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Abstract: In satellite health management, anomalies are mostly resolved after an event and are
rarely predicted in advance. Thus, trend prediction is critical for avoiding satellite faults, which
may affect the accuracy and quality of satellite data and even greatly impact safety. However, it is
difficult to predict satellite operation using a simple model because satellite systems are complex and
telemetry data are copious, coupled, and intermittent. Therefore, this study proposes a model that
combines an attention mechanism and bidirectional long short-term memory (attention-BiLSTM) with
telemetry correlation to predict satellite behaviour. First, a high-dimensional K-nearest neighbour
mutual information method is used to select the related telemetry variables from multiple variables
of satellite telemetry data. Next, we propose a new BiLSTM model with an attention mechanism for
telemetry prediction. The dataset used in this study was generated and transmitted from the FY3E
meteorological satellite power system. The proposed method was compared with other methods
using the same dataset used in the experiment to verify its superiority. The results confirmed that the
proposed method outperformed the other methods owing to its prediction precision and superior
accuracy, indicating its potential for application in intelligent satellite health management systems.

Keywords: operation prediction; satellite; attention-BiLSTM; HKNN-MI; correlation telemetry

1. Introduction

Satellites are complex systems that contain all types of subsystems and loads with
a coupling relationship. Abnormalities can easily occur and may cause systematic faults
that affect services and the accuracy of satellite data and significantly impact the safety
of satellites. However, satellite health management relies mainly on manual operation,
which is time-consuming and laborious, with faults mostly resolved after an event. If
satellite operation trends are predicted, then health assessment or anomaly detection can
be performed through the design of a certain algorithm. This can allow for real-time
monitoring of the satellite’s health status and the timely detection of abnormalities.

Telemetry parameter data that reflect the satellite’s operational status are measured
by the satellite’s sensor configuration from satellite deployment to in-orbit operation and
eventually retirement. This generates large amounts of data with different telemetry fea-
tures, which can be mined and analysed to predict a satellite’s operational status. However,
it is difficult to determine the features related to satellite trends for all types of telemetry
feature data. Currently, feature extraction methods such as principal component analysis
(PCA) [1–3], grey relational analysis (GRA) [4], and mutual information (MI) [5–8] are
widely used to extract critical variables or information. PCA combines new variables
linearly with the original variables in high-dimensional data and can centrally reflect the
information in the original variables; however, this method is not suitable for non-linear
data [2]. When calculating the grey degree of correlation for the GRA method, many factors
affect the results, such as the adjustment order of the characteristic parameters [4]. The MI

Aerospace 2024, 11, 398. https://doi.org/10.3390/aerospace11050398 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11050398
https://doi.org/10.3390/aerospace11050398
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-8320-138X
https://doi.org/10.3390/aerospace11050398
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11050398?type=check_update&version=2


Aerospace 2024, 11, 398 2 of 20

is a criterion for measuring the degree of interdependence between two random variables.
However, in feature extraction, it presents two main difficulties: Identifying a suitable
feature evaluation strategy and accurately estimating the MI [5]. A data-driven feature
selection framework constructed by the k-nearest neighbour (KNN) method [9] is suitable
for data with non-linear and irregular distribution characteristics; however, this approach
can produce a “dimensional disaster”.

