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Abstract: Generalized target detection algorithms perform well for large- and medium-sized targets
but struggle with small ones. However, with the growing importance of aerial images in urban
transportation and environmental monitoring, detecting small targets in such imagery has been a
promising research hotspot. The challenge in small object detection lies in the limited pixel proportion
and the complexity of feature extraction. Moreover, current mainstream detection algorithms tend to
be overly complex, leading to structural redundancy for small objects. To cope with these challenges,
this paper recommends the PCSG model based on yolov5, which optimizes both the detection
head and backbone networks. (1) An enhanced detection header is introduced, featuring a new
structure that enhances the feature pyramid network and the path aggregation network. This
enhancement bolsters the model’s shallow feature reuse capability and introduces a dedicated
detection layer for smaller objects. Additionally, redundant structures in the network are pruned,
and the lightweight and versatile upsampling operator CARAFE is used to optimize the upsampling
algorithm. (2) The paper proposes the module named SPD-Conv to replace the strided convolution
operation and pooling structures in yolov5, thereby enhancing the backbone’s feature extraction
capability. Furthermore, Ghost convolution is utilized to optimize the parameter count, ensuring
that the backbone meets the real-time needs of aerial image detection. The experimental results from
the RSOD dataset show that the PCSG model exhibits superior detection performance. The value of
mAP increases from 97.1% to 97.8%, while the number of model parameters decreases by 22.3%, from
1,761,871 to 1,368,823. These findings unequivocally highlight the effectiveness of this approach.

Keywords: small target detection; model pruning; feature extraction; fine-grained information

1. Introduction

UAV aerial image detection aims to locate and identify perceptual targets in the image,
which belongs to small target detection. A small object refers to the following: (1) Based
on relative scales: the width and height of an object is a target that is less than 1/10 of the
image or a target whose bounding box to the area of the image is under a value (usually
0.03). (2) Based on absolute scales: objects with a pixel count of less than 32 × 32. Much
meaningful progress has been made in object detection algorithms, which has also injected
confidence into small target detection and led to the development of UAV technology. The
increasing prevalence of UAV aerial images across diverse applications has provided a
fertile ground for the integration of target detection and aerial image fusion. This integration
has proven particularly advantageous in fields such as urban transportation [1], urban
planning [2], and environmental monitoring [3].
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Consequently, the study of small target detection assumes paramount importance,
particularly in the context of aerial imagery where images often contain small targets due to
the high altitude of aerial photography [4]. Additionally, variable angles and environmental
conditions further complicate the detection process by exacerbating target–background
mixing [5]. While mainstream object detection algorithms are widely used across various
domains, their effectiveness in detecting small targets is often limited, primarily due to
their reliance on mechanisms such as anchor frames [6]. Small object detection based
on the anchor frame mechanism uses different methods to set anchor frames of different
sizes on the feature map and predicts whether each frame contains target objects based
on the features in each anchor frame. This reliance can lead to suboptimal results when
applied directly to small target detection tasks as mechanisms like anchor frames exacerbate
the challenge of localizing small targets. Furthermore, noise filtering during convolution
operations can reduce image resolution, causing the loss of critical features essential for
effectively learning from small targets [7]. Hence, addressing the challenge of small object
detection, characterized by limited pixel proportions and complex feature extraction, is
essential for advancing the capabilities of object detection algorithms in aerial imagery
analysis [8,9].

The urgent demand for small target detection spans various fields, including envi-
ronmental monitoring, urban development, and transportation, among others. Research
breakthroughs in this area are becoming increasingly imperative as aerial image detection
becomes an integral component of daily life, posing a significant real-world challenge.
However, numerous obstacles persist, rendering small target detection a formidable task.

To tackle these challenges, this paper introduces PCSG, which optimizes computational
performance while enhancing detection capabilities. This enhancement entails modifica-
tions to both the backbone and detection head. Regarding the detection head, we propose
an innovative framework and conduct further analysis through pruning and upsampling
optimization. Concerning the backbone, we optimize feature extraction performance by
leveraging the Ghost framework [10] and SPD-Conv [11]. The specific contributions are
outlined below:

• By enhancing shallow feature reuse, the model retains richer position information and
bolsters feature extraction for small targets while also optimizing network structures
and introducing additional prediction branches.

• Leveraging the lightweight and versatile CARAFE structure for upsampling miti-
gates the issue of local information loss associated with traditional nearest-neighbor
upsampling methods.

