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Abstract: Radio checks serve as the foundation for ground-to-air communication. To integrate
machine learning for automated and reliable radio checks, this study introduces an Auto Radio Check
network (ARCnet), a novel algorithm for non-intrusive speech quality assessment in civil aviation,
addressing the crucial need for dependable ground-to-air communication. By employing a multi-scale
feature fusion approach, including the consideration of audio’s frequency domain, comprehensibility,
and temporal information within the radio check scoring network, ARCnet integrates manually
designed features with self-supervised features and utilizes a transformer network to enhance speech
segment analysis. Utilizing the NISQA open-source dataset and the proprietary RadioCheckSpeech
dataset, ARCnet demonstrates superior performance in predicting speech quality, showing a 12%
improvement in both the Pearson correlation coefficient and root mean square error (RMSE) compared
to existing models. This research not only highlights the significance of applying multi-scale attributes
and deep neural network parameters in speech quality assessment but also emphasizes the crucial
role of the temporal network in capturing the nuances of voice data. Through a comprehensive
comparison of the ARCnet approach to traditional methods, this study underscores its innovative
contribution to enhancing communication efficiency and safety in civil aviation.

Keywords: radio check; speech quality assessment; multi-feature module

1. Introduction

To ensure flight safety and efficiency in the field of civil aviation, effective communi-
cation between aerodromes and airspace must be established. The very-high-frequency
communication system (VHF COMM) is a vital component in the realm of mobile wireless
communication and plays a pivotal role in the communication of civil aviation. Operat-
ing primarily through voice transmission, the VHF COMM system employs very-high-
frequency radio signals to convey information between communicating parties. Air traffic
controllers monitor aircraft in the airspace using radar surveillance within the air traf-
fic control system. Positioned at air traffic control stations, controllers provide airborne
traffic services by issuing voice commands through the VHF COMM system, enabled by
interphone systems, to aircraft within their assigned airspace sectors.

The very-high-frequency communication system has an operational frequency range
of 30 to 300 MHz, placing it within the very-high-frequency spectrum. VHF radios serve as
a primary communication tool within the A1 maritime area of the Global Maritime Distress
and Safety System (GMDSS), serving as a pivotal means for on-site communication and the
sole method for communication between air traffic controllers and pilots. Presently, VHF
radios used in civil aviation operate between 118.000 and 151.975 MHz (with an actual
maximum frequency of 136 MHz), with a frequency spacing of 25 kHz per channel. This
frequency range and channel spacing are stipulated by the International Civil Aviation
Organization. Notably, the frequencies between 121.600 and 121.925 MHz are designated
primarily for ground control.

The very-high-frequency (VHF) system operates using amplitude modulation (AM)
and has a minimum transmitter output power of 20 W. The key characteristics of VHF
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transmission are as follows: Due to their high frequency, surface waves experience rapid
attenuation, resulting in short propagation distances along the line of sight. As a result, VHF
communication relies primarily on space wave propagation, which is highly susceptible
to tropospheric effects. Additionally, terrain and geographical features have a significant
impact. Factors such as weather, encoders, and thermal noise within the radiotelephone
communications channel often lead to challenges such as high noise levels and voice signal
distortion in communications.

The VHF radiotelephone communication system is the primary communication net-
work for commercial aircraft within the civil aviation system. It enables bidirectional voice
communication between the flight crew and the air traffic controller at various stages of
flight. The takeoff and landing phases are the busiest periods for aircraft pilots, and also
the most susceptible to accidents. To ensure accurate information exchange between air
traffic controllers and flight crews during these crucial phases, VHF communication must
be highly reliable. Therefore, real-time evaluation and monitoring of the communication
quality between ground and airborne parties becomes a focal point of radiotelephone
communications in civil aviation.

In radiotelephone communications, the “Radio Check” command is typically used to
determine the operational status and signal quality of voice transceivers and to establish
contact with ground control stations. The “Radio Check” command pertains to radio verifi-
cation and evaluates the quality and consistency of radio signals. In aerial communications,
pilots communicate with air traffic controllers to inquire about the clarity of the signals they
are receiving. The controller responds and provides advice to ensure smooth communica-
tion. According to ICAO’s official recommendations, the sequence for a radio verification
is as follows: the other party’s call sign + one’s own call sign + “Radio Check” + “how
do you read”. In response, the signal quality is categorized into five levels and reported
as follows: Unreadable, Sometimes readable, Readable but with difficulty, Readable, and
Perfectly readable [1–3].

As shown in Figure 1, when an aircraft initially enters an airspace, it makes contact
with an air traffic controller and executes the “Radio Check” command to conduct a radio
signal evaluation. The pilot’s voice command undergoes modulation through a very high
frequency (VHF) before transmission from the aircraft. Upon reception by the aerodrome’s
VHF equipment, the signal is routed to the interphone systems. Subsequently, the air traffic
controller evaluates the speech quality based on the received signal, and the evaluation
outcome aids both parties in fine-tuning their equipment.

In the actual communication environment of airports, the following reasons may
lead to the deterioration of communication, requiring the parties involved to perform a
radio check:

1. Poor weather conditions, which often introduce some noise.
2. Incorrect use of the transmitter by the communicating parties, such as using mis-

matched frequency bands (which is generally the main reason for conducting a radio
check), and placing the transmitter too close to the speaker’s mouth (this can cause
popping sounds, which is also a secondary reason for conducting a radio check).

3. Aging communication equipment. The current very-high-frequency communication
system, compared to the latest WLAN or cellular communications, still modulates,
transmits, and demodulates the original signal. The electronic components filter the
signal which can lead to a loss of information and the introduction of noise.

In the actual operation of airports, such interactions are plentiful, and effective radio
communication can enhance the efficiency of airport operations [4]. Under poor commu-
nication conditions, both ground and air parties expend significant time and effort on
radio adjustments, which, on average, reduces the efficiency of airport operations and
poses safety risks [5]. We have analyzed dialogue data from several major airports in
China. During the actual operation of airports, the time taken for one command exchange
is about 10 s. Including the time taken by both parties to adjust the transmitter, one manual
radio adjustment takes about 10 to 20 s, while the actual duration of a normal conversa-
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tion does not exceed one minute. Moreover, currently, in the actual operation of airports,
both parties must manually perform radio checks. Therefore, employing machines for
radio adjustments can significantly increase the information throughput of ground-to-air
communications, thereby improving the efficiency of controllers.
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This study aims to replace the manual “Radio Check” scoring process with an auto-
mated machine-based evaluation. By harnessing voice data received by the aerodrome’s
VHF equipment, the Auto Radio Check model emulates the controller’s perception of
speech quality. The real-time assessment of voice data is conducted using the results of
the “Radio Check” scoring. This method not only streamlines the cumbersome radio
verification procedure performed each time communication is established between ground
and airborne parties, thereby improving communication efficiency, but it also provides a
more immediate and intuitive depiction of the channel quality.

