

(5)
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The finalized cluster weights in Equation (5) are secured through computing the two
submodels below for the discrete and continuous cluster weights, respectively, which reflect
the properties of the clusters and relevant covariates:

ω∗J+1 =
α

α + H
· f0(x1h, x2h) (6a)

ω∗j =
nj

α + H
· f (x1h, x2h|wj = (πj, µj, τ2

j )) (6b)

where α is the precision parameter to control the acceptance chances of the new clusters,
nj is the number of observations in cluster j, f0(Xh) is the parameter-free covariate model
in Equations (4b) and (4c) to support the new continuous cluster, and f (Xh|wj) is the
covariate model to support the current discrete clusters. Note that Equation (5) is de-
rived from the joint distribution of {Sh, Xh} conditioned on the posterior samples. The
mixture components—ω∗j · f (Sh|Xh, θj) and ω∗J+1 · f0(Sh|Xh)—as a product comprise the
joint distribution {Sh, Xh}. The mixing weights ωj are obtained by the covariate models
of x1, x2 that explain ω∗j and ω∗J+1. This is based on a Polya Urn distribution suggested
by Blackwell and MacQueen (1973), which is aligned with the result from the generalized
stick-breaking representation of the DPM presented by Sethuraman (1994).

3.3. Modeling Sh|Xh with a Complete Case Covariate

The joint posterior update for the outcome and covariate parameters—θj, wj—in
Equations (5) and (6) can be made through the DPM Gibbs sampler given in Algorithm A2
in Appendix B. In a nutshell, the DPM Gibbs sampler obtains draws from the analytically in-
tractable posterior, alternating between two stages to ensure convergence: (1) updating the
cluster membership for each observation and (2) updating the parameters given the cluster
partitioning. By looping through this algorithm many times (e.g., M = 100,000 iterations),
each iteration might give a slightly different selection of the new clusters based on the
Polya Urn scheme (see Gershman and Blei 2012), but the log-likelihood calculated at the
end of each iteration can help keep track of the convergence of the selections. A detailed
description of these two stages in Algorithm A2 is given below.

Stage 1. Cluster membership update:

Step I. Let the cluster-index j = 1, 2, · · · , J for the observation h be sh. First, the
cluster membership j is initialized by some clustering methods such as
hierarchical or k-means clustering. This provides an initial clustering of
the data (Sh, Xh) as well as the initial number of clusters.

Step II. Next, with the parameters sampled from the DPM prior G0 described
in Section 4.1 and the conditional probability term p(sh|s−h) on lines
6 and 9 in Algorithm A2 for the observation assignment, the ultimate
probabilities of the selected observation h being in the current discrete
clusters and the proposed continuous cluster are computed, respectively.
(The use of such a nonparametric prior to the development of a new
continuous cluster allows the shape of the cluster to be driven by the
data). Note that the term p(sh|s−h) is known as the Chinese Restaurant
process (see Blei and Frazier 2011) probability given by

p(sh|s−h) =

c ·
n−h

j

α + H − 1
, for h entering into the existing cluster: sh = j.

c · α

α + H − 1
, for h entering into the new cluster: sh = J + 1.

(7)

where c is a scaling constant to ensure that the probabilities add up to one
and s−h is the collection of cluster indices (s1, s2, · · · , sh−1, sh+1, · · · , sH)
assigned to every observation without the cluster index sh of the obser-
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vation h. A larger α results in a higher chance of developing the new
continuous cluster and adding to the collection of the existing discrete
clusters. Since the number of clusters is not fixed, and the sequence
of cluster assignment to observation cannot be ordered, one might be
concerned about the sampling variance or convergence problem in the
Gibbs sampler. In this regard, we expect that Equation (7) can carry out
stable simulations with the Gibbs sampler. Neal (2000) pointed out that
from the example of Escobar’s algorithm, the sequence in which the
observation h arrives in the cluster sh is exchangeable under this con-
ditional probability distribution described in Equation (7). This means
that the ultimate joint distribution to update the cluster memberships
from lines 4 to 10 in Algorithm A2 does not depend on the order of the
sequence in which the observations arrive.

Step III. Lastly, the new cluster membership is determined and updated by the
Polya Urn scheme using a multinomial distribution based on the result-
ing cluster probabilities. This is briefly illustrated in Figure 2. Please note
how the development of the cluster weighting components ω∗j , ω∗J+1 in
Equations (6a) and (6b) is made in Figure 2.

Figure 2. A schematic of the cluster membership update process in Stage 1. In Step I, the algorithm
initializes the cluster memberships and parameters including ωj. In Step II, the cluster probabilities
P of the selected observation h are computed. In Step III, the new cluster membership is determined
by the Polya Urn scheme, and the new clustering weight component ω∗J+1 is created.
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Stage 2. Parameter update:
Once all observations have been assigned to particular clusters j = 1, 2, · · · , J at
a given iteration in the Gibbs sampling, the parameters of our interest—α and
θj, wj—for each cluster are updated, given the new cluster membership. This
is accomplished using the posterior densities denoted by p(α|J), p(θ|Sh, Xh),
and p(w|Xh), in which Sh, Xh represents all observations in cluster j. When it
comes to the forms of the prior and posterior densities from lines 17 to 23 in
Algorithm A2 that are used to simulate the parameters {α∗, θ∗j , w∗j }, we detail
them in Appendix A.

The DPM model described here can be characterized by the investigation of the infinite
number of clustering scenarios coupled with covariates. The simulated outcome model
f (Sh|Xh, D) = ∑∞

j=1 ωj · δzj and its predictive model in Equation (5) show that although
the DPM framework allows infinite-dimensional clustering, the dimension of the sampling
output G is adaptive, as it is a mixture with at most finite components determined by the
data themselves (its dimension cannot be greater than the total sample size H). This gives
the model flexibility, and throughout such modeling flexibility, the clustering scenarios
G accommodate all distributional properties of the given claims as well as the additional
unknown claims. In this process, the DPM captures the within-class heterogeneity across
the observations, and thus the resulting clusters can be kept as homogeneous as possible.
As a result, the unobserved claim problem mentioned in Figure 1 can be addressed, which
leads to a better prediction of the future value of Sh.

3.4. Modeling Sh|Xh with the MAR Covariate

The DPM model for complete case data {Sh, Xh} was discussed in Section 3.3. In
this Section, we present our novel imputation strategy for the MAR covariate in the DPM
framework in which the missing values are explained by the observed data and the cluster
membership. We focus on the missingness in the binary type covariate. With the model
definition in Equation (1), suppose the binary covariate x1 has missingness within it. To
handle this MAR covariate, we suggest the following modifications (additional steps) to
add to the DPM Gibbs sampler given in Algorithm A2:

(a) Adding an imputation step in the parameter update stage:
It is true that the missing covariate impacts on the parameter—θ, w—update. For
the parameters for the covariates wj = {πj, µj, τ2

j }, only the observations h with-
out the missing covariate are used for updating. If the cluster does not have any
observations with complete data for that covariate, then a draw from the prior distri-
bution for {πj, µj, τ2

j } would be used to update it. For the parameters for the outcome

θj = {β j, σ2
j , ξ j, β̃ j}, however, we must first impute values for the missing covariates

x1h for all observations h within the cluster j. Since we already defined a full joint
model— f (Sh|Xh, θj) · f (Xh|wj)—in Section 3.2, we can obtain draws for the MAR
covariate x1h from the imputation model, such as

fBern(x1h|Sh, x2h, θj, wj) ∝ f (Sh|Xh, β j, σ2
j , ξ j) · fBern(x1h|πj) (8)

at each iteration in the Gibbs sampling. Each imputation model is proportional to the
joint distribution as a product of the outcome model and the covariate model that
has missing data. The imputation process is illustrated in depth in Figure 3. Once
all missing covariate values have been imputed, then the parameters of each cluster
β j, σ2

j , ξ j, β̃ j are recalculated and sampled from the posterior of θj. After this cycle
is complete in the Gibbs sampling, the imputed data are discarded, and the same
imputation steps are repeated for every iteration.
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Figure 3. An example of the MAR imputation for the parameter update stage in the DPM Gibbs
sampler for Step I and Step II. The imputations are made cluster membership-wise.

