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Abstract: Most studies regarding the relationship between multilingualism and cognitive control
reduce linguistic diversity to a dichotomous comparison, viz., monolinguals vs. bilinguals, failing
to capture the multifactorial nature of multilingualism. Language research is largely restricted to
the Global North, albeit most of the world’s population resides in the Global South, limiting the
interpretability of the existing literature. Cognitive performance is assessed using very few tasks,
yielding unreliable measurements. In this study, we identify the manner in which multilingual
experiences influence cognitive performance in diverse sociolinguistic contexts. Young adults from
the UK (n = 51, mean age = 24.0, SD = 3.18) and Singapore (n = 36, mean age = 21.3, SD = 2.15) were
tested using an extensive battery of cognitive tasks, including cognitive flexibility (CF), working
memory (WM), inhibition, and structure learning (SL). Information on language proficiency, use,
age of acquisition, and frequency of switching was collected. The effects of various linguistic
factors on the cognitive performance of each group were assessed using multiple linear regression
models. The UK and Singapore samples exhibited significantly different linguistic profiles, which
in turn dissimilarly influenced their cognitive performance. Our study underscores the necessity
for more research in the Global South, challenging the prevailing Northern-centric focus on the
multilingualism–cognition relationship.

Keywords: multilingualism; executive function (EF); structure learning (SL); sociolinguistic context;
Singapore; UK

1. Introduction

The effects of multiple-language control on non-linguistic cognitive control are highly
debated. Behavioural studies have reported better performance for bilinguals across a range
of cognitive tests, including inhibition tasks (Bialystok et al. 2004; Hernández et al. 2010);
cognitive flexibility (CF) tasks, for example, task-switching (Prior and Macwhinney 2010;
Stasenko et al. 2017); and on working memory (WM), both visuospatial (Bialystok 2009;
Kerrigan et al. 2017) and verbal (Antón et al. 2019; Blom et al. 2014). Advantages in statis-
tical learning have also been reported (Bonifacci et al. 2011; Verhagen and de Bree 2021).
However, an important segment of the literature reports null or even negative results
(Antón et al. 2014; Carlson and Meltzoff 2008; Duñabeitia et al. 2014; Paap et al. 2014; Paap
and Greenberg 2013).

The inconsistency in the literature can be attributed to multiple reasons. Most studies
simply perform cross-sectional comparisons of monolingual vs. bilingual groups. Such
designs reflect a binary understanding of bilingualism. They fail to capture the diversity
and multifactorial nature of the phenomenon and cannot account for differences within
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bi-/multilingual groups (Luk and Bialystok 2013). Factors such as proficiency, language
use, age of acquisition, or frequency of language switching are not considered, yet they
may be a source of meaningful differences.

Additionally, these between-group comparisons may be confounded by variables such
as socio-economic status (SES), education, intelligence, or immigration status, which often
correlate with general cognitive performance (Fuller-Thomson and Kuh 2014; Goldberg et al.
2008; Kirk et al. 2014; Yang et al. 2011). In other words, differences between monolingual
and bilingual groups in regard to/on non-linguistic variables may be driving spurious
effects or masking genuine impacts (Bak 2015), so it is very important that these variables
are controlled for.

The limited scope of cognitive assessments, which usually encompass one task per
cognitive component, neglect the intricate architecture of executive functions (EFs) (Jylkkä
et al. 2018). While EFs encompass inhibition, WM, and CF (Miyake et al. 2000), the interre-
latedness and potential subcomponents of these functions remain underexplored.

Finally, most existing literature is focused on the Global North, even though the
majority of the world’s population resides in the Global South (Makoni et al. 2022). This
unavoidably produces a distorted image of the relationship between bi-/multilingualism
and cognitive processing (Bak and Alladi 2016). Different sociolinguistic contexts are highly
likely to influence this relationship, so research within different environments is crucial.
For example, while countries in the Global North frequently have a single official national
language, several countries in the Global South have multiple official languages. And
while multilingualism may be present in certain areas of the Global North as well, societal
perspectives tend to be different. Monoglossic ideologies are more dominant in the Global
North (especially in Europe), whereas numerous contexts in the Global South embrace
multilingualism as standard practice (Bunk and Wiese 2024).