Hence, the objective of this study is to compile a RadioCheckSpeech Dataset consist-
ing of radiotelephone communication voice data obtained from interphone systems and
evaluated by air traffic controllers. This dataset will be used to train and validate models.

The evaluation of voice in radiotelephone communication heavily relies on the most
immediate subjective perception of air traffic controllers, similar to the mean opinion score
(MOS) assessment method. MOS is a subjective measurement method used to evaluate
the quality of speech. It involves obtaining subjective ratings for voice samples from a
group of individuals, including experts and non-experts. MOS scores are widely used in
the telecommunications industry to assess call quality [6–8]. The MOS and the “Radio
Check” command in radiotelephone communication both share similarities as subjective,
non-intrusive methods for voice assessment. A comparison of their evaluation methods is
presented in Table 1 below:
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Table 1. Radio check compared to mean opinion score.

Score Quality Radio Check Mean Opinion Score Score

1 Bad Unreadable Very Annoying 1
2 Poor Readable now and then Annoying 2
3 Fair Readable but with difficulty Slightly annoying 3
4 Good Readable Perceptible but not annoying 4
5 Excellent Perfectly readable Imperceptible 5

Currently, researchers are conducting extensive research on deep-learning-based
speech quality prediction models, with the goal of replacing manual perceptual assess-
ments with more accurate and cost-efficient methods. These efforts have accumulated
numerous models and achievements. Intrusive speech quality assessment algorithms and
non-intrusive speech quality assessment algorithms are the two most common classifica-
tions for such speech quality assessment algorithms. The distinction lies in the fact that
intrusive algorithms require clean reference signals, whereas non-intrusive algorithms
do not.

Non-intrusive speech quality assessment algorithms can evaluate speech quality
without requiring reference signals. Due to the requirement for pristine, noise-free reference
speech in intrusive assessments, non-intrusive algorithms are increasingly utilized in real-
world settings. For instance, Lo et al. proposed MOSNet, a MOS predictor based on
convolutional neural networks and bidirectional long short-term memory networks, which
is used to predict MOS scores of converted speech in speech transformation systems [9].
Fu et al. introduced Quality-Net, a speech quality assessment model based on bidirectional
long short-term memory networks, which is used to predict MOS scores of enhanced speech
generated by speech enhancement systems [10]. Yoshimura et al. presented a synthetic
speech naturalness predictor based on fully connected neural networks and convolutional
neural networks, which is used to predict MOS scores of synthetic speech generated by
speech synthesis systems [11]. Naderi et al. presented AutoMOS, a naturalness assessment
model based on autoencoders and convolutional neural networks, for predicting MOS
scores of synthetic speech generated by speech synthesis systems [12]. Mittal et al. proposed
NISQA, a non-intrusive speech quality assessment model based on convolutional neural
networks and long short-term memory networks, for predicting MOS scores of speech with
various channel noise introductions [13]. ITU-T Rec. P.563 is a single-ended method for
objective speech quality assessment in narrowband telephone applications, approved in
2004 [14]. ANIQUE+ is a novel national standard used in the United States for non-intrusive
estimation of narrowband speech quality [15]. A. A. Catellier and S. D. Voran introduced
WAWEnets, a reference-free convolutional waveform method for estimating narrowband
and wideband speech quality [16].

Some examples of intrusive speech quality assessment algorithms for comparison are
given as follows: ITU-T Rec. P.863 is a perceptual objective listening quality assessment
method, approved in 2018 [7]. The Integral and Diagnostic Intrusive Prediction of Speech
Quality is an algorithm proposed by N. Coté that employs dual-end comparison for speech
quality evaluation [17]. M. Chinen et al. introduced the open-source, production-ready
speech and audio metric ViSQOL v3 [18].

As mentioned above, statistical speech assessment algorithms like P503, although more
interpretable than deep-learning-based speech assessment algorithms, perform poorly in
radio check evaluation tasks. In experiments, it was found that statistical speech assessment
algorithms have a significant gap in perception compared to actual evaluators of speech
quality. Therefore, the ARCnet network still opted for a deep-learning-based network
architecture. Moreover, in practical research, it was discovered that controllers performing
radio check scoring not only focus on the impact of noise in the speech but also on its
comprehensibility. Speech quality assessment algorithms such as MOSNet, AutoMOS, and
NISQA primarily focus on noise, with the models using mel-frequency cepstrum coefficient
features as the vector for extracting speech quality. The NOMAM model and the speech
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evaluation algorithm proposed by Fu et al. utilize self-supervised learning features for
assessing speech quality, but the self-supervised vector training mentioned still focuses
on extracting speech noise, using noise characterization to predict speech quality [19,20].
Therefore, in the design of ARCnet, not only were mel-frequency cepstrum coefficient
features strongly correlated with noise used, but self-supervised vector representations
for comprehensibility features relevant to downstream tasks like speech recognition were
also considered. In the multi-feature module network design, simply concatenating two
different features is insufficient. As the research by Liu et al. suggests, skillfully fusing
tensors can enhance the network’s perception of speech quality [21]. Therefore, in the
design of the ARCnet network, we perform differentiated information extraction for each
type of feature, then concatenate them, and in subsequent ablation experiments, this
network design approach has been shown to improve network performance.