(b) Adding a reclustering step in the cluster membership update stage:
To calculate each cluster probability after the parameter updates, the algorithm rede-
fines the two main components: (1) the covariate model and (2) the outcome model.
For the covariate model f (Xh|wj), we set this equal to the density functions of only
those covariates with complete data for observation h. Assuming that Xh = {x1h, x2h},
and the covariate x1 is missing for observation h, then we drop x1h and only use x2h
in the covariate model:

f (Xh|wj) = fN(x2h|w2j) (9)

This is the refined covariate model for the cluster j with the observation h, where
the data in x1 are not available. For the outcome model f (Sh|Xh, θj), the algorithm
simply takes the imputation model in Equation (8) for the observation h and integrates
it out of the covariates with missingness x1h. This reduces the degrees of variance
introduced by the imputations. In other words, as the covariate x1 is missing for
observation h, this missing covariate can be removed from the Xh term that it is being
conditioned on. Therefore, the refined outcome model is

f (Sh|x2h, θj) ∝
∫

f (Sh|Xh, θj) · fBern(x1h|w1j)dx1h (10)

The same process is performed for each observation with missing data and each
combination of missing covariates. Hence, using Equations (9) and (10), the cluster
probabilities and the predictive distribution can be obtained as illustrated in Step III
in Figure 4.



Econometrics 2023, 11, 24 12 of 32

Figure 4. An example of the refined outcome model development for the cluster membership update
stage in the DPM Gibbs sampler: Step III. Using these models, each cluster probability and the
predictive density can be calculated.

(c) Re-updating the parameters:
The cluster probability computation is followed by the parameter reestimation for
each cluster, which is illustrated via the diagram in Figure 5. This is the same idea as
what we have discussed about the parameter (θ, w) update in Section 3.3.

Figure 5. Parameter reestimation after the reclustering with imputation in the Gibbs sampler. This
diagram articulates flows of the parameter updates using the acyclic graphical representation. The
process cycles until achieving convergence.
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3.5. Gibbs Sampler Modification in Detail for the MAR Covariate

Now, we set out some modifications for the DPM Gibbs sampler in Algorithm A2 to
address the MAR covariate x1. We aim to provide the details of the DPM implementation
integrated with the MAR imputation strategy discussed in Section 3.4. The Gibbs sampler
will alternate between imputing missing data and drawing parameters until it reaches
convergence. We elaborate below on the modifications that fit into Algorithm A2 to update
the clustering scenarios and the posterior cluster parameters properly:

(a) In line 6, with the presence of a missing covariate x1h, the modification of the cluster
probability for the observation (Sh,��x1h, x2h) that belongs to the discrete cluster j can
be made as follows:

P(sh = j) = p(sh|s−h) · f (x2h|µj, τ2
j ) · f (Sh|x2h, β j, σ2

j , ξ j, β̃ j)

where f (x2h|µj, τ2
j ) is from Equation (12) and f (Sh|x2h, β j, σ2

j , ξ j, β̃ j) is from
Equation (14).

(b) In line 9, with the presence of a missing covariate x1h, the modification of the cluster
probability for the observation (Sh,��x1h, x2h) that belongs to the continuous cluster
J + 1 can be made as follows:

P(sh = J + 1) = p(sh|s−h) · f0(x2h) · f0(Sh|x2h)

where f0(x2h) is from Equation (13) and f0(Sh|x2h) is from Equation (15).

(c) In line 22, with the presence of a missing covariate x1h, the imputation should be made
before simulating the parameter θ∗j as follows:


{

First, sample x1h ∼ f (Sh|Xh, β j, σ2
j , ξ j, β̃ j) · fBern(x1h|πj)

Then sample θ∗j from the posterior: p(θ|Sh, Xh)
if x1h is missing.

Sample θ∗j from the posterior: p(θ|Sh, Xh) otherwise

The imputation model formulation above was discussed in Section 3.4.

Again, these modifications allow us to draw the missing covariate values from the
conditional posterior density at each iteration using the Metropolis–Hastings algorithm
with a random walk.

4. Bayesian Inference for Sh|Xh with the MAR Covariate

In this section, we examine the parameter models and data models in depth to update
the parameters of the DPM model given in Algorithm A2 under the assumption that
the binary covariate x1 is subject to missingness. The efficient simulation for the model
parameters θ : {β, σ2, ξ β̃}, w : {π, µ, τ2}, and α requires proper parameterization in
the parameter models: the prior parameter model and posterior parameter model. The
accurate estimations of cluster probabilities relies on the legitimate development of data
models—the outcome model and covariate model—and the model parameter simulation
results that govern the data model behaviors.

4.1. Parameter Models and the MAR Covariate

Our study is based on a three-level hierarchical structure. The first level regards data
models such as the log skew-normal outcome model and the Bernoulli and Gaussian covari-
ate models, the second level involves parameter models such as p(θ|Sh, Xh), p(w|Xh) to
explain the data, and the third level is developed from the generalized regression to explain
the parameters or the related hyperparameters, such as a0, b0, ν0, c0, d0, µ0, τ2

0 , e0, γ0, g0
and h0, to set a probabilistic distribution on the parameter vectors θ = {β, σ2, ξ, β̃},
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w = {π, µ, τ2}. See Variable Definitions for further information on the variables. Given
the model definition in Equation (1), we consider a set of conjugate parameter models due
to its computational advantages (see Cairns et al. 2011). For Sh ∼ δ(XT

h β̃ j) 1(Sh = 0) +[
1− δ(XT

h β̃ j)
]

LogSN(XT
h β j, σ2

j , ξ j), x1 ∼ Bern(πj), and x2 ∼ N(µj, τ2
j ), the prior models

come in as

p0(σ
2
j |a0, b0) : InvGa(a0, b0), p0(β j|β0, Σ0) : MV N(β0, σ2

j Σ0), p0(ξ j|ν0) : T(ν0)

p0(β̃ j|β̃0, Σ̃0) : MV N(β̃0, Σ̃0), p0(πj|c0, d0) : β(c0, d0), p0(µj|µ0, τ2
0 ) : N(µ0, τ2

j ),

p0(τ
2
j |e0, γ0) : InvGa(e0, γ0), p0(α|g0, h0) : Ga(g0, h0)

and their corresponding kernels chosen in this study are listed in Appendix A.1. Accord-
ingly, the Dirichlet process prior (probability measure) G0 in our case can be defined as
G0 = MV N(β0, Σ0)× InvGa(a0, b0)× T(ν0)×MV N(β̃0, Σ̃0)× β(c0, d0)×N(µ0, τ2

j )×
InvGa(e0, γ0)× Ga(g0, h0). With a feed of the observed data inputs (Sh, x1h, x2h), the
prior models for each cluster j described above will be updated into the following posterior
models analytically apart from θj = {β j, σ2

j , ξ j, β̃ j}:

p(πj|c0, d0, S, x1) : β(cnew, dnew)

p(µj|µ0, τ2
0 , S, x2) : N(µnew, τ2

new), p(τ2
j |e0, γ0, S, x2) : InvGa(enew, γnew)

p(α|g0, h0, h, J, η, πη) : πηGa(g0 + J, h0 − log(η)) + (1− πη)Ga(g0 + J − 1, h0 − log(η))

(11)

and their corresponding parameterizations are elaborated upon in Appendix A.2. Note that
the value of the precision parameter α relies on the total cluster number J and thus does
not vary by the cluster membership j, and its derivation of the posterior parameterization
is not subject to the Bayesian conjugacy. Hence, we instead adapt the form of the posterior
density for the α suggested by Escobar and West (1995), and its derivation is shown in
Appendix C.1. As for θj = {β j, σ2

j , ξ j, β̃ j}, there are no conjugate priors available for the
log skew-normal likelihood, but their posterior samples can be secured by the conventional
Metropolis–Hastings algorithm described in Algorithm A1 in Appendix A.