Current trend prediction methods mainly include statistical, mathematical, intelligence-
based, and information-fusion predictions. Among them, the autoregressive moving aver-
age (ARMA), support vector regression (SVR), backpropagation (BP) neural network, and
long short-term memory (LSTM) prediction models have been widely studied and applied.
The ARMA prediction model is a linear model with finite parameters. For short-term pre-
dictions, the model has a high fitting accuracy [10,11]. However, this approach is unsuitable
for non-linear and non-stationary sequences. The SVR prediction model, which is based
on structural risk minimisation, has better generalizability for small sample training sets
and higher prediction accuracy than the ARMA model [12]. However, these algorithms
can be used only as short-term prediction algorithms. SVR is now widely used to solve
practical problems in various fields by combining it with other algorithms [13–15]. BP
neural networks are among the most widely used neural network models owing to their
strong non-linear mapping and self-learning abilities [16–18]. However, slow convergence,
a lack of a scientific basis for determining the hidden layer nodes, and easy convergence
to local minima limit their application [19]. Deep learning is a branch of neural networks.
Recurrent neural networks (RNNs) with depth and time series have been widely used
as prediction models for sequence data [20–22]. Although RNNs can handle time series
problems, they have serious gradient dispersion problems. To ameliorate the adverse
effects of gradient disappearance and long-distance dependence on neural networks, the
long-term memory ability of RNNs can be improved by replacing RNN chain units with
long-term memory units (LSTM chains) [23]. LSTM, which uses an additional memory cell
to store states, has a better ability for time series prediction than RNNs. Recently, LSTM
has achieved significant success in many fields [24–26]. Although the LSTM model has a
good predictive ability for non-linear time series [27], it takes historical time series data as
input, neglects the availability of future time series data, and obviates deep data mining.

The literature confirms that trend prediction has been widely applied in many fields,
and deep learning has developed into a mainstream method. Satellite operation prediction,
an important aspect of satellite health management, must urgently be studied in combi-
nation with deep learning methods, which present challenges at the practical application
level. Zeng et al. [28] proposed an anomaly detection framework using a causal network
and feature-attention-based long short-term memory (CN-FA-LSTM) network, which is
used to study causality in multivariate and large-scale telemetry data and is more sen-
sitive to anomalies for prediction. Napoli et al. [29] developed a wavelet RNN for the
multistep-ahead prediction of multidimensional time series, which was applied to the
prediction of satellite telemetry data. Chen et al. [30] presented an anomaly detection
model based on Bayesian deep learning without domain knowledge that is highly robust to
imbalanced satellite telemetry data. Yang et al. [31] proposed an improved deep-learning-
based anomaly detection method for detecting anomalous spacecraft telemetry data, which
combines LSTM with a multiscale detection strategy to enhance detection performance.
Although these methods effectively analyse telemetry data using deep learning, it is unclear
how the telemetry data that describe certain operating conditions are obtained. Because
the satellite system is complex and telemetry data are copious, coupled, and intermittent, it
is difficult to predict satellite operation using a simple model.

By analysing these feature extraction methods, this study presents a method that
combines KNN with MI that selects the related telemetry variables from multiple satellite
variables; this method is termed high-dimensional KNN-MI (HKNN-MI). Bidirectional
LSTM (BiLSTM) is a variant of LSTM that can process sequence data both forward and back-
wards and provide past and future sequence information for each time in the sequence [32].
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Moreover, a combination of the BiLSTM prediction model and attention mechanism can
determine the importance of information at each input time, and the training efficiency
of the model can be improved. Therefore, in this study, a model combining an attention
mechanism and BiLSTM (attention-BiLSTM) with correlation telemetry is proposed to
predict the operation trend of satellites.

The remainder of this paper is organised as follows. Related works on MI, attention
mechanisms, and BiLSTM deep models are reviewed in Section 2. The problem statement
and proposed method are introduced in detail in Section 3. The dataset was collected from
FY3E to validate the feasibility of the proposed method. Section 4 provides the results of
the evaluation, which were compared to demonstrate the validity of the method. Finally,
Section 5 provides conclusions regarding the approach and suggestions for further research.

2. Related Work

This section reviews the related literature on MI, attention mechanisms, and BiLSTM.
The MI is used to analyse the correlation between variables, an attention mechanism is
applied to assign weights based on the importance of information, and BiLSTM is used to
handle large amounts of time series data.

2.1. Mutual Information

In information theory, the concept of MI represents the relationship that connects in-
formation. The MI [33] can accurately describe linear and non-linear correlations between
variables. Nguyen et al. [34] proposed an approach for constructing higher-dimensional
MI-based feature selection methods that consider higher-order feature interactions, which
differs from most previous methods that use low-dimensional MI quantities that are effective
only at detecting low-order dependencies between variables. By combining MI and a kernel
function, Bi et al. [35] proposed an approach for feature selection with non-linear models
by defining kernels for feature and class-label vectors. For feature selection, Zhou et al. [36]
proposed MI with correlation, which combines the correlation coefficient and MI to measure
the relationships between different features. Liu et al. [37] proposed using MI to obtain the
correlation ranking of the tested sequence and the degradation process to obtain a strongly
correlated feature subset that efficiently deletes redundant and irrelevant features.