• The adoption of the SPD-Conv (space-to-depth) module in place of strided convolution
and pooling maximizes the retention of discriminative feature information.

• The integration of Ghost convolution as the backbone reduces parameters and compu-
tational complexity compared to the original CSPNet backbone while also enhancing
real-time performance.

The structure of our article is as follows: Section 2 provides an overview of related
works, focusing on anchor-free object detection methods, data augmentation techniques,
and multi-scale learning approaches. Section 3 elaborates on our proposed method, which
comprises a PCHead model and a PCSG model. In Section 4, we show the experiment
results, where we apply our method to aerial images and compare its performance with
that of YOLOv5. Finally, we list our findings and outline directions for future work.

2. Related Works

This paper first discusses the importance of resolution on small target detection.
Then, we delve into the study of small object detection algorithms, which can be split
into three main parts: anchor-free mechanisms, data augmentation technology, and multi-
scale learning.
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In object detection, image resolution plays a crucial role. Images with high resolution
can provide more abundant information such as outlines, textures, and feature points. This
information helps to improve the accuracy of the network. Low-resolution images contain
less detail, and the image becomes blurry and contains more noise, which interferes with
network detection. But, higher resolution increases computational complexity and slows
down the network’s recognition speed. For small object detection, higher resolutions can
increase the size of the target in the image and reduce the difficulty of detection. However,
when the resolution is too large, the proportion of the network’s receptive field in the image
decreases, making the network unable to predict objects at all scales.

The anchor box mechanism remains the prevailing approach in object detection, which
applies different anchor frames to the feature map, predicts whether the target object
is included based on the features in each box, and fits the ground truth box to obtain
the target positioning. However, the detection of small objects poses unique challenges
due to their limited pixel occupancy within images. Predicting the boundary box offset
for small objects often leads to increased errors, compounded by the smaller number of
anchor boxes available for their detection. To mitigate these challenges, various innovative
solutions have emerged. One such solution [12] involves per-pixel prediction, while another
approach [13,14] utilizes key points to replace anchor boxes, with enhancements made
through the incorporation of a central point. Additionally, some methods [15] leverage
global context information between detected instances and images to eliminate the reliance
on anchor boxes and non-maximum suppression (NMS). Moreover, employing attention
mechanisms to focus on the surrounding environment of detected instances [16,17] has
also yielded promising results in small object detection.

Utilizing data augmentation techniques to enhance the quantity and quality of images
in datasets can significantly improve the generalization ability of models. Small targets
often suffer from low resolution, difficulty in feature extraction, and limited sample size.
The problem of fewer small targets in the image can be solved by duplicating the small
targets in the image through the oversampling strategy [18]. Crop out the small target
by mask, paste it anywhere in the image, and generate a new ground truth and the
pasted target can be randomly transformed (scale, fold, rotate, etc.). This increases small
targets in each image. However, simplistic replication strategies may lead to problems
such as scale and background mismatches. Addressing these challenges requires the
consideration of contextual information during data replication and the implementation of
adaptive resampling augmentation [19]. For the problem of feature extraction and limited
sample size, image processing can be used, such as increasing the contrast of the image,
histogram equalization, spatial filtering, spatial scale transformation, etc. These operations
can enhance some of the features in the image, and the number of samples can also be
increased by training the transformed image and the original image as a whole dataset.

Multi-scale learning enhances the feature learning capability of models by fusing deep
abstract information with shallow detail information [20]. Small targets often face chal-
lenges in feature adulteration with background information during convolution. Shallow
networks extract pixel-level information, including color, edges, textures, and corners,
while deep networks capture semantic information. Integrating features from different
levels of the feature pyramid [21,22] and employing adaptive multi-scale networks [23] are
effective strategies to resolve this issue. This paper extends the application of multi-scale
information to even shallower feature maps, prunes redundant network structures, and em-
ploys the CARAFE module to minimize feature information loss during upsampling, along
with the SPD-Conv module to preserve fine-grained feature map information. Further-
more, processing the context region of targets instead of simple pixel-by-pixel processing
during training [24] yields an efficient multi-scale training approach. Another study [25]
has demonstrated improved detection performance through the utilization of relevant
information across different feature maps.
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3. Improvement on Detection Head and Backbone Networks

In object detection, optimizing both the detection head and the backbone network
is crucial for achieving superior performance. The detection head relies on the features
extracted by the backbone network to generate detection boxes and class confidences. Con-
versely, the backbone network extracts image features to facilitate accurate detection. By
strategically optimizing these components, we can exploit their complementary strengths
to enhance detection accuracy, robustness, and efficiency. This study explores novel opti-
mization strategies for the detection head and backbone network to achieve state-of-the-art
performance. Through this investigation, we aim to provide insights into the fundamental
principles of effective object detection systems.