Considering that x1 has missing data, although the parameterizations of the posterior
densities for the covariate parameter model of w and the precision α listed in Equation (11)
are not affected, any outcome data of Sh with missingness should be dropped. Therefore,
nj and x1 are defined with the only observations in cluster j that are not missing. This
imputation example is provided in Appendix C.2. For the outcome parameter model of
θj, the missing covariate x1 must be imputed before its posterior computation shown in
Algorithm A2. Once the parameters are updated with the imputation, the data models can
be constructed as described in Equations (9) and (10).

4.2. Data Models and the MAR Covariate

Data models are the main components for the cluster probability computations de-
picted in Figure 2. As with the development of parameter models, the covariate data
model of X ignores the observations with missingness, while the outcome data model of Sh
requires completing the covariates beforehand. However, the formulation of their densities
can be more complex due to the marginalization process with respect to the missing covari-
ate. In addition, as discussed in Section 3.2, the data model development is bound by the
types of clusters, such as discrete clusters f (Sh|Xh, θj), f (Xh|wj) and continuous clusters
f0(Sh|Xh), f0(Xh):

(a) Covariate model for the discrete cluster f (Xh|wj)
Focusing on the scenario where x1 is binary, x2 is Gaussian, and the only covariate
with missingness is x1h, we simply drop the covariate x1h to develop the covariate
model for the discrete cluster. For instance, when computing the covariate probability
term for the hth observation in cluster j, the covariate model f (x1h, x2h|πj, µj, τ2

j )
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simply becomes f (x2h|µj, τ2
j ) due to the missingness of x1h. As we have x2, which is

assumed to be normally distributed as defined in Equation (1), its probability term is

f (x2h|µj, τ2
j ) =

1√
2πτ2

j

exp{
−(x2h − µj)

2

2τ2
j

} (12)

instead of

f (x1h, x2h|πj, µj, τ2
j ) = π

x1h
j
(
1− πj

)1−x1h · 1√
2πτ2

j

exp{
−(x2h − µj)

2

2τ2
j

}

(b) Covariate model for the continuous cluster f0(Xh)
If the binary covariate x1h is missing, then by the same logic, we drop the covariate x1h
for the continuous cluster. However, using Equation (4), the covariate model for the
continuous cluster integrates out the relevant parameters simulated from the Dirichlet
process prior G0 as follows:

f0(x2h) =
∫

f (x2h|µ, τ2) dG0(µ, τ2) =
∫

f (x2h|µ, τ2) · p(µ|τ2) · p(τ2) dµ dτ2

=
γe0

0 Γ(e0 + 1/2)
2
√

πΓ(e0)

(
γ0 +

(x2h − µ0)
2

4

)−(e0+1/2) (13)

instead of

f0(x1h, x2h) =
∫

f (x1h, x2h|π, µ, τ2) · p(π) · p(µ|τ2) · p(τ2) dπ dµ dτ2

=
B(x1h + c0, 1− x1h + d0)

B(c0, d0)
·

γe0
0 Γ(e0 + 1/2)
2
√

πΓ(e0)

(
γ0 +

(x2h − µ0)
2

4

)−(e0+1/2)

The derivation of the distributions above is provided in Appendix C.3.

(c) Outcome model for the discrete cluster f (Sh|Xh, θj)
In developing the outcome model, as with the parameter model case discussed in
Section 4.1 and Appendix C.2, it should be ensured that the covariate is complete
beforehand. With all missing data in x1h imputed, the outcome model for the dis-
crete cluster is obtained by marginalizing the joint f (Sh, x1h|x2h, θj, πj) out the MAR
covariate x1h, which is a log skew-normal mixture expressed as follows:

f (Sh|x2h, β j, σ2
j , ξ j, β̃ j) =

1

∑
x1h=0

f (Sh|x1h, x2h, β j, σ2
j , ξ j, β̃ j) · f (x1h|πj)

= f (Sh, x1h = 1|x2h, β j, σ2
j , ξ j, β̃ j, πj) + f (Sh, x1h = 0|x2h, β j, σ2

j , ξ j, β̃ j, πj)

= δ(XT
h β̃ j) 1(Sh = 0) +

[
1− δ(XT

h β̃ j)
]
· 2

σjSh

· φ
(

log Sh − (β j0 + β j1 + β j2x2h)

σj

)
·Φ
(

ξ j
log Sh − (β j0 + β j1 + β j2x2h)

σj

)
πj

+ δ(XT
h β̃ j) 1(Sh = 0) +

[
1− δ(XT

h β̃ j)
]
· 2

σjSh

· φ
(

log Sh − (β j0 + β j2x2h)

σj

)
·Φ
(

ξ j
log Sh − (β j0 + β j2x2h)

σj

)
· (1− πj)

(14)
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instead of

f (Sh|x1h, x2h, β j, σ2
j , ξ j, β̃ j)

= δ(XT
h β̃ j) 1(Sh = 0) +

[
1− δ(XT

h β̃ j)
]
· 2

σjSh

· φ
(

log Sh − (β j0 + β j1x1h + β j2x2h)

σj

)
·Φ
(

ξ j
log Sh − (β j0 + β j1x1h + β j2x2h)

σj

)

(d) Outcome model for the continuous cluster f0(Sh|Xh)
Once a missing covariate x1 is fully imputed, and the outcome model is marginalized
out and conditioned to the MAR covariate x1h, the outcome model f0(Sh|x2h) for the
continuous cluster can also be computed by integrating out the relevant parameters
using Equation (4):

f0(Sh|x2h) =
∫

f (Sh|x2h, β, σ2, ξ, β̃) · p(β) · p(σ2) · p(ξ) · p(β̃) dβ dσ2 dξ dβ̃ (15)

However, it can be too complicated to compute its form analytically. Instead, we can
integrate the joint model out of the parameters using Monte Carlo integration. For
example, we can perform the following steps for each h = 1, · · · , H:

(i) Sample β, σ2, ξ, β̃ from the DP prior densities G0 specified previously;
(ii) Plug these samples into f (Sh|x2h, β, σ2, ξ, β̃) · p(β) · p(σ2) · p(ξ) · p(β̃);
(iii) Repeat the above steps many times, recording each output;
(iv) Divide the sum of all output values by the number of Monte Carlo samples,

which will be the approximate integral.

5. Empirical Study
5.1. Data

The performance of our DPM framework is assessed based on two insurance datasets.
They highlight data difficulties such as unobservable heterogeneity in an outcome variable
and MAR covariates. For simplicity, in each dataset, we only consider two covariates—one
binary and one continuous—to explain its loss information (outcome variable). In this
study, all computations on these two datasets are performed in the same data format:

Year1 Year2 · · · , Yeary

Policy (a): {(Sa, Xa), (Sa, Xa), · · · , (Sa, Xa)}
Policy (b): {(Sb, Xb), (Sb, Xb), · · · , (Sb, Xb)}

...