2.2. Attention Mechanism

The attention mechanism is widely used for deep learning in many fields, such as
natural language processing, finance, and mechanical engineering, and it mimics systems
including the human visual attention mechanism and human cognitive system. The core
idea of the attention mechanism [38] is to assign a weight; that is, to assign a high weight
to important information to reasonably change the attention of the outside world toward
that information, ignore irrelevant information, and enlarge the required information.
Variants of the attention mechanism have been designed to solve different problems.
Chu et al. [39] proposed a convolution-based dual-stage attention architecture combined
with LSTM networks for univariate time series forecasting. Deep attention user-based
collaborative filtering [40] mines the complex relationships between users and items for
recommendation from historical data. Sangeetha and Prabha [41] proposed a multi-head
attention fusion model of the world and context embedding for LSTM to analyse sentiment
in student feedback. Multi-head attention is a set of multiple heads that jointly learn
different representations at each position in a sequence. For speech enhancement, a DNN-
based model with self-attention on the feature dimension was proposed, which can make
full use of the key information in frame-level features [42].

When the traditional encoder–decoder model processes an input sequence, the encoder
encodes input sequence Xt into hidden vector h with a fixed length and assigns the same
weight to components of the hidden vector. The decoder decodes the output based on
hidden vector h. When the length of the input sequence increases, the weights of the
components remain the same, and the model does not discriminate input sequence Xt,
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thus degrading the model’s performance. In this study, an attention mechanism was
used to improve the effectiveness of the encoder–decoder model; this mechanism assigns
corresponding weights to hidden vector h of the input sequence at different times, merges
the hidden vector into a new hidden vector according to its importance, and then inputs
it to the decoder. The encoder–decoder model with the attention mechanism is shown
in Figure 1, where x1, . . ., x4 are the input sequences; C1, C2, and C3 are the new hidden
vectors that are merged by the weight and hidden vector of the input vector; and y1, . . ., y4
are the output sequences.
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2.3. Deep BiLSTM Model

The BiLSTM concept is derived from a bidirectional RNN that uses two separate
hidden layers to process sequence data both forward and backwards. Bi-LSTM networks
have successfully solved a variety of problems in many fields. A BiLSTM model based
on multivariate time series data [43] was proposed for trading area forecasts to collect
purchasing data and SNS data on ‘restaurants’ in the trading area for progressive learning.
A short-term wind power prediction model based on BiLSTM-CNN-WGAN-GP [44] was
proposed to address instability and low prediction accuracy in short-term wind power
prediction. To predict heart disease, Dileep et al. [45] proposed a cluster-based bidirectional
LSTM algorithm, which provided better prediction results than conventional classifiers. For
implicit sentiment analysis, a BiLSTM model was proposed with multipolarity orthogonal
attention [46], which outperformed the traditional method. Compared with the standard
one-way LSTM, BiLSTM can obtain correlations from historical and current information,
thereby improving the prediction capability [47].

Recently, deep structures formed by stacking multiple LSTMs [48] that can be trained
through multiple non-linear layers have been proven to exhibit good model training
effects. The output of the previous layer is provided to the next layer as the input data
for continuous learning, and additional hidden information can be learned at the learning
level. Therefore, in this study, deep BiLSTM was also used for model training, as shown in
Figure 2, where xt−1, xt, and xt+1 denote the input sequence; ht denotes the hidden vector;
Ht−1, Ht, and Ht+1 are the outputs of the previous and input data of the next layer; and
yt−1, yt, and yt+1 denote the output sequence.
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3. Proposed Method

In this section, the problem of predicting satellite operations is first described in detail,
and a method for obtaining the optimal correlation feature for the input of the model is
subsequently presented. Finally, the model architecture for predicting satellite operations
is described.