In summary, Currently, traditional voice evaluation algorithms predominantly process
speech using spectral features, focusing solely on the impact of audio noise on speech
quality. However, in evaluating radio check scores, the intelligibility of the speech within
the audio, that is, whether the audio can be accurately transcribed into text commands,
must also be considered. This aspect of speech intelligibility serves as one of the dimensions
for controllers when scoring a radio check. Therefore, one of the challenges in designing a
radio check scoring network lies in encapsulating the audio’s spectral, intelligibility, and
temporal information. The current speech evaluation algorithms rely heavily on mean
opinion score (MOS) ratings as the primary evaluative metric. These algorithms are often
applied in voice over Internet protocol (VOIP) networks, where voice data is transmitted in
the form of data packets. In this context, factors affecting speech quality include network-
related issues such as packet loss and latency. However, within the realm of civilian aviation
communication, evaluation is typically conducted through radio check scoring. In this
scenario, very-high-frequency communication systems directly modulate and demodulate
voice signals using radio waves. Influential factors on voice quality encompass channel
noise and interference generated by components. Currently, AI-powered networks have
reached a significant level of maturity in predicting speech quality using the MOS scoring
method. Although the MOS scoring method and the radio check scoring method produce
similar results, there has been no prior research on the use of AI-based algorithms for
evaluating radiotelephone communication speech quality in civil aviation communication
systems. Given this context, the major contributions of this paper are as follows:

1. We present for the first time a non-intrusive speech quality assessment algorithm
based on the radio check standard for radiotelephone communication that combines
human-engineered and self-supervised features. On the NISQA dataset and our
proprietary RadioCheckSpeech dataset, comparative evaluations against state-of-
the-art speech assessment algorithms were performed. The proposed algorithm
demonstrated relative performance enhancements, achieving a 6% increase in Pearson
correlation coefficient and a 12% reduction in root mean square error (RMSE) on the
NISQA dataset, as well as a 12% increase in Pearson correlation coefficient and a 12%
reduction in RMSE on the RadioCheckSpeech dataset.

2. In this study, a dataset titled “RadioCheckSpeech” containing authentic voice com-
mands recorded from internal communication systems at various Chinese airports,
control units, and control systems was established. The research employed a method
where air traffic controllers assessed these voice commands using the “Radio Check”
procedure. Professional controller ratings were collected and manually verified in
order to compare mean opinion score (MOS) ratings to radio check scores. Addition-
ally, this dataset was utilized for the network to learn how controllers perform radio
check evaluations on speech. The dataset consists of 3200 voice commands spoken in
a combination of Chinese and English.

In the second section of the article, the experiments primarily focused on comparing
the similarities and differences between MOS ratings and radio check scores. The third
section addressed the differences between these two rating methods and introduced the
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RadioCheckSpeech dataset. The fourth section describes the design of a network named
ARCnet, which combines human-engineered and self-supervised features. The fifth section
encompassed comparative experiments between ARCnet and other open-source speech
quality prediction models on both the NISQA dataset and the RadioCheckSpeech dataset.
Additionally, the section included an ablation analysis of ARCnet’s features. Finally, in the
sixth section, the article provided a summary of its content.

2. Preliminary Analysis

Based on the introduction in the first chapter, it is evident that MOS scores and radio
check scores share a remarkable similarity in terms of their scoring methodologies. Given
this similarity, the question arises as to whether an algorithm designed to predict MOS
scores could also predict radio check scores. Therefore, it is essential to design experiments
that confirm the similarity between these two scoring methods. In the experiments, we
opted to use a publicly available, pre-labeled dataset from NISQA with MOS scores [11].
For this dataset, we engaged air traffic controllers to provide radio check scores as well. We
divided the dataset into five intervals based on MOS scores between 0 and 5. Within each
interval, we randomly selected 40 samples, amounting to a total of 200 samples. According
to radio check scoring rules, air traffic controllers then assigned scores to these samples.
The resulting scores were fitted with a second-order polynomial, the results of which are
depicted in Figure 2 below:
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Observing the results, it is evident that MOS scores and radio check scores share
a significant trend similarity. In situations where the speech quality is either poor or
excellent, the sample density is higher, and this is represented by the red region of the
graph, indicating that the two scoring methods agree closely. However, in certain instances
where the speech quality is of moderate levels, there is a noticeable discrepancy between
the two methods, represented by the blue region. Moreover, radio check scores are typically
higher than average. This divergence could potentially be attributed to the differences in
how very-high-frequency (VHF) communication networks and voice over Internet protocol
networks handle voice data, as well as the inherent dissimilarities between the radio
check scoring method and other scoring approaches. To gain a deeper understanding, we
conducted a thorough analysis of a voice sample extracted from authentic radiotelephone
communication at Suilin Anju Airport.
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As shown in Figure 3, the red-bordered section represents the pilot’s voice, whereas the
green-bordered section represents the air traffic controller’s voice. Analyzing the waveform
and spectrogram, it is evident that in comparison to the clear voice from the air traffic
controller’s end, the pilot’s voice contains a low-frequency noise at approximately 1000 Hz.
This continuous noise on the pilot’s side causes the voice envelope to become less distinct
and challenging to discern. In the spectrogram, the voice of the pilot has been band-pass
filtered between 30 Hz and 3000 Hz, resulting in the loss of both high- and low-frequency
features. Additionally, the audio waveform from the pilot’s end is relatively weaker, which
severely degrades the voice communication quality.
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The fundamental reason behind this phenomenon lies in the distinct processing ap-
proaches of the very-high-frequency communication system (VHF COMM) used in ra-
diotelephone communication as compared to the processing methods of voice over Internet
protocol systems. This divergence diminishes the quality of speech. Therefore, during
radio check training, instructors emphasize that the most important aspect of evaluating
speech quality is the clarity of command comprehension. If the command is clear and
understandable, it is rated a 5. If the command is unclear, it is rated a 4 or 3. However, if
the command is difficult to comprehend, it may receive a rating of 2 or 1. Nevertheless,
the lack of well-defined standards for scoring between 4 and 3, as well as between 2 and 1,
may result in inconsistent evaluations, with air traffic controllers possibly awarding a score
of 3 or 4 for the same voice command.

This implies that radio check evaluations not only focus on the influence of noise but
also consider the intelligibility of the voice itself. Therefore, for the selection of network
features, a multi-feature fusion strategy was utilized, which included the extraction of
both human-engineered voice features and self-supervised features. Human-engineered
voice features are used to capture noise-related perceptual characteristics affecting speech
quality, whereas self-supervised voice features are used to capture features affecting voice
intelligibility. This indicates that MOS machine scoring model insights can be applied to
radio check scoring research. However, despite the similarities between radio check and
MOS scoring methods and outcomes, slight differences still exist. Therefore, in the next
section, a dedicated dataset is established for the development of a self-supervised model
for radio check scoring.
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3. RadioCheckSpeech Dataset

In this section, the RadioCheckSpeech training and evaluation dataset was created.
The RadioCheckSpeech dataset was developed using voice data evaluated by licensed

air traffic controllers with at least two years of experience at airports. The voice data
originates from several major airports in China, copied from the intercom systems at
different control stages (approach, area control, tower), such as (Wuhan Tianhe Airport,
Nanba Airport, etc.). The evaluation method resembles the radio check technique utilized
during ground-to-air communication. To replicate the scenario in which actual air traffic
controllers evaluate speech quality from the aerodrome control tower, we arranged for
controllers to evaluate each command in a quiet control simulation environment while
wearing specialized headphones. As shown in Figure 4a,b.
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Figure 4. Air traffic controllers rate the voice using radio check evaluation. (a) Shows the controller
performing a Radio Check in a near-field environment. (b) Shows the controller performing a Radio
Check in a far-field environment.