Policy (H): {(SH , XH), (SH , XH), · · · , (SH , XH)}

The first dataset is PnCdemand, which is about the international property and liability
insurance demand of 22 countries over 7 years from 1987 to 1993. Secondly, we use a
dataset drawn from the Wisconsin Local Government Property Insurance Fund (LGPIF)
with information about the insurance coverage for government building units in Wisconsin
for the years from 2006 to 2010. The first one—PnCdemand—can be obtained from the
R package CASdatasets. The dataset is relatively small as it has H = 240 cases with
an outcome variable GenLiab, the individual loss amount under the policies of general
insurance for each case. As for the covariates, we consider one indicator variable of the
statutory law system (LegalSyst: one or zero) and one continuous variable that measures a
risk aversion rate (RiskAversion) for each area. For additional background on this dataset,
see the work of Browne et al. (2000). In the LGPIF dataset, the insurance coverage samples
for the government properties from H = 5660 policies are provided. The outcome variable
is the sum of all types of losses (total losses) for each policy. Only the covariates—LnCoverage
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and Fire5—are considered in our study. Fire5 is a binary covariate that indicates fire
protection levels, while LnCoverage is a continuous covariate that informs a total coverage
amount in a logarithmic scale. For further details, see the work of Quan and Valdez (2018).

Histograms of the losses of the two datasets are exhibited in Figure 6. Due to the
significant skewness, the loss data were log-transformed to attain Gaussianity. As shown in
the histograms, each distribution displayed different characteristics in regard to skewness,
modality, excess of zeros, etc. Note that the zero-inflated outcome variable in the LGPIF
data (Figure 6(b1,b2)) required a two-part modeling technique that distinguished the
probabilities of the outcome being zero and positive.

Figure 6. Histograms of the outcomes and log-transformed outcomes for the two datasets:
(a1,a2) PnCdemand and (b1,b2) LGPIF.

5.2. Three Competitor Models and Evaluation

Our DPM framework is compared to other commonly used actuarial models in prac-
tice. We employ three predictive models as benchmarks, namely a generalized linear
mixture model (GLM), multivariate adaptive regression spline (MARS), and generalized
additive model (GAM). In each dataset, we assume different distributions for the outcome
variables, and thus the three benchmark models are built upon the different outcome data
models. For example, the PnCdemand dataset (a1,a2) that appeared in Figure 6 had a high
frequency of small losses without zero values, and hence it was safe to use a gamma mixture
to explain the outcome data. As for the LGPIF data in Figure 6(b1,b2), we considered the
outcome data model based on a Tweedie distribution to accommodate the zero-inflated
loss data. The benchmark models were implemented in R with the mgcv, splines, and
mice packages.

All four models were trained, and investigations were performed in terms of model fit,
prediction accuracy, and the conditional tail expectation (CTE) of the predictive distribution.
Note that the goodness of fit value for the DPM is not available. Teh (2010) argued that the
goodness of fit evaluation for the DPM is unnecessary, as underfitting is mitigated by the
unbounded complexity of the DPM while overfitting is alleviated by the approximation of
the posterior densities over each parameter in the DPM. Gelman and Hill (2007) pointed
out that the posterior predictive check, which compares the simulated data under the fitted
DPM to the observed data, can be useful for studying model adequacy, but its usage cannot
be for model comparison. Therefore, the goodness of fit was only compared between the
rival models.
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For the evaluation of prediction performance, the sum of square prediction error
(SSPE) ∑H

h=1(g(Xh)− Sh)
2 and the sum of square absolute error (SAPE) ∑H

h=1 |g(Xh)− Sh|
were used in order to measure the differences between the predicted value g(Xh) and actual
value Sh. The SSPE penalizes large deviations much more than the SAPE. We preferred
the SAPE over the SSPE because our data were heavily skewed, which could result in
outliers occurring more often. In the distribution fitting problem, each data point had
equal importance, and we did not need to penalize larger error values that could arise from
the outliers.

5.3. Result with International General Insurance Liability Data

For this dataset, a training set of a response and covariate pair (Y, X) with n = 160
records and a test set of a response and covariate pair (Y′, X ′) with m = 80 records were
constructed. We implemented the following DPM:

Yh|x1h, x2h, β j, σ2
j ∼ LogN

(
XT

h β j, σ2
j
)

x1h|πj ∼ Bern
(
πj
)

x2h|µj, τ2
j ∼ N

(
µj, τ2

j
)

{θj, wj} ∼ G

G ∼ DP
(
α, G0

)
A log-normal likelihood was chosen to accommodate the individual loss Yh:GenLiab for a
policy h. The covariate x2, RiskAversion, was subject to missingness and found to depend on
Yh (a MAR case). This was addressed by the internalized imputation process as discussed
in Figure 3. The posterior parameters of θj, wj were estimated with our DPM Gibbs sampler
presented in Algorithm A2. The algorithm ran 10,000 iterations until convergence, and the
resulting scenarios of the clustering mixture are shown in Figure 7. The plot reveals the
overlays of predictive densities on the log scale from the last 100 iterations that were tied
to convergence. Figure 8 lists the classical data imputation result using the multivariate
imputation chained equation (MICE) and the predictive densities produced from our rival
models: GLM, GAM, and MARS.

Figure 7. LogN-DPM with the PnCdemand dataset, with the last 100 in-sample predictive densities
(scenarios) overlaid together.
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Figure 8. MICE trace plots (a1,a2), the imputation comparison plot for the MAR covariate (a3), and
in-sample predictive densities produced from GLM, GAM, and MARS (b1–b3) with the PnCde-
mand dataset.

The MICE runs multiple imputation chains and selects the imputation values from
the final iteration. This process results in multiple candidate datasets. The trace plots
(a1,a2) monitor the imputation mean and variance for the missing values in the dataset. In
the covariate distribution plot (a3), the density of the observed covariate, shown in blue,
is compared with the ones of the imputed covariate for each imputed dataset, shown in
red. The parameter inferences for the rival models were performed based on the imputed
datasets tied to convergence (see Shah et al. 2014). The gamma distribution was chosen to
fit the rival models as Yh was continuous and positively skewed with a constant coefficient
of variation. The gamma-based predictive density plots (b1,b2,b3) estimated with GLM,
GAM, and MARS look similar, showing unusual bumps near the right tail.

In Figure 9, a histogram of the outcome data in the test set is displayed. The posterior
mean densities for the out-of-sample predictions produced with our DPM along with the
rival models’ density estimates are overlaid on the histogram. Judging from the plot, one
can say that our DPM model generated the best approximation. While the rival models
generated smooth, mounded curves to make predictions, our DPM captured all possible
peaks and bumps, which was closer to the actual situation.

According to Table 1, our DPM obtained the highest SSPE compared with other rival
models. At first glance, our DPM might seem like a failure. However, upon closer inspec-
tion, it becomes evident that the presence of outliers greatly influenced its performance.
Remarkably, our DPM excelled at capturing these outliers, leading to the highest SSPE.
This is evidenced by the lowest SAPE of our DPM. In other words, as the SAPE weights
all the individual differences equally, we can assume that the rival models tend to pay too
much attention to the most probable data points and miss the majority of outliers. This
can be mainly due to the insufficient sample size as well. However, our DPM had good
performance under small sample sizes as long as there was sufficient prior knowledge
available. From the perspective of CTE, Table 1 shows that our DPM proposed a heavier
tail than other rival models, which reflects that our DPM captured more uncertainties given
the small sample size.
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Figure 9. A histogram of the observed loss Yh on the log scale and the out-of-sample predictive
densities for the typical class of a policy in the PnCdemand dataset.

Table 1. The comparison of out-of-sample modeling results based on the dataset PnCdemand.