3.1. PCHead Model

In this paper, we address the challenge of small targets occupying a small proportion
of the image. The changes make it difficult to extract useful information while also leading
to redundant network structures. To tackle this issue, we propose several enhancements.
Firstly, we deepen the feature pyramid and the path aggregation network. Secondly, we
introduce a new detection layer specifically designed for smaller targets. Additionally, we
trim the redundant parts of the original network structure, focusing on features relevant
to larger targets. Finally, we utilize the lightweight and versatile upsampling operator
CARAFE to construct the PCHead model.

3.1.1. A Novel Detection Head with Enhanced Feature Pyramid

The YOLO-v5 algorithm, classified as a one-stage target detection algorithm, directly
predicts the object’s category probability and positional coordinate value. Its speed sur-
passes that of two-stage target detection algorithms, and it exhibits higher efficiency in
detecting small targets. Therefore, it is particularly fit for real-time target detection in
high-quality aerial imagery.

To leverage this feature of the YOLO-v5 algorithm and improve the performance, this
paper enhances the FPN + PAN structure by transforming the original two-layer feature
pyramid structure into a three-layer structure. The addition of an extra layer of the feature
pyramid facilitates feature fusion with the feature map obtained through 4× downsampling.
These modifications aim to capitalize on the combination of the FPN and PAN structures
while enhancing the capability of the network.

In addition, the original YOLOv5 network uses a three-layer output method, corre-
sponding to 8× downsampling, 16× downsampling, and 32× downsampling, respectively.
The calculation of the target resolution from the original resolution to the feature layer is
shown in Formula (1), where (h, w)L represents the size of the pixel in L-th layer feature
map, (H, W) represents original resolution of target, and StrideL represents the downsam-
pling stride of L-th layer feature map.

(h, w)L =
(H, W)

StrideL
(1)

On the basis of the above modifications, this paper adds a detection head that down-
samples by a factor of 4, which is used to detect even smaller targets. By deepening the
feature pyramid, the new detection head model can use shallower feature maps to obtain
richer feature and position information. The optimized network is shown in Figure 1. The
left side shows the feature maps corresponding to the downsampling factor obtained by
the feature extraction structure from the original input. The middle shows the feature
maps obtained through feature fusion by the FPN structure. The right side shows the
PAN structure corresponding to the FPN, which finally obtains the detection head for
different-sized targets.



Aerospace 2024, 11, 392 5 of 15
Aerospace 2024, 11, 392 5 of 15 
 

 

 

Figure 1. Added head network structure. 

3.1.2. Network Structure Pruning for Complexity Reduction 

Although the newly introduced detection head model has enhanced the accuracy, it 

has also contributed to an increase in the complexity of the network structure. The 

addition of the feature pyramid network (FPN) structure, path aggregation network 

(PAN) structure, and 4× downsampling detection head has significantly augmented the 

intricacy of the network. In aerial image datasets, large objects are scarce, rendering the 

32-fold downsampling correlation module inapplicable to the primary objectives of 

detecting small objects effectively. Consequently, modifying the existing network 

structure becomes imperative to address the issue of redundancy. 

Moreover, the feature maps obtained through 32× downsampling possess a large 

receptive field, making them less sensitive to small objects with low pixel ratios, thus 

offering minimal contribution to the detection of such objects. Therefore, after thorough 

deliberation, this paper proposes pruning the modules associated with 32× 

downsampling in the network architecture. Specifically, this involves removing the 32× 

downsampling feature extraction module from the backbone network, the 32× 

downsampling feature fusion module from the neck section, and the 32× downsampling 

detection head from the prediction branch, as illustrated in Figure 2. Following these 

pruning operations, adjustments are required for the FPN and PAN structures as the 

feature map size input into feature fusion network structure has been altered. 

Consequently, certain layers of the FPN structure and their corresponding PAN structures 

are pruned accordingly. Ultimately, the detection head designed for large objects is 

eliminated. 

 

Figure 2. Prune network structure. 