3.1. Problem Statement

Satellite health management is critical for ensuring the safety of an asset. However,
current health management methods are largely manual, are effective, and time-consuming.
This study intends to use an artificial intelligence algorithm to solve these problems by
deeply mining and analysing telemetry data, which restricts the stable operation of satellites
and prevents abnormalities from being found quickly.

Considering the safety and reliability requirements of satellites in orbit, sensors are in-
corporated into the main functional modules of each key subsystem. These sensors provide
telemetry parameter data for satellites from launch, throughout in-orbit operation, and
until retirement. Satellite telemetry includes thermodynamic, power system, and dynamic
parameters. These large amounts of telemetry data, which are stored in a time series, reflect
the state of the satellite payload and the operation of the satellite subsystems. Therefore,
a satellite’s operational pattern is related to the amount of temporal data. Telemetry data
contain several objective laws and knowledge that can be used to predict trends. The oper-
ational trends of the satellite platform and load can be predicted based on these numerous
coupled and time-related telemetry data (Figure 3 shows some parameters). However, this
study faced the following challenges:

(1) Feature representation is difficult because there are thousands of satellite telemetry
data variables, and owing to the coupling and correlation of satellite systems, no
single parameter can be used to comprehensively describe performance; moreover,
determining which parameters can accurately define particular aspects of performance
is challenging.

(2) It is difficult to predict trends because satellite systems are complex, the telemetry
signal is non-stationary and non-linear, and the telemetry parameters have three
different variation patterns: stationary, abrupt, and periodic.
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Traditional feature extraction methods no longer satisfy the requirements of satellite
data feature representation. Therefore, selecting the features of satellite data that can
accurately and comprehensively express system information is one of the key problems
to be solved. After analysing the classical machine learning algorithms for time series
prediction, the traditional algorithms are no longer suitable for trend prediction for complex
satellites. Hence, this study proposes a new satellite prediction model.

In predicting satellite operations, we use Xt = (x1
t , x2

t , . . . , xn
t )

T to denote a vector of

all the variables at time t, employ Xk = (xk
1, xk

2, . . . , xk
T)

T
to represent the k-th variable series

of window T, and apply Y = (y1, y2, . . . , yT)
T to denote the target series within the length

of window T. Target Y is predicted as follows:

⌢
Y t+τ = f (Xt, Xt−1, · · · , Xt−τ) (1)

where Ŷt+τ is the predicted object in the next τ hours, f represents the final model trained
on the historical data, Xt denotes the dataset at the moments being predicted, and Xt−τ is
the dataset in τ hours before the moments being predicted. Figure 4 shows the prediction
process and how the sliding window mechanism operates. In Figure 4a, the time series
data are considered the input data for the proposed model. In Figure 4b, the first d points
of a sequence are regarded as the input, and d + 1 is labelled as the target.
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3.2. Telemetry Correlation Analysis Based on the HKNN-MI Dataset

Satellites with complex structures contain a variety of loads and many types of teleme-
try data. Determining which variables are related to the prediction of the satellite or load
operation is difficult, and the telemetry feature variables to be selected are extremely large.
Therefore, we propose the KNN-MI method (Figure 5), which selects the correlation of mul-
tivariate time series variables to obtain a set of related variables, and the two-dimensional
KNN-MI method is extended to estimate the MI between high-dimensional feature vari-
ables, i.e., high-dimensional KNN-MI. Moreover, a cumulative search strategy is used to
obtain the optimal ranking of all features, and weakly correlated features are eliminated.
Then, redundant features are eliminated using the cross-search strategy, and an optimal
correlation feature subset is ultimately formed. The specific process is as follows:

(1) Determine a strongly correlated feature X0 according to the satellite subsystem or
payload to be predicted and set the k value and number of irrelevant features.

(2) Calculate the high-dimensional MI of all input features X and X0 and save it in
an array.

(3) Sort the array according to the MI value; the feature corresponding to the maximum
MI is considered the first correlation feature X1, followed by the second correlation
feature X2.

(4) The weak correlation features are eliminated according to the pre-set number of
irrelevant features, and the strong correlation feature subset is obtained.