Model AIC SSPE SAPE 10% CTE 50% CTE 90% CTE 95% CTE

Ga-GLM 830.56 268.6 139.8 6.5 13.8 54.5 78.0
Ga-MARS 830.58 267.2 138.2 6.1 13.0 57.2 71.1
Ga-GAM 845.94 266.7 136.1 6.2 13.3 58.1 72.2
LogN-DPM - 272.0 134.7 6.4 13.8 59.3 79.3

5.4. Result with LGPIF Data

For this dataset, a training set of a response and covariate pair (S, X)with n = 4529 records
and a test set of a response and covariate pair (S′, X ′) with m = 1110 records were con-
structed. We implemented the following DPM:

Sh|x1h,x2h, β j, σ2
j , ξ j, β̃ j

∼ δ(XT
h β̃ j) 1(Sh = 0) +

[
1− δ(XT

h β̃ j)
]

LogSN
(
XT

h β j, σ2
j , ξ j

)
x1h|πj ∼ Bern

(
πj
)

x2h|µj, τ2
j ∼ N

(
µj, τ2

j
)

{θj, wj} ∼ G

G ∼ DP
(
α, G0

)
As the outcome Sh, total losses, for a policy h in this dataset was considered to be

distributed with the sum of the log-normal densities, a log skew-normal likelihood was
chosen to approximate this convolution (see Li 2008). The covariate x1, Fire5, was subject to
missingness under the MAR condition, and the internalized imputation process illustrated
in Figure 3 resolved this issue without creating imputed datasets. As the outcome Sh
exhibited zero inflation, we employed a two-part model using a sigmoid and indicator
function. Our DPM Gibbs sampler described in Algorithm A2 produced the posterior
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parameters of θj, wj with 10,000 iterations until convergence. Figure 10 reveals the resulting
scenarios of the clustering mixture. In the plot, there are 100 predictive densities suggested
by our DPM, each of which stands for the convergence of the estimation results.

Figure 10. LogSN-DPM with the LGPIF dataset, with the last 100 in-sample predictive densities
(scenarios) overlaid together.

The output of the MICE and the resulting predictive densities from the rival models
are displayed in Figure 11. The rival models were built upon a Tweedie distribution due
to its ability to account for a large number of zero losses and the flexibility to capture the
unique loss patterns of the different classes of policyholders. According to the plot, all
three rival models reasonably captured zero inflation, but the GAM tended to suggest more
bumps that indicated a need for further assessment of the prediction uncertainty.

Figure 11. MICE trace plots (a1,a2), the imputation comparison plot for the MAR covariate
(a3), and in-sample predictive densities produced from GLM, GAM, and MARS (b1–b3) with the
LGPIF dataset.
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The overall out-of-sample prediction comparison is made in the histogram overlayed
with predictive density curves generated from the four models in Figure 12. From the plot,
it is apparent that the posterior predictive density proposed by our DPM best explained
the new samples, while other rival models kept producing multiple peaks.

Figure 12. A histogram of the observed total loss Sh on the log scale and the out-of-sample predictive
densities for the typical class of a policy in the LGPIF dataset.

The improved prediction performance of our DPM is confirmed by the smallest SAPE
in Table 2. However, as for the SSPE, our DPM showed the second-highest performance,
being slightly lower than that of the GAM. This is mainly due to the ability of our DPM to
capture outliers more often, which is heavily penalized by the SSPE that squares the term.
In terms of CTE, all three rival models suggested a similar level of tailedness, reflecting
the knowledge obtained from the observed data. However, our DPM went beyond this
and proposed a much heavier tail. This was because our DPM accommodated the presence
of outliers and shaped the tail behavior based on the combined knowledge of the prior
parameters and the observations available.

Table 2. The comparison of out-of-sample modeling results based on the LGPIF dataset.

Model AIC SSPE SAPE 10%
CTE

50%
CTE

90%
CTE

95%
CTE

Tweedie-GLM 26,270.3 2.04 × 1014 89,380,707 955.9 12,977.2 133,374.4 340,713.1
Tweedie-MARS 24,721.4 1.99 × 1014 88,594,850 961.7 10,391.0 129,409.2 355,112.6
Tweedie-GAM 21,948.9 1.95 × 1014 88,213,987 989.4 13,026.2 140,199.5 398,263.1
LogSN-DPM - 1.98 × 1014 83,864,890 975.3 13,695.1 147,486.6 425,682.6

6. Discussion

This paper proposes a novel DPM framework for actuarial practice to model total
losses with the incorporation of MAR covariates. Both the log-normal and log skew-
normal DPM presented overall good empirical performances in capturing the shape of the
distribution, out-of-sample prediction, and the estimation of the tailedness. This suggests
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that it is worth considering our DPM framework in order to avoid various model risks or
biases in insurance claim analysis.

6.1. Research Questions

Regarding RQ1, we proposed a DPM framework to address the within-cluster het-
erogeneity emerging from the inclusion of covariates. By allowing for an infinite number
of clustering scenarios determined by the observations as well as prior knowledge, our
DPM outperformed the rival methods in drawing the lines for the cluster membership.
This can be assessed by examining the homogeneity of the resulting clusters. In our case,
we fit cluster-wise GLMs (based on gamma and Tweedie distributions) to the data points
within each resulting cluster to compare the goodness-of-fit, and the consistent AICs across
all clusters endorse the benefits of the DPM. Similarly, our rival methods, such as GAM
or MARS, can capture heterogeneity by using customized smooth functions across dif-
ferent subsets of the data, but we observed some statistically insignificant smooth terms,
indicating the presence of heterogeneity in the cluster.

In terms of RQ2, we suggest incorporating the imputation steps into the parameter
and cluster membership update process in the DPM Gibbs sampler by leveraging the
joint distribution of the observed outcomes and missing covariates. This approach allows
the imputed values to be consistent with the observed data, preserving the correlation
structure within the dataset. In order to make a comparison of our approach with an
existing alternative, we additionally employed a chained equation technique. The multiple
sets of imputed values simulated from both approaches were investigated, and the results
show that our DPM Gibbs sampler did not represent a significant improvement over the
chained equation because their average estimates of the imputed values were closer to each
other. However, we feel that this result was mainly due to the relatively low dimensionality
of the datasets we used and their simple data structure. The specific characteristics or
dependencies in the data and the complexity of the missing patterns would give different
results in practice.

As for RQ3, we fit a log skew-normal density to the aggregate loss outcomes. In order
to assess its performance, one can consider minimax approximation, least squares approxi-
mation, log-shifted gamma approximation, etc. as the competitors. Li (2008) provided a
useful comparison between these competitors by overlaying the cumulative density curves
for each technique, but the experiments were grounded in the simulated log-normal data
with the predefined parameters and assumptions, which cannot be easily controlled in
real-world scenarios. Therefore, we feel that the choice of the best approximation technique
should be made based on the identification of the specific characteristics of the dataset.
In our case, each summand in our dataset was significantly different from each other in
magnitude (the minimax approach was inappropriate), and the LGPIF data had a large
volume of data smaller than five (the log-shifted gamma was inappropriate). Therefore,
we chose a log skew-normal density that was relatively simple while giving an accurate
approximation at the lower region of the distribution.

6.2. Future Work

There are several concerns with our log skew-normal DPM framework:

(a) Dimensionality: First, in our analysis, we only used two covariates (binary and
continuous) for simplicity. Hence, more complex data should be considered. As
the number of covariates grows, the likelihood components (covariate models) to
describe the covariates grow, which results in the shrinking of the cluster weights.
Therefore, using more covariates might enhance the level of sensitivity and accuracy
in the creation of cluster memberships. However, it can also introduce more noise or
hidden structures that render the resulting predictive distributions unstable. In this
sense, further research on the problem of high dimensional covariates in the DPM
framework would be worthwhile.
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(b) Measurement error: Second, although our focus in this article was the MAR covariate,
mismeasured covariates is an equally significant challenge that impairs the proper
model development in insurance practice. For example, Aggarwal et al. (2016) pointed
out that “model risk” mainly arises due to missingness and measurement error in
variables, leading to flawed risk assessments and decision making. Thus, further
investigation is necessary to explore the specialized construction of the DPM Gibbs
sampler for mismeasured covariates, aiming to prevent the issue of model risk.