The increased complexity of the network structure poses significant challenges, 

particularly in terms of computational efficiency, memory consumption, and training 

4X

8X

16X

32X

4X

8X

16X

32X

4X

8X

16X

32X

downsampling upsampling

new

small

medium

big

4X

8X

16X

4X

8X

16X

4X

8X

16X

downsampling upsampling

new

small

medium

Figure 1. Added head network structure.

3.1.2. Network Structure Pruning for Complexity Reduction

Although the newly introduced detection head model has enhanced the accuracy,
it has also contributed to an increase in the complexity of the network structure. The
addition of the feature pyramid network (FPN) structure, path aggregation network (PAN)
structure, and 4× downsampling detection head has significantly augmented the intricacy
of the network. In aerial image datasets, large objects are scarce, rendering the 32-fold
downsampling correlation module inapplicable to the primary objectives of detecting
small objects effectively. Consequently, modifying the existing network structure becomes
imperative to address the issue of redundancy.

Moreover, the feature maps obtained through 32× downsampling possess a large
receptive field, making them less sensitive to small objects with low pixel ratios, thus
offering minimal contribution to the detection of such objects. Therefore, after thorough
deliberation, this paper proposes pruning the modules associated with 32× downsampling
in the network architecture. Specifically, this involves removing the 32× downsampling
feature extraction module from the backbone network, the 32× downsampling feature
fusion module from the neck section, and the 32× downsampling detection head from
the prediction branch, as illustrated in Figure 2. Following these pruning operations,
adjustments are required for the FPN and PAN structures as the feature map size input into
feature fusion network structure has been altered. Consequently, certain layers of the FPN
structure and their corresponding PAN structures are pruned accordingly. Ultimately, the
detection head designed for large objects is eliminated.
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The increased complexity of the network structure poses significant challenges, par-
ticularly in terms of computational efficiency, memory consumption, and training time.
Addressing these challenges is crucial for ensuring the scalability and practical applicability
of the proposed model.
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The overall network structure after pruning retains the advantages of using shallow
feature maps and optimizes the problem of network complexity it brings. By removing the
32× downsampling feature extraction module in the feature extraction network, the subse-
quent feature fusion becomes more convenient without the need to add new upsampling
structures. This also reduces unnecessary computations, decreases compute parameters,
and increases the detection speed.

3.1.3. CARAFE-Based Feature Reassemble

The upsampling algorithm used in YOLOv5 is nearest-neighbor interpolation, which
directly uses the closest existing color to generate missing pixel values. This approach
of copying neighboring pixel values can create obvious aliasing artifacts. This strategy
of copying samples is prone to emphasizing individual samples too much, leading to
overfitting problems. In addition, this algorithm only considers the distance between
instances and does not utilize the feature information of instances, which can also affect the
detection performance to some extent.

In this paper, a lightweight and general-purpose upsampling algorithm called
CARAFE (Content-Aware ReAssembly of Features) [26] is used to supersede the nearest-
neighbor upsampling algorithm. The CARAFE algorithm is a content-aware and feature
reassembly upsampling method that has a large receptive field during the feature re-
assembly process.

Compared to traditional upsampling algorithms, the CARAFE algorithm uses convo-
lutional layers to transform the input feature channels, effectively solving the checkerboard
effect. It enhances detail information during upsampling, which is helpful for feature
learning. Moreover, the algorithm is more lightweight and has higher running efficiency.
CARAFE contains two key components: a kernel prediction module and a content-aware
reassembly module. The former is used to generate weights for convolution kernels, which
can be adjusted based on the pixel values in the image. The latter is used to combine feature
maps of different sizes to attain the final feature map.

CARAFE contains two steps: first, it predicts a reassembly kernel for each target
location based on its content, as shown in Formula (2); the second step uses the predicted
kernel to guide the feature reassembly process, as shown in Formula (3). For feature map X
with size C × H ×W and upsampling rate σ (assuming σ is an integer), CARAFE generates
a new feature map X′ with size C × σH × σW. Any position (l′ = (i′, j′)) in the new feature
map (X′) is associated with a corresponding original position (l = (i, j)) in the input feature
map (X), where i = [i′/σ] and j = [j′/σ]. N(Xl , k) represents the k × k subregion of X
centered at position l, which is the neighborhood of Xl . The kernel prediction module
ψ predicts the position kernel Wl′ for each l′ position based on the k × k subregion of Xl ,
while the content-aware reassembly module ϕ reassembles the k × k subregion of Xl and
the kernel Wl′ .