(5) Calculate the MI between two pairs in the correlation feature set, determine the feature
group corresponding to the maximum MI, and obtain the optimal strongly correlated
feature subset.
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3.3. Combining Attention and BiLSTM for Satellite Operation Prediction

Satellite operation is characterised by telemetry data transmitted from satellites with
certain spatial and temporal correlations. BiLSTM can solve the problem of long-term
dependence between current and past moments and address the correlation between
current and future moments. Accordingly, this study introduces BiLSTM to predict satellites’
operational trends. Moreover, the attention mechanism is employed to assign greater
weight to timeframes that have a greater impact on the prediction results.

However, in practical applications, we cannot obtain future time series data; therefore,
this study presents the use of the LSTM model to predict future trends and takes the
prediction results and historical data as the input of BiLSTM. To improve the model training
effect, a deep BiLSTM was designed to learn more hidden information at the training level.
Figure 6 shows the workflow of the proposed method. The process consisted of two parts:
telemetry correlation and prediction.
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BiLSTM comprises forward- and backwards-propagating LSTM. In the LSTM structure,
a memory controller is used to decide which information to forget and retain, and the input
and output of information are realised through three structures: The input, forget, and
output gates. Suppose that ct−1 denotes the cell state of the previous moment; ht−1 is the
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output of the former LSTM; and xt and ht represent the input and state outputs, respectively,
for the current moment. ft, it, and ot represent the output values of the forget, input, and
output gates, respectively. The updating process can be summarised as follows:

∼
c t = tanh(Wc·[ht−1, xt] + bc) (2)

ft = σ
(

W f ·[ht−1, xt] + b f

)
(3)

it = σ(Wi·[ht−1, xt] + bi) (4)

ct = ftct−1 + it
∼
c t (5)

ot = σ(Wo·[ht−1, xt] + bc) (6)

ht = ottanh(ct) (7)

where c̃t and ct represent the candidate and current cell states, respectively. Wc, Wf, Wi, and
Wo denote the weights of the candidate input, forget, input, and output gates, respectively.
bc, bf, bi, and bo represent the biases of the candidate input, forget, input, and output
gates, respectively. σ and tanh represent the sigmoid and hyperbolic tangent activation
functions, respectively.

In the BiLSTM network, after telemetry correlation analysis based on HKNN-MI, the
historical time series data X = [x1, x2, . . ., xt] are input into the forward network unit of the

BiLSTM, which obtains the forward hidden layer state
→
h t. The historical time series data
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where σ is the non-linear activation function of the hidden layer, W
x
→
h

is the weight from

input x of the current neuron to the hidden layer
→
h t at this moment, W→

h
→
h

is the weight

from the state quantity at the previous moment to the current state quantity,
→
h t−1 is the

output value of the hidden layer at the previous moment, and b→
h

is the offset term.
→
h t and

←
h t are pieced together for ht, which is the hidden state of BiLSTM at timestep t. The linear
combination H of BiLSTM hidden vectors with n time steps is defined as

H = (h1, h2, . . ., hn) (10)

To improve the ability of the BiLSTM prediction model, a temporal attention mecha-
nism was adopted in the decoder stage to select and weigh the relevant encoder’s hidden
state across time steps. Thus, the temporal relationships of the input sequences can be
learned, and the model assigns a corresponding weight to the input part during training.
Supposing that the previous decoder hidden state is h′i−1 and the encoder hidden state is hj,
the attention weights of the encoded hidden state can be computed as

eij = vtanh(W·hj + U·h′i−1 + b) (11)

aij =
exp(eij)

∑t
k=t−n exp(eik)

(12)
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C =
t

∑
j=t−n

aijhj (13)

Here, eij is the relationship score between h′i−1 and hj; the higher the value, the greater the
correlation. aij is the attention coefficient corresponding to eij and is assigned to the different
intermediate states hj. The vector C obtained by summarising aij and hj is input into the
decoder, which calculates the prediction result through the fully connected layer the next time.