This data set consists of two main components totaling 3200 voice samples with radio
check labels. The first component comprises 200 voice samples from the NISQA dataset
that were initially labeled with MOS scores. These samples were re-evaluated by air traffic
controllers using the radio check scoring method. The second component consists of
3000 authentic radiotelephone communications voice samples recorded in various Chinese
regions and airports. This collection contains Chinese and English commands spoken at
various speeds, all of which were obtained from the internal communication system. Each
voice sample represents a single radiotelephone communication command and has been
evaluated by air traffic controllers using the radio check scoring system.

4. Proposed Framework

In this study, we present a fusion model that combines self-supervised learning,
human-engineered mel spectrogram features, and a transformer-based feature extraction
backbone. This has led to the creation of a multi-feature fusion model. Figure 5 below
illustrates the proposed network architecture.

Specifically, the input speech is segmented initially. Each segment of the speech is then
passed through the multi-feature module for feature extraction. Self-supervised feature
extraction and mel spectrogram feature extraction are involved. The extracted features
are concatenated, and then processed using a transformer-based feature extraction model.
Finally, the output is the radio check score.
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4.1. Feature Interpretability Discussion

In the design of the ARCnet network, the most crucial step is selecting an appropriate
method for encoding audio. The chosen audio encoding features should be as relevant
as possible to the target task and possess feature interpretability. As described in the
Preliminary Analysis section of the document, to enable the ARCnet network to perceive
content related to noise and comprehensibility in speech, the selected encoding features are
mel spectrogram features and wav2vec2.0 features. To validate the relationship between
these features and speech quality, an experiment was conducted. A batch of audio was
played for multiple participants to listen to and rate. The evaluations were based on
two dimensions: the clarity of the text in the audio and the level of noise. The rating
scale was as follows: 1: Burry, 2: Normal, 3: Clear. After evaluation, 100 audio samples
were selected from each rating category according to the same scoring dimension to
form a noise perception dataset and a comprehensibility perception dataset. In the noise
perception dataset, all audios were encoded using mel spectrogram features, while in the
comprehensibility perception dataset, audios were encoded using wav2vec2.0 features.
After encoding, the t-SNE (t-distributed stochastic neighbor embedding) method was used
to analyze both datasets separately, with the analysis results shown in Figure 6a,b.

t-SNE is a statistical method used to reduce high-dimensional data to two or three
dimensions for easier visualization. It operates by preserving the relative proximity of
similar points in the original high-dimensional space, thus reflecting the structural fea-
tures of high-dimensional data in the reduced lower-dimensional space. t-SNE excels at
maintaining the local structure of data points, meaning that points close to each other in a
high-dimensional space remain close in a reduced space. Additionally, t-SNE can reveal
clustering structures within the data, even without explicitly using clustering algorithms.
Since the t-SNE method lacks the learnability of neural networks, it leads to an interpreta-
tive dimension reduction in data. Therefore, analyzing encoded speech data with t-SNE
provides an intuitive understanding of whether the encoding method can represent the
data’s features, verifying the relevance of encoding features to the target task.
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Figure 6. t-SNE visualization of mel spectrogram feature and wav2vec2.0 feature. (a) Shows the
t-SNE visualization of Mel spectrogram features. (b) Shows the t-SNE visualization of wav2vec
2.0 features.

As shown in Figure 6a, after reducing the data from the noise perception dataset
encoded with mel spectrogram features to two dimensions using t-SNE, the data naturally
clusters into three segments. This indicates that data encoded with mel spectrogram features
are significant, and using mel spectrogram features can well represent the characteristic of
audio noise. However, the presence of some different types of points in various segments
suggests that more complex neural networks should be used for further feature extraction
after encoding with mel spectrogram features, as using only mel spectrogram features is
not precise enough.

As shown in Figure 6b, after encoding the comprehensibility perception dataset data
with wav2vec2.0 features and reducing it to two dimensions using t-SNE, the data clusters
according to evaluation metrics, although it does not cluster into three distinct segments.
The enrichment of data under the same labels indicates that wav2vec2.0 features have a
strong correlation with speech comprehensibility (ease of understanding spoken words).
However, the unclear boundaries between clusters suggest that linear networks should be
used to further enhance the features of wav2vec2.0, to achieve better perception.

In summary, mel spectrogram features effectively represent noise but require further
refinement through more complex neural networks. wav2vec2.0 features strongly correlate
with speech comprehensibility (clarity of spoken words), but still need linear networks
to enhance the features. Both noise and speech comprehensibility directly impact the
evaluation results of radio checks. Therefore, in the design of ARCnet, mel spectrogram
features and wav2vec2.0 features will be used to encode speech.

4.2. Method

In the design of the ARCnet network, the foremost consideration is which voice rep-
resentation method to use for characterizing speech. The experiment description in the
“Preliminary Analysis” section states that during the actual radio check process, evaluators
focus more on the impact of noise on speech quality and whether the speech content can
be fully transcribed. As shown in Figure 3 of the “Preliminary Analysis”, the presence of
noise in radio communication is mainly indicated by the long solid lines in the spectro-
gram, as well as some shapes with graphic features. Therefore, using image recognition
methods with convolutional neural networks can easily extract the masking features of
noise on the original audio, allowing the model to understand the impact of noise on
audio through neural network learning. Secondly, the ability to fully transcribe the textual
content boils down to a speech recognition task. In speech recognition tasks, researchers
have developed a novel feature, self-supervised learning features, to project speech into a
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higher-dimensional textual domain, enabling the neural network to recognize speech as
text. When a segment of speech is clear, a hyperplane can be used to separate the speech
projected in the textual domain. Conversely, if the speech is noisy and indistinguishable,
the corresponding hyperplane is twisted and complex. To allow the network to perceive
whether the textual content in speech can be fully transcribed, a linear network processes
the projected vectors. The linear network can be understood as a trainable hyperplane, and
ultimately, the recognizability of text in speech can be determined by observing the output
of the hyperplane.