(c) Sum of the log skew-normal: Third, as an extension to the approximation of total
losses Sh (the sum of individual losses) for a policy, we recommend researching ways
to approximate the sum of total losses S̃ across entire policies. In other words, we
pose the following question: “How do we approximate the sum of log skew-normal
random variables?” From the perspective of an executive or an entrepreneur whose
concern is the total cash flow of the firm, nothing might be more important than the
accurate estimation of the sum of total losses in order to identify the insolvency risk
or to make important business decisions.

(d) Scalability: Lastly, we suggest investigating the scalability of the posterior simulation
with our DPM Gibbs sampler. As shown in our empirical study on the PnCdemand
dataset, our DPM framework produced reliable estimates with relatively small sample
sizes (n ≤ 160). This was because our DPM framework actively utilized significant
prior knowledge in posterior inference rather than heavily relying on the actual fea-
tures of the data. In the result from the LGPIF dataset, our DPM exhibited stable
performance at a sample size n = 4529 as well. However, a sample size of over 10,000
was not explored in this paper. With increasing amounts of data, our DPM frame-
work raises the question of computational efficiency due to the growing demand for
computational resources or degradation in performance (see Ni et al. 2020). This is an
important consideration, especially in scenarios where the insurance loss information
is expected to grow over time.
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Variable Definitions
The following variables and functions are used in this manuscript:

i = 1, . . . , Nh Observation index i in a policy h
h = 1, . . . , H Policy index h with a total policy number H
j = 1, . . . , J Cluster index for J clusters
sh Cluster index j = 1, . . . , J for observation h
nj Number of observations in cluster j

https://github.com/mainkoon81/Paper2-Nonparametric-Bayesian-Approach01
https://github.com/mainkoon81/Paper2-Nonparametric-Bayesian-Approach01
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n−h
j Number of observations in cluster j where observation h was removed from

Yih Individual loss i in a policy observation h
Sh Outcome variable which is ΣYih in a policy observation h.
S̃ Outcome variable which is ΣSh across entire policies
Xh Vector of covariates (including x1, x2) for a policy observation h
x1 Vector of covariate (Fire5)
x2 Vector of covariate (Ln(coverage))
x1h Individual value of covariate (Fire5) for a policy observation h
x2h Individual value of covariate (Ln(coverage)) for a policy observation h
p0(·) Parameter model (for prior)
p(·) Parameter model (for posterior)
f0(·) Data model (for continuous cluster)
f (·) Data model (for discrete cluster)

δ(·) Logistic sigmoid function—expit(·)—to allow for a positive probability of the zero
outcome

θj Set of parameters—β, σ2, ξ—associated with f (ΣY|X) for cluster j
wj Set of parameters—π, µ, τ—associated with f (X) for cluster j
ωj Cluster weights (mixing coefficient) for cluster j

β0, Σ0

Vector of initial regression coefficients and variance-covariance matrix (i.e.,
σ̂2(XT X)−1 = XT X(ΣY− ΣŶ)T(ΣY− ΣŶ)/(n− p)) obtained from the baseline
multivariate gamma regression of ΣŶ > 0

β j Regression coefficient vector for a mean outcome estimation
σ2

j Cluster-wise variation value for the outcome
ξ j Skewness parameter for log skew-normal outcome

β̃0, Σ̃0
Vector of initial regression coefficients and variance-covariance matrix obtained
from the baseline multivariate logistic regression of ΣŶ = 0

β̃ j Regression coefficient vector for a logistic function to handle zero outcomes
πj Proportion parameter for Bernoulli covariate
µj, τj Location and spread parameter for Gaussian covariate

α
Precision parameter that controls the variance of the clustering simulation. For
instance, a larger α allows selecting more clusters.

G0

Prior joint distribution for all parameters in the DPM: β, σ2, ξ, π, µ, τ, and α. It
allows all continuous, integrable distributions to be supported while retaining
theoretical properties and computational tractability such as asymptotic
consistency and efficient posterior estimation.

a0, b0 Hyperparameters for inverse gamma density of σ2
j

c0, d0 Hyperparameters for Beta density of πj
ν0 Hyperparameters for Student’s t density of ξ j
µ0, τ2

0 Hyperparameters for Gaussian density of µj
e0, γ0 Hyperparameters for inverse gamma density of τ2

j
g0, h0 Hyperparameters for gamma density of α

η Random probability value for gamma mixture density of the posterior on α

πη Mixing coefficient for gamma mixture density of the posterior on α

Appendix A. Parameter Knowledge

Appendix A.1. Prior Kernel for Distributions of Outcome, Covariates, and Precision

p0(β j|β0, Σ0) : MV N(β0, σ2
j Σ0)

* ∝ e{(β j−β0)
TΣ−1

0 (β j−β0)}, p0(σ
2
j |a0, b0) : InvGa(a0, b0) ∝ (σ2

j )
−(a0+1) · e−b0/σ2

j

p0(ξ j|ν0) : T(ν0) ∝
( ξ2

j

ν0
+ 1
)−(ν0+1)/2

, p0(β̃ j|β̃0, Σ̃0) : MV N(β̃0, Σ̃0)
* ∝ e{(β̃ j−β̃0)

T Σ̃−1
0 (β̃ j−β̃0)}

p0(πj|c0, d0) : β(c0, d0) ∝ π
(c0−1)
j · (1− πj)

(d0−1), p0(µj|µ0, τ2
0 ) : N(µ0, τ2

0 ) ∝ e−
1
2 (µj−µ0)

2/τ2
0

p0(τ
2
j |e0, γ0) : InvGa(e0, γ0) ∝ (τ2

j )
−(e0+1) · e−γ0/τ2

j , p0(α|g0, h0) : Ga(g0, h0) ∝ α(g0−1) · e−α·h0

* β0, Σ0 ∼ gamma regression, β̃0, Σ̃0 ∼ logistic regression.
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Appendix A.2. Posterior Inference for Outcome, Covariates, and Precision

Algorithm A1 Posterior inference θ∗j = {β∗j , σ2∗
j , ξ∗j , β̃∗j }

Require: initialize θ
(old)
j :


β j ∼ MV N(β0, σ2

j Σ0)

σ2
j ∼ IG(a0, b0)

ξ j ∼ T(ν0)

β̃ j ∼ MV N(β̃0, Σ̃0)
1: repeat
2: for j = 1, · · · , J do . Assume J cluster memberships.
3: Sample θ(new) from the proposal densities q: . Choose priors as q.