4. Results and Discussion
4.1. Datasets

FY3E is a second-generation polar-orbiting meteorological satellite and the first civil
dawn-dusk orbit meteorological satellite in the world. The system includes a power system,
control system, thermal control system, and attitude and orbit control system, which have
11 loads, namely, the Medium Resolution Spectral Imager-LL (MERSI-LL), Hyperspectral
Infrared Atmospheric Sounder-II (HIRAS-II), and Micro-Wave Temperature Sounder-III
(MWTS-III) loads. The operating trends of the power system were used to evaluate the
performance of the proposed approach. The telemetry data of the power system, which
were generated and transmitted from the FY3E satellite, were used to identify the method.

Seventy-six observation variables corresponding to the telemetry values generated
from the power system of the FY3E satellite were used to predict the operational trends
of the power system. Therefore, each sample dataset for trend prediction consisted of
76 variables, that is, X = [TMC1 TMC2 . . . TMC76], as shown in Table 1. The dataset was
generated at a sampling interval of 5 s. In total, 108,708 samples were collected as training
and test samples. Figure 7 shows that TMC3, TMC6, TMC15, and TMC36 changed with
time from 00:00:00 to 00:03:14 on some days. As shown in Figure 7, different variables
exhibited different operation trends with time.

Table 1. Satellite telemetry variables.

Variable Name Variable Symbol

Bus Current1 TMC1
A-way Charging Array Current TMC2
B-way Charging Array Current TMC3
A7 Current of Solar Cell Powered Array TMC4
B7 Current of Solar Cell Powered Array TMC5
Bus Current2 TMC6
Bus Voltage TMC7
Voltage of Group A Battery TMC8
A-way Charging Control State TMC9
Voltage of Group B Battery TMC10
B-way Charging Control State TMC11
1~9 Voltage of Group A Battery TMC12
10~18 Voltage of Group A Battery TMC13
19~27 Voltage of Group A Battery TMC14
28~36 Voltage of Group A Battery TMC15
Switch State of Group A Battery Discharge TMC16
Discharge Regulation Circuit A1 Voltage TMC17
Discharge Regulation Circuit A2 Voltage TMC18
Discharge Regulation Circuit A3 Voltage TMC19
Discharge Regulation Circuit A4 Voltage TMC20
. .
. .
. .
Temperature of Solar Cell Outer Panel TMC75
Splitter Temperature TMC76
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4.2. Evaluation Metrics

To assess the performance of the proposed model, the mean absolute error (MAE)
and root mean square error (RMSE) were calculated. The MAE is the average value of the
absolute error and reflects the real situation of the prediction error. The MAE is calculated
as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (14)

where ŷi and yi represent the predicted and real values, respectively, at time point i and n is
the number of samples. A smaller MAE indicates a more accurate prediction.

The RMSE is the square root of the square sum of the errors divided by the number of
samples and is defined by Equation (15):

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (15)

where n is the number of samples, yi is the actual value, and ŷi is the corresponding
prediction for the target series. A smaller RMSE indicates a more accurate prediction.

The MAE and RMSE can be used to measure prediction error. The difference is that
the RMSE can penalise large errors, whereas the MAE cannot. However, the MAE better
reflects the actual situation of the predicted value error.

4.3. Experimental Analysis
4.3.1. Telemetry Correlation Analysis

The load, charging, and shunt currents at all levels are the most important factors in
the power system of the FY3E meteorological satellite. The sum of these terms is the bus
current, which is the output current of the solar array. The product of the bus current and
voltage is the output power of the solar array. Therefore, the bus current is considered
a focus in the power system. These parameters can also be used to determine the use of
power systems in each satellite subsystem.