The network operates as follows: Initially, the audio is segmented, and a Self-supervised
feature model is employed to obtain features indicative of the speech’s textual domain
comprehensibility confidence. Commonly utilized in upstream speech recognition tasks,
the Self-supervised feature model maps audio into vectors that neural networks can un-
derstand, thus facilitating the translation from the audio domain to the textual domain.
Additionally, this model can output a comprehensibility confidence interval for the current
audio, indicating whether the audio segment can be accurately transcribed. Through the
mapping by the Self-supervised feature network, features related to the speech’s textual
domain comprehensibility confidence are obtained. Although this process yields a vector
feature of speech’s textual comprehensibility, these features are initially coarse. A deep feed-
forward network is then used to refine these features, producing a more defined confidence
feature regarding the segment’s textual comprehensibility. Similarly, mel spectrogram
features are used to obtain the audio segment’s frequency domain vectors. To capture
features of noise in the frequency domain that affect audio quality, the network employs a
convolutional neural network for noise feature extraction. Pre-trained convolutional layers
are sensitive to discontinuities (commonly caused by communication interference), long
solid lines (typically resulting from noise), and unnatural envelopes in the spectrogram (of-
ten due to distortion caused by VHF COMM amplifying and filtering the signal under poor
communication conditions), enabling the network to understand noise in the audio. By
concatenating the textual confidence vector feature with the noise vector, a comprehensive
feature vector for the individual speech segment is created.

For variable-length audio inputs, extracting the overall audio quality from the tempo-
ral domain requires more than merely averaging the vectors of segments. Simple averaging
does not effectively utilize the temporal information of the audio. Therefore, a transformer-
based feature extraction module is utilized to extract audio quality in the temporal domain.
The pre-trained feature extraction network not only focuses on the composite feature vec-
tors of segments performing exceptionally well or poorly but also scores based on the
overall quality of the speech signal globally, leveraging the audio’s temporal data. After
processing all audio segments of the test audio, an attention pool is used to pool all feature
vectors, yielding the final radio check score.

4.3. Multi-Feature Module
4.3.1. Self-Supervised Model Feature Extraction

In 2020, Meta introduced the unsupervised speech pre-training model Wav2vec 2.0 [22].
Its core idea involves constructing a self-supervised training objective through vector
quantization (VQ) and training by applying contrastive loss on heavily masked inputs.
Wav2vec 2.0 significantly improved the performance of downstream speech tasks such as
Automatic Speech Recognition (ASR), Text-to-Speech (TTS), and Voice Conversion (VC)
through self-supervised learning on extensive amounts of unannotated speech data (such
as Libri-light). Other research has demonstrated the robustness of the Wav2vec 2.0 model
in speech quality prediction tasks. Therefore, the Wav2vec 2.0 base model was chosen for
initial feature extraction [23,24]. For ablation studies, we also experimented with fine-tuned
pre-trained models based on Chinese datasets and English datasets [25,26]. However, using
these fine-tuned models resulted in a less accurate fit of the entire network to the data. We
utilized the Wav2vec 2.0 model without pre-training to address this issue. Assuming the
input speech signal consists of n samples, denoted as X = [x1, x2, . . . , xn], following the
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methodology in [22], the input speech signal is segmented with a stride of S, at this time,
the audio can be defined as Equation (1):

Xseg = [(x1, x2, . . . , xs), (xs+1, xs+2, . . . , x2s), . . . , (xn−s+1, xn−s+2, . . . , xn)] (1)

After segmenting and encoding each segment, we denote the encoding as f (·) and the
resulting encoded output as Q, defined as Equations (2) and (3).

Q = f (Xseg) = [Q1, Q2, . . . , Qm] (2)

Qi = [qi1, qi2, . . . , qiM] (3)

where m represents the number of segments after segmentation, and M represents the
dimensionality of the audio mapped through wav2vec 2.0 for each segment.

After this, the generated features will enter a four-layer deep feedforward network
for feature transformation. The workflow can be defined as Equations (4) and (5). Assume
the transformed vector is denoted as Hk

ssl, and k represents which layer of the linear
transformation it has passed through.

Hssl
0 = BN(Q) (4)

Hssl
k
= ReLU(BN(Linear(Hssl

k−1)))(k = 1, 2, 3, 4) (5)

where BN() represents batch normalization, Linear() denotes the linear layer, and ReLU()
stands for rectified linear unit. In the subsequent ablation experiments, it will be demonstrated
that this four-layer linear transformation contributes to improving the network’s performance.

4.3.2. Mel Spectrogram Feature Extraction

It is common practice to transform audio into a spectrogram in order to better com-
prehend its frequency distribution when working with audio. the mel spectrogram is a
specialized type of spectrogram that uses mel filters to map spectral data to a frequency
scale that is more compatible with human auditory perception. This transformation helps
us accurately capture variations in tone and timbre in the audio, as human perception of
frequency is nonlinear. Therefore, this feature can effectively reflect the perception of noise
in the radiotelephone communication by the air traffic controller. Moreover, studies such
as [13] have demonstrated that mel spectrograms are robust in predicting speech quality.

Similarly, here, we assume that the input audio signal consists of n sample points,
denoted as X = [x1, x2, . . . , xn]. Following the computation process for mel spectrograms,
the signal is segmented with a step size of S as follows at this time, the audio can be defined
as Equation (6):

Xseg = [(x1, x2, . . . , xs), (xs+1, xs+2, . . . , x2s), . . . , (xn−s+1, xn−s+2, . . . , xn)] (6)

For each segment, a discrete Fourier transform (DFT) is performed, followed by mel
filtering using a set of M mel filters. The result is subjected to a logarithmic transformation
to obtain the mel spectrogram C defined as Equations (7) and (8).

C = [C1, C2, . . . , CM] (7)

Ci = log(∑M
i=1 Hk

∣∣DFT(Xseg)
∣∣2) (8)

In the mel filtering process, the center frequency of each filter is denoted as Mel(k).Hk
represents the gain of the k-th mel filter at the i-th frequency point, determining the energy
contribution of that frequency point on the mel frequency scale.

After this, the generated features enter a six-layer convolutional neural network (CNN)
for feature transformation, The workflow can be defined as Equations (9) and (10), where
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Hk
mel represents the transformed vector and k indicates the layer number that has passed

through the convolutional layer.
H0

mel = C (9)

Hk
mel = ReLU(BN(Conv2D(Hk−1

mel )))(k = 1, 2, . . . , 6) (10)

where BN() represents batch normalization, Conv2D() stands for a two-dimensional con-
volutional layer, and ReLU() represents the rectified linear unit activation function. Sub-
sequent ablation experiments will demonstrate that this six-layer convolutional structure
facilitates the model’s convergence.