β
(new)
j ∼ qβ, σ

2(new)
j ∼ qσ2 , ξ

(new)
j ∼ qξ , β̃

(new)
j ∼ qβ̃

4: for θ
(new)
j ={β(new)

j , σ
2(new)
j , ξ

(new)
j , β̃

(new)
j } do

5: Compute the transition ratio using the outcome models:

Ratioθ =
∏H

h=1 f (Sh|X, θ
(new)
j ) · p0(θ

(new)
j ) · qθ(θ

(old)
j )

∏H
h=1 f (Sh|X, θ

(old)
j ) · p0(θ

(old)
j ) · qθ(θ

(new)
j )

Sample U ∼ Uni f (0, 1)
6: if U < Ratioθ then θ∗j = θ

(new)
j otherwise θ∗j = θ

(old)
j

7: end if
8: end for
9: Record θ∗j

10: end for
11: until M posterior samples (θ∗j=1,··· ,J) obtained. . M is a sufficient sample size

p(πj|c0, d0, S, x1) : β(cnew, dnew) p(µj|µ0, τ2
0 , S, x2) : N(µnew, τ2

new){
cnew = c0 + ∑

nj
h=1 x1h

dnew = d0 + nj −∑
nj
h=1 x1h

{
µnew = (njx2 + µ0)/(nj + 1)
τ2

new = τ2
j /(nj + 1)

p(τ2
j |e0, γ0, S, x2) : InvGa(enew, γnew) p(α|g0, h0, h, J, η, πη) : πηGa(g0 + J, h0 − log(η))

+ (1− πη)Ga(g0 + J − 1, h0 − log(η)){
enew = e0 + nj/2
γnew = γ0 +

1
2{

nj
nj+1 · (x2 − µ0)

2 + ∑
nj
h=1(x2h − x2)

2}

η|α, h ∼ β(α + 1, h)

πη =
g0 + J − 1

g0 + J − 1 + h(h0 − log(η))

Appendix B. Baseline Inference Algorithm for the DPM

Once we obtain decent parameter samples from the posterior distributions, the poste-
rior predictive density can be computed via the DPM Gipps sampling. The basic inference
algorithm is described below. Note that the modification details for the missing data im-
putation are provided in Section 3.5. In every iteration, the algorithm updates the cluster
memberships based on the parameter samples and observed data at hand, which leads
to the recalculation of the cluster parameters. In the sampler, the state is the collection of
membership indices (s1, · · · , sH) and parameters {α∗, (θ∗1, · · · , θ∗J ), (w

∗
1 , · · · , w∗J )}, where

θ∗j refers to the parameter associated with cluster j.
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Algorithm A2 DPM Gibbs sampling for new cluster development

Require: Starting state (s1, · · · , sH), α, (θ1, · · · , θJ), (w1, · · · , wJ)
1: repeat
2: for h = 1, · · · , H do
3: (1) Update cluster memberships:

. Take sh and compute the Cl probabilities using the joint model.
4: if sh = j then
5: for j = 1, · · · , J do
6: P(sh = j) = p(sh|s−h) · f (x1h, x2h|wj) · f (Sh|x1h, x2h, θj)

. for observation h entering into existing discrete clusters.
7: end for
8: else if sh = J + 1 then
9: P(sh = J + 1) = p(sh|s−h) · f0(x1h, x2h) · f0(Sh|x1h, x2h)

. for observation h entering into a new continuous cluster.
10: end if
11: Draw a Cl index from a multinomial {1, 2, · · · , J + 1}

. with probabilities
(

P(sh = 1), P(sh = 2), · · · , P(sh = J + 1)
)
:Polya Urn.

12: if the Cl index = J + 1 then
13: Record (θ1, · · · , θJ+1), (w1, · · · , wJ+1)
14: end if
15:
16: (2) Update parameters:

. (θj, α, wj) for each cluster based on the posterior densities.
17: for j = 1, · · · , J + 1 do
18: Sample w∗j from the posterior: p(w|Xh).
19: end for
20: Sample α∗ from the posterior: p(α|J + 1).
21: for j = 1, · · · , J + 1 do
22: Sample θ∗j from the posterior: p(θ|Sj, Xh).
23: end for
24: Record (θ∗1, · · · , θ∗J+1), (w

∗
1 , · · · , w∗J+1)

25: end for
26: Record α∗

27:
28: for h = 1, · · · , H do
29: (3) Compute the log-likelihood: ∑n

h=1 log[ f (Xh|w∗j ) f (Sh|Xh, θ∗j )]

. the function is to eventually stabilize after a large number of iterations.
30: end for
31: until M posterior samples (θ∗j , α∗, w∗j ) obtained. . M is a sufficient sample size

Appendix C. Development of the Distributional Components for the DPM

Appendix C.1. Derivation of the Distribution of Precision α

In Section 4.1, the parameter model (posterior) of the precision term α is defined as

p(α|J) ∝ p0(α) · αJ−1 · (α + n) · β(α + 1, n)

p(α|J, η, g0, h0) ∝ πηGa(g0 + J, h0 − log(η)) + (1− πη)Ga(g0 + J − 1, h0 − log(η))

To derive this, we first derive the distribution of the number of clusters given the
precision parameter p(J|α). Consider a trivial example where we want to determine the
number of clusters that n = 5 observations fall into. One possible arrangement would be
that observations 1, 2, and 5 form new clusters, while observations 3 and 4 join an existing
cluster (note that the order is important):

• Observation 1 forms a new cluster with a probability =
α

α
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• Observation 2 forms a new cluster with a probability =
α

α + 1

• Observation 3 enters into an existing cluster with a probability =
2

α + 2

• Observation 4 enters into an existing cluster with a probability =
3

α + 3
• Observation 5 forms a new cluster with a probability =

α

α + 4
In this example, we have J = 3 clusters. We want to find the probability of this

arrangement. The probability is the following:

(α

α

)( α

α + 1

)(
2

α + 2

)(
3

α + 3

)(
α

α + 4

)
∝

α3

α(α + 1)(α + 2)(α + 3)(α + 4)

= α3 Γ(α)
Γ(α + 5)

Hence, the probability of observing J clusters amongst a sample size of n is given by

p(J|α) ∝ αJ Γ(α)
Γ(α + n)

This is also considered the likelihood function. The posterior on α is proportional to
the likelihood times the prior p0(α):

p(α|J) ∝ p(J|α)p0(α)

∝ αJ Γ(α)
Γ(α + n)

p0(α)

The beta function β(x, y) is defined as follows:

β(x, y) =
Γ(x)Γ(y)
Γ(x + y)

We can find the beta function of α + 1 and n as follows:

β(α + 1, n) =
Γ(α + 1)Γ(n)
Γ(α + 1 + n)

∝
αΓ(α)

(α + n)Γ(α + n)
Γ(α)

Γ(α + n)
∝ β(α + 1, n)

α + n
α

Thus, the posterior simplifies to the following:

p(α|J) ∝ αJ · β(α + 1, n) · α + n
α
· p0(α)

∝ p0(α) · αJ−1 · (α + n) · β(α + 1, n)

Now, under the Ga(g0, h0) prior for α, by substituting p0(α) with Ga(g0, h0), then

p(α|J, η, g0, h0) ∝ αg0+j−2 · (α + n) · e−α(h0−log(η)

∝ πηGa(g0 + J, h0 − log(η)) + (1− πη)Ga(g0 + J − 1, h0 − log(η))

Appendix C.2. Outcome Data Model of Sh Development with the MAR Covariate x1 for the
Discrete Clusters

Prior to the outcome parameter estimation, the missing covariates should be imputed
first to obtain the complete covariate model beforehand. In this study, if the binary covariate
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x1h is the only covariate with missingness, then we develop the imputation model to impute
the binary covariate x1h by taking the steps below and then update β, σ2, ξ, β̃ based on the
posterior sampling detailed in Algorithm A1 in Appendix A. The imputation model for x1h
is approximated by the joint values

f (x1h|Sh, x2h, β j, σj, ξ j, β̃ j, πj) ∝ f (Sh, x1h|x2h, β j, σj, ξ j, β̃ j, πj)

where

f (Sh, x1h|x2h, β j, σ2
j , ξ j, β̃ j, πj) = f (Sh|x1h, x2h, β j, σ2

j , ξ j, β̃ j) · fBern(x1h|πj)