As mentioned, the telemetry bus current TMC1 (Bus Current1) is the strongly corre-
lated feature X0 in the operation trend of the power system. The MI results obtained with
other telemetry methods are shown in Figure 8, and only the first 45 results are displayed.
In Figure 8, the horizontal axis represents each telemetry channel, and the vertical axis
represents the MI values of TMC1 and the other telemetry channels. As shown in Figure 8,
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of the 76 main telemetries of the power system, the first 21 are appropriately selected as
correlation features, and the last 55 are irrelevant.
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The high-dimensional MI of the 21 selected telemetry features was calculated.
Figure 9 displays the MI values for 21 and the first 6 of 21 telemetry channels, as shown in
Figures 9a and 9b, respectively. As shown in Figure 9, TMC1, TMC2, TMC3, TMC4, and
TMC5 had high correlations; TMC8, TMC12, TMC13, TMC14, and TMC15 had high corre-
lations; and TMC17, TMC18, TMC19, and TMC21 had high correlations. These telemetry
channels profoundly affect the operations of power systems. To explain this matter more
intuitively, the MI connecting these 14 telemetry devices (including itself) is shown in
Figure 10. The different coloured bars indicate that these telemetry variables are closely
related. These results suggest that the operation of the power system can be characterised
by these telemetry channels. Therefore, TMC1, TMC2, TMC3, TMC4, TMC5, TMC8, TMC12,
TMC13, TMC14, TMC15, TMC17, TMC18, TMC19, and TMC21 are considered important
features for predicting the future operation of a power system.
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4.3.2. Analysis of Parameters

The dataset was normalised to reduce the impact of dimensional differences in its
characteristics. After reprocessing, the dataset was partitioned using the roulette method,
with 70%, 20%, and 10% as the training, verification, and test sets, respectively. Two ex-
periments were conducted to evaluate the performance of the proposed method. In Part
1, an algorithm was employed to determine the optimal hyperparameters. Part 2 used a
fixed hyperparameter value. The results showed that the proposed method achieved the
best performance.

Because the experimental parameter settings had a significant impact on the results
of the model training, the results of the final experiment after adjustment are shown in
Table 2. The number of different hidden units had a considerable influence on the prediction
performance of the designed model. Furthermore, on the sample, the training accuracy
was highest when using 128 hidden units, 20 epochs, the Adam optimiser [49], a dropout
rate of 0.5, a batch size of 8, and a learning rate of 0.0001.

Table 2. Parameter settings of our model.

Parameter Name Value Parameter Name Value

Epoch 20 Batch size 8
Optimiser Adam Learning rate 0.0001
Dropout 0.5 Number of hidden units 128

Because the input sequence contains information at multiple points before the pre-
diction point, the length of the input sequence must be determined. Consequently, the
model can simplify the calculation process and shorten the calculation time while ensuring
accuracy. The experiments were conducted when the lengths of the input sequences were
10, 20, and 100. The lowest MAE and RMSE values were obtained with a length of 10.
Moreover, the forecast accuracy was the highest, as shown in Figure 11. As shown in
Figure 12, for the 10 input sequences, the attention vector was applied to the output of the
BiLSTM layer, with the attention mechanism as a function of the input dimensions.
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4.4. Performance Evaluation

To verify the effectiveness of the proposed method, experiments were conducted to
compare the three baseline models, BPNN, RNN, and LSTM, using the same training
and test data in an identical operating environment. All the experiments were conducted
using an Intel (R) Core (TM) i7-1.99 GHz, 8.00 GB RAM, and Windows 10 platform. The
development environment included Python 3.6 and PyTorch 1.0.1.

In the experiment, TMC1, TMC2, TMC3, TMC4, TMC5, TMC8, TMC12, TMC13, TMC14,
TMC15, TMC17, TMC18, TMC19, and TMC21 characterised the operating conditions of the
satellite power system. The training dataset was used to train the model, the verification
dataset was used to optimise its parameters, and the trained model was applied to predict
the test dataset for all models. The RMSE and MAE of each method were calculated
according to the real and predicted values. The prediction results of these methods are
listed in Table 3. The best assessment results for each telemetry service are shown in bold.
Our model attained the lowest RMSE and MAE values, indicating its superiority. To further
visualise the prediction performance, Figures 13 and 14 compare the RMSE and MAE
values, respectively, of the telemetry methods that represent the operation of satellite power
systems. These results confirm that, in terms of predicting satellite operation trends, the
proposed model outperforms the classical methods.
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Table 3. Prediction performance comparison of various models.