Mel spectrogram features and self-supervised features are aligned in the time dimen-
sion because they are segmented into the same time steps. After being flattened, the two
vectors are concatenated along the time dimension as shown in Equations (11) and (12):

Hssl = f latten(H4
ssl), Hmel = f latten(H6

mel) (11)

H = concat[Hssl , Hmel ] (12)

4.4. Feature Extraction

A temporal network is modeled using the transformer architecture introduced in [27]
to process the multi-feature fusion vectors generated in the previous step. Due to its
capacity to capture global contextual information and parallelization capabilities [28–31],
the transformer model is widely employed in the natural language processing and computer
vision domains. Therefore, we employ the transformer model as one of the modules for
extracting temporal information from the network.

Firstly, the input sequence of the given data is embedded into a n-dimensional vector
space. Next, position encoders are utilized to keep track of the sequence’s order and
relative positions of each component. These positional encodings are concatenated with
the original vectors of dimension and fed into the encoder. Two major components make
up the encoder: the multi-head attention (MHA) mechanism and the feedforward layer.

The MHA mechanism consists of multiple scaled dot-product attention units. Given
a sequence vector, attention units calculate contextual information about specific tokens
and combine them with weighted combinations of similar tokens. During training, the
attention units learn three weight matrices: the key weight matrix WK, the value weight
matrix WV , and the query weight matrix WQ. Finally, attention representations for all
tokens are obtained. The workflow can be defined as Equations (13) and (14).

K = HWK, V = HWV , Q = HWQ (13)

Wattention = softmax
(

QKT
√

d

)
V (14)

where KT represents the transpose of matrix K, while
√

d denotes the dimensionality of
vector features, introduced to stabilize the gradient. The softmax() function is applied
for weight normalization. During computation, the weights are dot-multiplied with the
attention vectors of each head, and the result is aggregated through a layer consisting of
a linear transformation activated by the gelu() function. The workflow can be defined as
shown in Equation (15).

Xattention = Linear
(

concat
[
W1

attention·H, W2
attention·H, . . . , W8

attention·H
])

(15)

Here, Wk
attention represents the attention mechanism generated by the k-th head, while

concat[] denotes the concatenation operation.
In experiments conducted by researchers such as [13,24,32], attention pooling has

been shown to be effective. Therefore, we employ attention pooling at the final stage of
the network to generate comprehensive quality for each segment. By averaging these
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values, we obtain the ultimate prediction for speech quality. The workflow can be defined
as follows:

ŷ =
1
m

m

∑
i=1

softmax( Mask(WXattention))
TXattention (16)

where m represents the m speech segments generated in the first step, and W signifies the
linear weights of the attention pool. Mask() refers to the masking function that conceals
vectors greater than N. Assuming the input variable is Xinput

N , the specific procedure is as
follows (17):

XMask
i =

{
Xinput

i , i ≤ N
0, i > N

(17)

5. Experimental Settings

This study utilized two datasets: the NISQA dataset and the RadioCheckSpeech
dataset. The NISQA dataset contains more than 14,000 speech samples, covering simu-
lated conditions (such as effects of encoder-decoder, packet loss, and ambient noise) as
well as real-world scenarios (including mobile, Zoom, Skype, and WhatsApp communica-
tions). Each audio file in this dataset is annotated with subjective ratings for individual
speech segments.

This research aims to automate radio check scoring using well-established theoretical
models for mean opinion score (MOS) prediction. Therefore, prior to radio check score
prediction, the same model was employed for corresponding MOS score prediction to
validate the model’s effectiveness. As perceived differences between MOS and radio
check scores were identified in Chapter 2, addressing the disparity required the use of
distinct training sets for model training. Accordingly, training and validation for MOS
score prediction were conducted with the NISQA_LIVE and NISQA_SIM subsets of the
publicly available NISQA dataset, using the same procedures as NISQA. Additionally, for
radio check score prediction, 80% of the RadioCheckSpeech dataset was used for training,
while 20% was reserved for validation, as depicted in the following Figure 7.
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Figure 7. Methods for network training, validation, and prediction.

During the training phase, the Adam optimizer was used, which combines the ad-
vantages of the AdaGrad and RMSProp optimizers and enables rapid convergence of the
model to optimal results. The Adam optimizer was initialized with a 0.0001 learning rate.
The root mean square error (RMSE) was adopted as the loss function for the experiments.
The network architecture was implemented using the Python programming language’s
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PyTorch library. The experimental computations were conducted on an RTX 4090 GPU
platform. The model hyperparameters are as shown in Table 2. In the experiments, the
depth of the convolutional neural network (CNN) and the deep feedforward network was
selected to be four and six layers, respectively. This choice is based on the observation that
networks that are either too shallow or too deep can lead to degraded performance.

Table 2. ARCnet network hyperparameter settings.

Name Settings

Self-supervised model feature extraction settings

Output dimensions 768

Deep feedforward extraction setting

Deep 4
Output dimensions 384

Mel spectrogram feature extraction settings

Number of mel bands 48
DFT window length 0.02
Maximum frequency 20,000

Convolutional neural network settings

Conv2D core size 3 × 3
Conv2D dropout 0.2

Conv2D deep 6

Self-attention network settings

Number of attention heads 8
Attention network dimension 64

Self-attention depth 2
Number of hidden units 64

Dropout 0.1

Attention pool setting

Number of hidden units 128

Train settings

Max train epochs 500
Train learning rate 0.0001

Train batch size 4
Train early stop epochs 20

6. Results
6.1. Quantitative Result

To verify the generalization of our network across diverse datasets, we employed
standard evaluation metrics, including the Pearson correlation coefficient (r) and root mean
square error (RMSE), to quantify the disparities between predicted values and actual values.
The calculation formulas, Equations (18)–(20), are shown as follows:

y =
1
n

n

∑
i=1

yi, ŷ =
1
n

n

∑
i=1

ŷi (18)

r =
∑n

i=1 (yi − y)
(
ŷi − ŷ

)√
∑n

i=1 (yi − y)
√

∑n
i=1

(
ŷi − ŷ

) (19)

RMSE =

√√√√ 1
N

N

∑
i=1

[yi − ŷi]
2 (20)
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where y(i) represents the ground truth values and ŷ(i) denotes the predicted values
provided by the network.