Wl′ = ψ(N(Xl , kencoder)), (2)

X′
l′ = ϕ

(
N
(
Xl , kup

)
, Wl′

)
, (3)

The CARAFE algorithm replaces the nearest-neighbor upsampling algorithm and
applies it to the original network, which is modified by the previous work, and the
final network structure is displayed in Figure 3. In this paper, we refer to it as the
PCHead model.

3.2. PCSG Model

In this section, we delve into the detailed modifications made to the backbone network.
With the aim of improving both fine-grained feature extraction capability and compu-
tational performance, this paper incorporates a novel CNN module, SPD-Conv, while
also substituting the CSPDarknet53 network structure with Ghost convolution. These
alterations culminate in the development of the PCSG model.
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3.2.1. Fine-Grained Information Network Structure

The underlying reason why mainstream target detection algorithms perform well in
detecting regular-sized targets but poorly in detecting small targets is the flaw of existing
network architectures, especially hierarchical convolution and pooling layers. These two
layers cause the loss of fine-grained information and low efficiency. Limited by the low
resolution of the input image and the small size of the target, existing CNN architectures
are therefore not suitable for small object detection.

The SPD-Conv [11] efficiently solves the above-mentioned problem. As a new type
of CNN module, SPD-Conv consists of an SPD layer (space-to-depth) and a Conv (non-
strided convolution) layer. By replacing each strided convolution and pooling layer with
the SPD-Conv, it achieves the preservation of fine-grained information and effective feature
learning. The SPD module performs image transformation on the internal CNN and the
entire feature map in order to perform downsampling.

For a middle feature map X with a size of S × S × C1, it can be divided into a series of
sub-feature maps by cutting, as shown in the Formula (4). For a feature map (X), each sub-
map fx,y composes all entries X(i + y) that are evenly divided by the scaling factors i + x,
and i + y. Therefore, each sub-map downsamples the original feature map according to the
scaling factors. Then, feature sub-maps are connected along channel dimension to gain a
new feature map X′, which has one less scaling factor in the spatial dimension and one more
scaling factor in the channel dimension than the original feature map (X). Therefore, the
dimension of feature map X changes from the original S × S × C1 to S

scale ×
S

scale × scale2C1.

fscale−1,0 = X[scale − 1 : S : scale, 0 : S : scale],
fscale−1,1 = X[scale : S : scale, 1 : S : scale],

f0,scale−1 = X[0 : S : scale, scale − 1 : S : scale],
fscale−1,scale−1 = X[scale − 1 : S : scale, scale − 1 : S : scale],

(4)

Regarding the non-strided convolutional layer, after the dimension transformation
of the feature map is completed by the SPD layer, a non-strided convolutional layer with
C2 filters is added. C2 is less than scale2C1. Therefore, the dimension of the feature map is
further transformed from S

scale ×
S

scale × scale2C1 to S
scale ×

S
scale × C2. By using non-strided

convolution, the original network can preserve much feature discriminative information.
This article modifies the original YOLOv5 network structure by embedding SPD-Conv

modules into the stride convolutional layers in the backbone and neck parts. Specifically,
SPD-Conv is added to each stride convolutional layer and its subsequent connection layer,
i.e., between the Conv module and the C3 module. In total, there are six replacements, with
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four in the backbone part and two in the neck part because the backbone contains four
stride convolutions and the neck contains two.

3.2.2. Lightweight Network Structure

Although the previous work can enhance the accuracy, it tends to make the network
structure more complex, with larger parameters and computations. This leads to lower
efficiency in small object detection and cannot meet the real-time needs of aerial image
detection. In this paper, we use the Ghost convolution module [10] to lighten the weight of
the network.

The Ghost module contains three steps: conventional convolution, Ghost generation,
and feature map concatenation. In this paper, the Conv and C3 modules in the original
network structure were replaced with Ghost convolutions, which greatly reduced the
parameters of the network and improved the detection speed.

Combining the previous work, this paper has some enhancements to the original
network’s feature pyramid structure. By applying shallow feature maps, the ability to
extract features for small objects is strengthened. The modules related to large objects in
the original network’s feature extraction network, feature fusion network, and prediction
branch are pruned to enhance the model’s accuracy and speed. The upsampling algorithm
of the original network structure is modified, and the design flaws of the CNN module in
the original network model are reduced to preserve fine-grained information. The entire
model is lightweight to meet practical scenario requirements. The final network, called the
PCSG model, is displayed in Figure 4. It can be described as follows: Firstly, the original
input image elapses the Focus structure, as well as the GhostConv, SPD, and GhostC3
modules, to obtain the corresponding downsampling feature maps. Then, after passing
through the SPP module and being upsampled through the CARAFE module, it undergoes
feature fusion with the corresponding scale feature map obtained previously via the Concat
module. Afterward, the PAN structure is utilized bottom-up with corresponding feature
maps obtained previously by the FPN structure. Finally, detection heads are obtained for
different-sized targets.