= δ(XT
h β̃ j) 1(Sh = 0) · πx1h

j
(
1− πj

)1−x1h +
[
1− δ(XT

h β̃ j)
] 2

σjSh

· φ
(

log Sh − XT β j

σj

)
·Φ
(

ξ j
log Sh − XT β j

σj

)
· πx1h

j
(
1− πj

)1−x1h

which serves as the joint density that we can use to sample the imputation values.
For example, we have

fBern(x1h = 1|Sh, x2h, β j, σ2
j , ξ j, β̃ j, πj) ∝ f (Sh, x1h = 1|x2h, β j, σ2

j , ξ j, β̃ j, πj)

= δ(β̃ j0 + β̃ j1 + β̃ j2x2h) 1(Sh = 0) · πj +
[
1− δ(β̃ j0 + β̃ j1 + β̃ j2x2h)

] 2
σjSh

· φ
(

log Sh − (β j0 + β j1 + β j2x2h)

σj

)
·Φ
(

ξ j
log Sh − (β j0 + β j1 + β j2x2h)

σj

)
πj

fBern(x1h = 0|Sh, x2h, β j, σ2
j , ξ j, β̃ j, πj) ∝ f (Sh, x1h = 0|x2h, β j, σ2

j , ξ j, β̃ j, πj)

= δ(β̃ j0 + β̃ j2x2h) 1(Sh = 0) · (1− πj) +
[
1− δ(β̃ j0 + β̃ j2x2h)

] 2
σjSh

· φ
(

log Sh − (β j0 + β j2x2h)

σj

)
·Φ
(

ξ j
log Sh − (β j0 + β j2x2h)

σj

)
· (1− πj)

Then, we can impute x1h with the values sampled from Bern(π∗x1
), where

π∗x1
=

f (Sh, x1h = 1|x2h, β j, σ2
j , ξ j, β̃ j, πj)

f (Sh, x1h = 1|x2h, β j, σ2
j , ξ j, β̃ j, πj) + f (Sh, x1h = 0|x2h, β j, σ2

j , ξ j, β̃ j, πj)

Note that in R, the computation can be difficult when the numerator is too small. We
suggest the following tricks:

p1 = f (Sh, x1h = 1|x2h, β j, σ2
j , ξ j, β̃ j, πj)

p0 = f (Sh, x1h = 0|x2h, β j, σ2
j , ξ j, β̃ j, πj)

π∗x1
=

elog(p1)

elog(p1) + elog(p0)
· e−log(p1)

e−log(p1)
=

1
1 + elog(p0)−log(p1)

Finally, the outcome model that is required to compute the parameter θ = {β j, σ2
j , ξ j, β̃ j}

in the Metropolis–Hastings algorithm in Algorithm A1 is obtained by summing the joint
values of Sh and x1h (marginalize) out of the MAR covariate x1h, shown in Equation (10), as
illustrated below:

f (Sh|x2h,β j, σ2
j , ξ j, β̃ j, πj) =

1

∑
x1h=0

f (Sh, x1h|x2h, β j, σ2
j , ξ j, β̃ j, πj)

= f (Sh, x1h = 1|x2h, β j, σ2
j , ξ j, β̃ j, πj) + f (Sh, x1h = 0|x2h, β j, σ2

j , ξ j, β̃ j, πj)
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Appendix C.3. Covariate Data Model of x2 Development with the MAR Covariate x1 for the
Continuous Clusters

The parameter-free distributions f0(y|x) and f0(x) as data models for continuous
clusters are needed to calculate the probabilities of cluster membership and for the post-
processing calculations for prediction in the DPM. However, when MAR covariates are
present, it gives extra complexity in specifying the distribution to integrate out the parame-
ters. Recall that the integrals we are attempting to find are the following:

f0(xi) =
∫

f (xi|w) dG0(w) =
∫

f (xi|w) p(w) dw

If the binary covariate x1 is missing, then we will need to replace the distribution
f (x|w) with the continuous distribution (Gaussian) of x2, which is f (x2|µj, τ2

j ). The deriva-
tion of the parameter-free distributions f0(x1) and f0(x2) for the continuous cluster is as
shown below:

f0(x1)

=
∫

f (x1|π) p(π) dµ dπ

=
∫

πx1(1− π)1−x1 1
β(c0, d0)

π(c0−1)(1− π)(d0−1)dπ

=
1

β(c0, d0)

∫
π(x1+c0−1)(1− π)(1−x1+d0−1)dπ

=
β(x1 + c0, 1− x1 + d0)

β(c0, d0)
·
∫

π(x1+c0−1)(1− π)(1−x1+d0−1)

β(x1 + c0, 1− x1 + d0)
dπ︸ ︷︷ ︸

=1, beta distribution

f0(x2)

=
∫∫

f (x2|µ, τ2)p(µ|τ2)p(τ2) dµ dτ2

=
∫∫ 1√

2πτ2
exp

{
− 1

2τ2 (x2 − µ)2
}
× 1√

2πτ2
exp

{
− 1

2τ2 (µ− µ0)
2
}

×
γe0

0
Γ(e0)

(
τ2
)−e0−1

e−γ0/τ2
dµ dτ2

=
γe0

0
2πΓ(e0)

∫∫ (
τ2
)−e0−2

exp
{
− 1

2τ2 (x2 − µ)2 − 1
2τ2 (µ− µ0)

2 − γ0

τ2

}
dµ dτ2

The first step is to integrate with respect to µ. First, we’ll simplify the exponent:

− 1
2τ2 (x2 − µ)2 − 1

2τ2 (µ− µ0)
2 − γ0

τ2

= − 1
2τ2

[
x2

2 − 2x2µ + µ2 + µ2 − 2µ0µ + µ2
0

]
− γ0

τ2

= − 1
2τ2

[
2µ2 − 2(x2 + µ0)µ

]
− 1

2τ2

[
x2

2 + µ2
0

]
− γ0

τ2

= − 2
2τ2

[
µ2 − (x2 + µ0)µ +

(x2 + µ0)
2

4

]
+

1
τ2

(
(x2 + µ0)

2

4

)
−

x2
2 + µ2

0
2τ2 − γ0

τ2

= − 1
2(τ2/2)

(
µ− x2 + µ0

2

)2
+

(x2 + µ0)
2

4τ2 −
x2

2 + µ2
0

2τ2 − γ0

τ2
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The integrand will have the kernel of a normal distribution for µ with a mean
x2 + µ0

2

and variance
τ2

2
:

f0(x2)

=
γe0

0
2πΓ(e0)

∫ √
2π(τ2/2)︸ ︷︷ ︸

term from µ integral

×
(

τ2
)−e0−2

× exp

{
(x2 + µ0)

2

4τ2 −
x2

2 + µ2
0

2τ2 − γ0

τ2

}
dτ2

=
γe0

0
2
√

πΓ(e0)

∫ (
τ2
)−e0−3/2

exp

{
− 1

τ2

(
−

x2
2 + 2x2µ0 + µ2

0
4

+
x2

2 + µ2
0

2
+ γ0

)}
dτ2

=
γe0

0
2
√

πΓ(e0)

∫ (
τ2
)−e0−1/2−1

exp

{
− 1

τ2

(
(x2

2 − µ0)
2

4
+ γ0

)}
dτ2

The integrand is the kernel of an inverse gamma distribution with the shape parameter

e0 +
1
2

and scale parameter
(x2

2 − µ0)
2

4
+ γ0:

f0(x2) =
γe0

0
2
√

πΓ(e0)
× Γ(e0 + 1/2)

(
(x2

2 − µ0)
2

4
+ γ0

)−e0−1/2

As shown above, a closed-form expression can be determined, but this is not always
the case since it can be extremely complicated. To simplify, we instead might have to
consider a Monte Carlo integral.
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