Similarly, we compared our method to other publicly available audio quality estima-
tion algorithms, including P.563 [14], ANIQUE+ [15], WAWEnets [16], and dual-end models
POLQA [7], DIAL [17], and VISQOL (v3.1.0) [18]. As our baseline model, we selected the
NISQA model, which demonstrated superior performance.

Table 3 shows the test results of all models on the NISQA open-source dataset. Com-
pared with other algorithms, our model achieves the best performance, and compared to
the baseline model NISQA, our model achieves a relative performance improvement of
6% in Pearson correlation coefficient and 12% in RMSE on the NISQA open-source dataset,
demonstrating our model’s effectiveness. On the RadioCheckSpeech dataset, our model
achieves a relative performance improvement of 12% in Pearson correlation coefficient and
12% in RMSE, indicating that our model achieves the best results for both MOS score pre-
diction and radio check score prediction tasks. Due to the fact that the RadioCheckSpeech
dataset does not contain clean speech, the bi-end model does not provide test results for
the RadioCheckSpeech dataset.

Table 3. Performance of the model on the NISQA and RadioCheckSpeech datasets.

Dataset NISQA_VAL_LIVE NISQA_VAL_SIM RadioCheckSpeech

Files 200 2500 641

Model r↑ RMSE↓ r↑ RMSE↓ r↑ RMSE↓
ARCnet 0.88 0.39 0.92 0.44 0.93 0.43
NISQA 0.83 0.39 0.89 0.50 0.83 0.49

P503 0.45 0.52 0.44 1.00 0.42 0.82
ANIQUE+ 0.52 0.59 0.53 0.96 0.54 0.65
WAWEnets 0.35 0.65 0.29 1.04 0.33 0.99

POLQA 0.67 0.58 0.74 0.75 \ \
DIAL −0.11 0.73 0.35 1.24 \ \

VISQOL 0.55 0.42 0.74 0.52 \ \

6.2. Ablation Study

We conducted an ablation study to determine whether the use of different networks to
preprocess the artificial features and the self-supervised features and the use of different
pre-trained self-supervised models would affect the network’s perceptual performance on
speech quality.

Table 4 displays the results of concatenating the two features and then extracting the
features using a single network (DFFnet (deep feedforward network) and CNN (convo-
lutional neural networks)). Compared to the parameter-heavy CNN extraction network,
the results indicate that a simple DFFnet network can improve the network’s performance.
However, it is also apparent that using different extraction methods for different features
can significantly improve the model’s feature extraction effect.

Table 4. Performance of the frameworks (trained with deep feedforward neural network, convolu-
tional neural network, and their combination) on the NISQA and RadioCheckSpeech datasets.

Dataset
ARCnet DFFnet CNN

r↑ RMSE↓ r↑ RMSE↓ r↑ RMSE↓
NISQA_VAL_

LIVE 0.88 0.39 0.84 0.55 0.72 0.49

NISQA_VAL_
SIM 0.9 0.44 0.82 0.5 0.67 0.82

RadioCheck
Speech 0.93 0.43 0.64 0.67 0.73 0.60
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Table 5 shows the test results of using different self-supervised pre-trained models
under the condition that other parameters are unchanged. Clearly, the use of trained
pre-trained models will result in a significant decrease in network performance. A pos-
sible cause is that the self-supervised models have not been pre-trained using actual
radiotelephone communications speech data. Fine-tuning the self-supervised models with
radiotelephone communication speech data is also one of the future research directions to
improve the network’s perceptual ability.

Table 5. Performance of the frameworks (utilizing self-supervised learning models pre-trained with
Chinese and English) on the NISQA and RadioCheckSpeech datasets.

Dataset
ARCnet Chinese_Pretrain_wav2vec2.0 Pretrain_wav2vec2.0

r↑ RMSE↓ r↑ RMSE↓ r↑ RMSE↓

NISQA_VAL_
LIVE 0.88 0.39 0.4 0.65 0.72 0.49

NISQA_VAL_
SIM 0.92 0.44 0.54 0.93 0.68 0.81

RadioCheck
Speech 0.93 0.43 0.73 0.60 0.74 0.59

6.3. Result Interpretability Analysis

In the discussions of the previous two sections, we described how our research en-
hances the performance of the ARCnet network. However, the interpretability of the
ARCnet network’s predictive results was not addressed. Therefore, this section has de-
signed multiple experiments that involve adding different types of impairments to audio to
explore whether the ARCnet network’s perception of various types of damage (noise level,
voice volume, and frequency band loss) has perceptual interpretability, thereby conducting
an interpretability analysis of the ARCnet network.

Firstly, the impact of noise level on voice quality is very important. Therefore, we
selected a clear control command (radio check value of 5) and added noise impairment. By
adjusting the signal-to-noise ratio (SNR), we explored the acoustic interpretability of the
ARCnet network in the presence of noise damage. The results are shown in Figure 8.
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As illustrated, the impact of noise on the ARCnet network’s evaluations is significant.
Moreover, the radio check value sharply declines when the signal-to-noise ratio (SNR)
falls below 20 dB. This is similar to the control operators’ evaluation of noise damage,
demonstrating that the ARCnet network’s performance in the dimension of noise damage
aligns with human auditory perception. The ARCnet network has acoustic interpretability
in the dimension of noise damage.
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Secondly, the volume of speech also directly affects the quality of the voice. Too low a
volume can result in control operators not being able to hear the commands clearly, while
too high a volume can cause “clipping” effects. Therefore, we also selected a segment of
control speech with a clear and appropriate volume (radio check value of 5). By reducing
the volume, and then increasing and clipping it (simulating microphone filtering), we
introduced volume impairment. We explored the acoustic interpretability of the ARCnet
network in the context of volume damage. The results are shown in Figure 9a,b.
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As shown in Figure 9a, as the volume decreases, the radio check value also declines. In
fact, the perception pattern of volume impairment by control operators is similar. However,
the attenuation turning point usually occurs earlier because multiple controllers in the con-
trol room will be using voice communications simultaneously, and the auditory threshold
is consequently reached sooner. This also indicates that there is room for improvement in
the ARCnet network’s evaluation of too-low volumes.

As shown in Figure 9b, as the sound amplification increases, the voice gradually
exhibits clipping effects, and the corresponding radio check scores begin to decline, which
matches the perception of the controllers perfectly.

In summary, the ARCnet network also has acoustic interpretability in the dimension
of volume damage.