Aerospace 2024, 11, 392 9 of 15 
 

 

 

Figure 4. Schematic diagram of the PCSG network structure. 

4. Experimental Results and Analysis 

4.1. Datasets and Experimental Setting 

We use the open source RSOD aerial object detection dataset [27] to select four types 

of targets: airplanes, playgrounds, overpasses, and oil drums. There are 446 images of 

airplanes with 4993 airplanes, 189 images of playgrounds with 191 playgrounds, 176 

images of overpasses with 180 overpasses, and 165 images of oil drums with 1586 oil 

drums. In this dataset, the image resolution of airplanes is 0.5~2/pixel, the image 

resolution of playgrounds is 0.4~1/pixel, the image resolution of overpasses is 

1.25~3/pixel, and the image resolution of oil drums is 0.3~1/pixel. Since the image 

resolution of the overpass is relatively large among them, and there is a partial lack of the 

playground image, this paper chooses the categories of “airport” and “oil tank” as the 

training and testing samples in the dataset. Training and testing sets are split into 9:1, and 

training and testing data are strictly independent. 

The operating system that we used in this experiment is Windows 10 (64-bit), the 

CPU model is 11th Gen Intel(R) Core (TM) i7-11700 @2.50 GHz, the graphics card is 

NVIDIA GeForce RTX 3070 Ti (Santa Clara, CA, USA), the memory size is 32 GB, the 

Python version is 3.7.4, and the PyTorch version is 1.9.0. The parameter settings used in 

the training process of this article are shown in Table 1. 

Table 1. Parameters setting. 

Parameters Values 

Momentum 0.937 

Batch size 16 

Image size 640 

Weight decay 0.0005 

Learning rate 0.01 

Epochs 300 

Figure 4. Schematic diagram of the PCSG network structure.



Aerospace 2024, 11, 392 9 of 15

4. Experimental Results and Analysis
4.1. Datasets and Experimental Setting

We use the open source RSOD aerial object detection dataset [27] to select four types
of targets: airplanes, playgrounds, overpasses, and oil drums. There are 446 images of
airplanes with 4993 airplanes, 189 images of playgrounds with 191 playgrounds, 176 images
of overpasses with 180 overpasses, and 165 images of oil drums with 1586 oil drums. In
this dataset, the image resolution of airplanes is 0.5~2/pixel, the image resolution of
playgrounds is 0.4~1/pixel, the image resolution of overpasses is 1.25~3/pixel, and the
image resolution of oil drums is 0.3~1/pixel. Since the image resolution of the overpass is
relatively large among them, and there is a partial lack of the playground image, this paper
chooses the categories of “airport” and “oil tank” as the training and testing samples in the
dataset. Training and testing sets are split into 9:1, and training and testing data are strictly
independent.

The operating system that we used in this experiment is Windows 10 (64-bit), the CPU
model is 11th Gen Intel(R) Core (TM) i7-11700 @2.50 GHz, the graphics card is NVIDIA
GeForce RTX 3070 Ti (Santa Clara, CA, USA), the memory size is 32 GB, the Python version
is 3.7.4, and the PyTorch version is 1.9.0. The parameter settings used in the training process
of this article are shown in Table 1.

Table 1. Parameters setting.

Parameters Values

Momentum 0.937
Batch size 16
Image size 640

Weight decay 0.0005
Learning rate 0.01

Epochs 300

4.2. Assessment of Indicators

We use the most commonly used mean average precision (mAP) as the evaluation
index, and its value can comprehensively reflect the relationship between accuracy and
recall, i.e., mAP is related to precision and recall. The closer to 1 the value, the better the
algorithm performance. The confusion matrix of the evaluation indexes of mAP is shown
in Table 2, where TP denotes true cases, FP denotes false positive cases, TN denotes true
negative cases, and FN denotes false negative cases.

Table 2. Bicategory confusion matrix.