Telemetries Evaluation
Metric

Model

RNN LSTM BiLSTM Our Method

TMC1 RMSE 0.46669 0.14936 0.06132 0.03030
MAE 0.45680 0.11217 0.04886 0.01596

TMC2 RMSE 0.82187 0.66640 0.03209 0.01511
MAE 0.82162 0.58720 0.02940 0.01368

TMC3 RMSE 0.77889 0.55579 0.02928 0.01347
MAE 0.77861 0.49463 0.02668 0.01208

TMC4 RMSE 0.88306 0.56522 0.01094 0.00627
MAE 0.88289 0.53139 0.01017 0.00507

TMC5 RMSE 0.94832 0.67078 0.01053 0.00342
MAE 0.94807 0.61076 0.01009 0.00285

TMC8 RMSE 0.74684 0.34636 0.03135 0.01618
MAE 0.74634 0.32107 0.03921 0.01366

TMC12 RMSE 0.83101 0.40984 0.04435 0.02430
MAE 0.83075 0.36860 0.02916 0.01878

TMC13 RMSE 0.63976 0.29317 0.03865 0.02327
MAE 0.63937 0.23051 0.03306 0.01948

TMC14 RMSE 0.87005 0.54022 0.03228 0.02016
MAE 0.86907 0.48015 0.02840 0.01571

TMC15 RMSE 0.84486 0.53786 0.03294 0.02157
MAE 0.84427 0.48220 0.02902 0.01873

TMC17 RMSE 0.77010 0.43085 0.03355 0.01901
MAE 0.76960 0.39963 0.02528 0.01316

TMC18 RMSE 0.67605 0.24346 0.03563 0.02177
MAE 0.67569 0.21981 0.02771 0.01562

TMC19 RMSE 0.78155 0.31655 0.03339 0.01960
MAE 0.78004 0.27662 0.02611 0.01411

TMC21 RMSE 0.58878 0.17176 0.04887 0.02791
MAE 0.58815 0.15765 0.03634 0.02059 
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Figure 15 shows the predicted and real value curves of our model for TMC3 and
TMC4. The samples obtained by the sliding window were input into the trained model for
prediction, and a single predicted value was obtained each time. The predicted values were
obtained by combining the predicted values for each sample. The prediction trajectory was
formed using an iteratively trained model. To better represent the prediction results, the
curve is enlarged, as shown in Figure 16, on the same dataset as in Figure 15. Moreover, the
same dataset was used to compare the predictions of our method with those of classical
algorithms, as shown in Figures 17 and 18, which intuitively show each degree of deviation
through the prediction curves of all algorithms and the real curves for TMC3 and TMC4.
Evidently, our algorithm was superior to the other algorithms. Therefore, the proposed
model is effective and feasible for accurately predicting satellite operations.
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5. Conclusions

To identify abnormalities early and predict a satellite’s operational status, this study
proposed an attention-BiLSTM model with correlation telemetry. The BiLSTM predic-
tion model connected to the attention mechanism can determine the importance of the
information at each input time, and the training efficiency of the model can be improved.
The HKNN-MI method was applied to select relevant telemetry variables from multiple
variables in the satellite telemetry data. The superiority of the proposed model over the
RNN, LSTM, and BiLSTM models was verified using a dataset from the power system of
the FY3E meteorological satellite. The experimental results indicated that the proposed
model achieved state-of-the-art results in the prediction of satellite operations.

Further research will be conducted to improve upon the existing methods to achieve
a unified model for feature selection and prediction and obtain more accurate results
based on larger datasets. The application of this method to real-time operation data from
satellites rather than historical datasets will also be investigated, for which the occurrence
of satellite anomalies can be predicted in advance. At the same time, we also need to
consider whether the algorithm is set on the satellite or the ground system. Suppose the
response time for faults is extremely high. In that case, the application of satellite may
be more suitable, as it can monitor the status of the satellite in real-time. However, the
resources on satellite are limited, and the model needs to be optimized to adapt to the
limitations of energy, computing power, and storage space. The ground system can utilise
more abundant resources to handle more complex tasks. In addition, the ground system
is easier to maintain and update, which helps maintain the long-term stable operation of
the system. The maintenance cost of a satellite is high, and once deployed, the system
must operate autonomously as much as possible. Therefore, we will consider experimental
applications on ground systems.
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