Finally, as mentioned in the Preliminary Analysis section, compared to cellular mobile
communication networks based on packet transmission, VHF COMM introduces a unique
type of audio loss characterized by band-like noise in the audio spectrum curve, known
as frequency band damage. Unlike traditional noise damage, frequency band damage is
introduced by equipment and is characterized by concentrated energy, focused frequency,
and constant duration. The masking effect of this type of damage is stronger than that of
general noise damage. Additionally, the human ear perceives different results for damage
occurring in different frequency bands. Therefore, to verify whether the ARCnet network’s
perception of frequency band damage is acoustically interpretable and similar to human ear
perception, the experiment also initially selected a segment of clear control speech without
band-like noise (radio check value of 5). By introducing a constant 40 dB frequency band
noise in specified frequency bands to simulate frequency band damage, we explored the
acoustic interpretability of the ARCnet network in the context of frequency band damage.
The results are shown in Figure 10.
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As illustrated, the ARCnet network is particularly sensitive to mid-frequency band
damage (loss concentrated between 1000 and 4000 Hz) and relatively insensitive to low
or high-frequency band damage. Moreover, wider band damage has a smaller impact on
ARCnet network evaluations compared to narrow band damage. Since human speech fre-
quencies are concentrated around 1–3 kHz, damage within this frequency range noticeably
affects speech, making these evaluation results similar to actual human ear perception. This
still indicates that the ARCnet network’s outcomes in the dimension of frequency band
damage possess acoustic interpretability. Although this evaluation method is similar to
human hearing, it also shows that the ARCnet network’s evaluation of frequency band
damage is biased and may overlook some damages in low or high frequencies, which
might not be objective enough in certain evaluation settings.

In conclusion, as described in the experiments mentioned previously, the results of
the ARCnet network’s evaluation possess acoustic interpretability across three dimensions:
noise damage, volume damage, and frequency band damage. However, the experiments
still expose some of the ARCnet network’s shortcomings, such as overestimating the quality
of low-volume audio in volume damage and tending to overlook damage in the lower and
higher frequency bands. These are areas for future improvement to enhance the ARCnet
network’s evaluation capabilities.

7. Conclusions and Future Work

This study aims to achieve radio check machine scoring, and for the first time, pro-
poses ARCnet to imitate air traffic controllers’ radio check call quality prediction. This
study first integrated artificial features (MFCC) and self-supervised features (wav2vec 2.0)
to build a multi-feature fusion model, which is used for the machine’s real-time subjective
quality prediction of the call by comparing the similarities and differences between MOS
score and radio check score, and drawing on the research results of MOS score. The results
of the ablation experiment indicate that using different feature extraction networks based
on different features can significantly boost the performance of the model. It is worth noting
that even for different and fine-tuned self-supervised models, their performance in the net-
work will suffer due to the difference between the audio scene of the pre-training dataset
and the radiotelephone communication scene. Based on the validation of the model’s
performance on the selected MOS score dataset, we created a dataset named RadioCheck-
Speech for radio check score prediction. This dataset contains 3200 real radiotelephone
communication speeches that were scored by controllers using the radio check scoring
criteria and the actual scoring results were recorded. We fine-tuned and tested the model on
this dataset and the NISQA open-source dataset. Our research indicates that, compared to
other network models, ARCnet is superior at predicting subjective call quality evaluation.
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Compared with the baseline model, ARCnet achieves a relative performance improvement
of 6% and 12% in the Pearson correlation coefficient, and 12% and 12% in RMSE on the
NISQA dataset and RadioCheckSpeech, respectively. This demonstrates the effectiveness
of the radio check score prediction ARCnet model and method for creating datasets. Our
experiment still has some shortcomings, such as in normal radiotelephone communication
situations, the radio check scores should be above 3, and when the score reaches below 3,
it can be understood that the VHF communication system has an alarm and needs to be
repaired. This inevitably results in an uneven distribution of data. In the future, we will
consider adding noise and other methods to the RadioCheckSpeech dataset.

In the future, ARCnet could be integrated into intercom systems as a virtual controller
responsible for the radio check after the initial contact is established between the captain
and the controller. However, in actual airport operations, different controllers have different
thresholds during radio checks. Customizing radio check thresholds for the model based
on small sample sizes for different controllers is also an important factor that ARCnet
should consider in the future. Additionally, the civil aviation industry will upgrade to
air-ground data link systems represented by 5G in the future [33]. In future communication
systems, voice commands will be transmitted in the form of data packets. The standards for
evaluating voice will likely focus on factors such as packet loss in digital communication,
leading to audio discontinuities and audio delays. How ARCnet will evaluate voice
communications in the air-ground data link is another potential challenge for the future.
ARCnet could also be used to evaluate noise reduction algorithms for voice, assessing the
effectiveness of voice denoising. Moreover, an upgraded ARCnet could serve to judge
the anthropomorphism of synthetic voices. Future research on ARCnet will focus on
developing multitask learning and transfer learning, and considering the real-time aspects
of ARCnet in restricted environments will also be a key research focus.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

VHF COMM Very high frequency communication system
GMDSS Global maritime distress and safety system
VHF Very high frequency
AM Amplitude modulation
ATC Air traffic controller
ICAO International civil aviation organization
MOS Mean opinion score
PESQ Perceptual evaluation of speech quality
VOIP Voice over Internet protocol
t-SNE t-distributed stochastic neighbor embedding
RMSE Root mean square error
VQ Vector quantization
ASR Automatic speech recognition
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TTS Text-to-speech
VC Voice conversion
DFT Discrete Fourier transform
CNN Convolutional neural network
MHA Multi-head attention
DDFnet Deep feedForward network
MFCC Mel-frequency cepstrum coefficient
Symbols
X Sampled audio signal
Xseg Segmented audio signal
f (·) Encoding method of Wav2vec 2.0
Q Encoding result of Wav2vec 2.0
Hk

ssl Output of deep feedforward network
BN() Batch normalization
Linear() Linear layer
ReLU() Rectified linear unit
M Number of mel filters
C Mel spectrogram
DFT() Discrete Fourier transform
Mel() Mel filtering process
log() Logarithm
Hk

mel Output of convolutional neural network
Conv2D() Two-dimensional convolution
f latten() Flatten
WK Key weight matrix
WV Value weight matrix
WQ Query weight matrix
KT Transpose of matrix K√

d Dimensionality of vector features
so f tmax() Softmax normalization
gelu() Gaussian error linear unit
Wattention Output of attention mechanism
concat[] Concatenation operation
Mask() Masking function
y Ground truth values
ŷ Predicted values
r Pearson correlation coefficient
RMSE Root mean square error
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