Real/Predicted Positive Sample Negative Sample

Positive Sample True Positive (TP) False Negative (FN)
Negative Sample False Positive (FP) True Negative (TN)

GFLOPS (giga floating-point operations per second) is defined as 1 billion floating-
point operations per second.

4.3. Comparative Experimental Analysis

To confirm the validity of the improvements made in our article, corresponding
experiments were managed on the aforementioned improved network structure, and the
experiment results are described in Table 3.

Table 3 illustrates the efficacy of various model enhancements compared to the origi-
nal network structure. The Add Head model improves feature fusion, deepens the FPN
structure, and enhances shallow-level feature reuse, resulting in improved detection per-
formance. The precision value increases from 96.8% to 98.4%, the recall value from 92.6%
to 93.5%, and the mAP value from 97.1% to 97.3%. Conversely, the Prune model yields
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even better results, with precision increasing to 97.8%, recall to 94.4%, and mAP to 98.0%.
This suggests that excessive convolutional calculations in deeper network layers can lead
to feature loss for small objects. The Prune model mitigates this by preserving feature
information, with a reduction in parameters to 1,021,327, indicating reduced complexity.

Table 3. Performance comparison of different algorithms.

Parameters GFLOPS P/% R/% mAP/%

YOLOv5 1,761,871 4.2 96.8 92.6 97.1
Detection Head 1,762,095 7.2 98.4 93.5 97.4
Module Pruning 1,021,327 7.5 97.8 94.4 98.0

CARAFE 1,803,335 4.3 95.2 94.6 97.4
PCHead 1,062,791 8.0 97.3 94.5 98.2

Similarly, the CARAFE upsampling algorithm enhances the mAP value to 97.4%, albeit
with a slight increase in parameters to 1,803,335. The integrated PCHead model outperforms
the original network, with P, R, and mAP values increasing to 97.3%, 94.5%, and 98.2%,
respectively. This underscores the effectiveness of pruning, deepening the FPN structure,
and replacing the upsampling algorithm with CARAFE in improving the detection results.
Moreover, the PCHead model’s reduction in parameters to 1,062,791 simplifies the model
while increasing GFLOPS to 8.0, thus enhancing computation speed.

Since the size of convolutional kernels in the feature extraction network structure of
the YOLOv5 algorithm increases with the network’s depth, the pruning strategy reduces
the number of covariates in the model significantly, which makes the SPD-Conv module
only partially useful. Therefore, the shallow network in the feature extraction network
of the model is supplemented, i.e., the corresponding network parameters are modified
to ensure the number of convolutional kernels and the feature extraction ability of the
model, so that the experimental setup is more rigorous. As we can see from Table 4, in
SPD-Conv model, the P-value is increased to 96.9%, the R-value is increased from 92.6% to
95.8%, and the mAP value is increased from 97.1% to 98.6%, which is a big improvement in
the detection accuracy. However, parameters increase from 1,761,871 to 2,442,503, which
increases the model complexity, and the number of GFLOPS increases from 4.2 to 26.1,
which increases the computation speed/required computation speed significantly, which
illustrates the complexity of the model. The Ghost module is applied to models such as
pruning and PCHead, and similarly, the parameters of the shallow layer of the feature
extraction network are changed to maintain the rigor of the experiment. The P-value
increases from 96.8% to 97.0%, the R-value decreases from 92.6% to 91.4%, and the mAP
value is 96.6%, which is lower than the 97.1% of the original algorithm. The mAP value is
96.6%, which is lower than the 97.1% of the original algorithm. However, the parameter
value is reduced from 1,761,871 to 987,895, which is more in line with the expected effect of
the lightweighting of the network.

Table 4. Comparison of results of ablation experiments with overall improvement.

Parameters GFLOPs P/% R/% mAP/%

YOLOv5 1,761,871 4.2 96.8 92.6 97.1
SPD-Conv 2,442,503 26.1 96.9 95.8 98.6

Ghost 987,895 7.2 97.0 91.4 96.6
SPD + Ghost 1,323,275 4.9 96.5 94.7 97.2

Since the YOLOv5 algorithm’s number of convolutional kernels in the feature extrac-
tion network structure increases with the network’s depth, pruning strategies significantly
reduce the parameter count in the model and make the SPD-Conv modules only partially
effective. Therefore, in this work, the shallow network in the model’s feature extraction net-
work was supplemented by modifying the corresponding network parameters to ensure the
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model’s convolutional kernel count and feature extraction ability, making the experimental
setup more rigorous. As the data show in Table 5, compared to the YOLOv5 algorithm, the
PCSG model had a precision value of 96.9%, and the recall value increased from 92.6% to
95.8%, with a mAP value increase from 97.1% to 97.8%, improving the model’s detection
accuracy. Additionally, the parameters decreased from 1,761,871 to 1,368,823, reducing
the model’s complexity and verifying the effectiveness of the light-weighting strategy of
replacing the Conv and C3 modules in original network with Ghost modules. Overall, this
work achieved good improvements in both accuracy and model complexity for small object
detection and had ideal experimental results.

Table 5. Comparison of experimental results for the final model.

Parameters GFLOPS P/% R/% mAP/%

YOLOv5 1,761,871 4.2 96.8 92.6 97.1
PCHead 1,062,791 8.0 97.3 94.5 98.2

SPD + Ghost 1,323,275 4.9 96.5 94.7 97.2
PCSG 1,368,823 14.9 96.9 95.8 97.8

4.4. Visualization of Test Results

To better illustrate the feasibility of the PCHead model, this paper selects some test set
images for the test illustration, and the results are shown in Figure 5. Among them, the left
picture is the truth value information, the middle picture is the YOLOv5 detection effect,
and the right picture is the PCHead model detection effect.

The image can be seen from Figure 5. In (a) and (c), the original model has the
phenomenon of missed detection, and it can be seen that the objects in green boxes are
marked in the ground truth, but the original model is not detected. In (b), there is a double
detection phenomenon with only two objects in the white box but three boxes in the source
model. In (d), there is a misdetection: the object in the orange box is not marked as aircraft
in the ground truth, but it is detected as aircraft in the original model. The PCHead model
improves the above errors to a certain extent, which indicates that the new detection layer
and the CARAFE upsampling algorithm can bring beneficial improvement to the detection
of small targets and verifies the validity of the work in this paper. Specifically, the pruning
model enhances the feature extraction capability by utilizing a shallower feature map,
which brings richer detail information for the subsequent feature fusion network, while the
CARAFE upsampling algorithm reorganizes the features based on the predicted upsampled
features in a way that reduces the information loss caused by the original nearest-neighbor
upsampling algorithm, which enhances the detection effect.

To better illustrate the feasibility of our model, we conducted tests on selected images
from the test set. The results are shown in Figure 6. The left image shows the ground truth
information, the middle image shows the results of YOLOv5, and the right image shows
the results of PCSG. The green boxes in the figure indicate the detection errors of YOLOv5.

As can be seen from (a) to (c) in Figure 6, the original model has some limitations
in small target detection. There are the phenomena of false detections. The orange box
does not have an aircraft in ground truth, but the original model detects an aircraft. The
small target detection results shown in Figure 6b also show that the PCSG model has
better detection performance and exhibits a certain improvement on false detection. This
further demonstrates the effectiveness and superiority of our work, which validates the
effectiveness of the added detection layer, CARAFE upsampling algorithm, SPD-Conv
module, and Ghost module in small object detection in aerial images.
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5. Conclusions

While many object detection algorithms have shown effectiveness in detecting objects
of regular sizes, small object detection remains a significant challenge. The main challenge
is the limited pixel proportion and the complexity of feature extraction. Moreover, current
mainstream detection algorithms tend to be overly complex, leading to structural redun-
dancy for small objects. In this study, we delve into the domain of aerial imagery, where
detecting small objects poses particular challenges due to their limited pixel representation
and complex feature extraction. To address these challenges, we propose modifications to
the feature pyramid structure, focusing on fusing shallow feature maps and enhancing their
reusability. Additionally, tackling the issue of redundancy in existing network structures
for small object detection, we prune the correlation structure and introduce a new detection
head. Furthermore, adopting the lightweight and versatile upsampling operator CARAFE
we address the problem of local feature information loss through content-aware feature
recombination during upsampling. Striving to retain all discriminative feature information,
the strided convolutions and pooling of the existing network are replaced with the SPD-
Conv module. Leveraging Ghost convolution to reduce model complexity and enhance
real-time performance, the resultant PCSG model achieves an impressive mAP value of
97.8% on the RSOD dataset, demonstrating superior detection capabilities. The research in
this paper is for small target detection in aerial images, and the method adopted provides a
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certain reference in this field. Moving forward, the focus will be on enhancing the model’s
generalizability and exploring further improvements from diverse perspectives, as well as
incorporating YOLO v9 or other latest versions of the model into the comparison.
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