This study examines the impact of managing multiple languages on domain-general
cognitive control, addressing the aforementioned weaknesses. Instead of comparing dis-
tinct groups of monolinguals and bilinguals, we are operationalising “lingualism” as a
continuum (Wigdorowitz et al. 2022), breaking it down into specific continuous linguistic
variables (Gallo et al. 2021) and evaluating their effect on cognitive performance, while
controlling for background variables, such as SES, intelligence, and age. The term “bilin-
gual” is used to refer to people using two or more languages (or dialects) in their daily
lives (Grosjean 2021). This view of bilingualism places more emphasis on language use
rather than fluency. When the term “multilingual” is used, it is employed to emphasise
that speakers use more than two languages.

Following recent studies, we have included various continuous measures of lin-
guistic experience. These include age of onset of second-language acquisition (L2 AoA)
(Luk et al. 2011; Soveri et al. 2011), balanced proficiency, and language use (Yow and Li 2015),
as well as the relatively new measure of language entropy, which reflects the social diversity
of language use (Gullifer and Titone 2020). High entropy indicates the use of multiple
languages in an integrated fashion, and low entropy indicates compartmentalised use
in distinct contexts or the use of a single language. We also evaluate the frequency and
context of language switching (Jylkkä et al. 2017; Verreyt et al. 2016; Woumans et al. 2019),
in line with the adaptive control hypothesis (ACH) (Green and Abutalebi 2013). The ACH
proposes that there are distinct contexts of bi-/multilingual language use. In the single-
language context, bilinguals use each of their languages in distinct environments. In the
dual-language context, they use their languages within the same environment but with
different interlocutors. In dense code-switching, they use their languages with the same
interlocutor, making frequent switches between languages, even within a sentence. Each
context is assumed to pose unique linguistic and cognitive demands.

To measure the influences of linguistic experience on EF and statistical learning, we
employ an extensive battery of cognitive tests, which includes tasks on CF, WM, inhibition,
as well as a statistical learning paradigm, here a specific instantiation of learning under
uncertainty, termed structure learning (SL) (Wang et al. 2017a, 2017b). We thus hope
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to detect more nuanced effects and pinpoint specific aspects of cognition susceptible to
multiple-language experience.

Finally, we investigate the effects of linguistic experience on cognition in two groups,
one from the UK and one from Singapore. We thus broaden the scope of the existing litera-
ture by including a country from the Global South1 (World Population Review 2023). While
research in Singapore is not as scarce as it is in other countries of the Global South (e.g.,
Hartanto and Yang 2016; Yow and Li 2015), the Singaporean sociolinguistic context remains
underexplored. Ooi et al. (2018) compared bilinguals from Singapore with monolinguals
and bilinguals in Edinburgh, who differed in switching tendencies and L2 AoA. While the
authors focused on specific linguistic experiences to distinguish the groups and did not
employ a binary categorisation, they still used a between-group design. In any case, assess-
ing bilingual (and multilingual) populations from different countries and sociolinguistic
environments is very informative because such investigations help to determine how the
relationship between multilingualism and cognitive processing can vary as a function of
linguistic context.

Singapore is an extremely interesting case, as it is a highly multilingual environment,
with four official languages (English, Mandarin, Malay, Tamil), along with several other
dialects (Ooi et al. 2018). Not all Singaporeans speak or understand all the official languages.
In fact, recent research indicates that over the past decades, there has been a shift to
“English Plus”; that is, Singaporeans mostly speak English, along with one other language,
depending on their ethnic group (Cavallaro and Chin 2014). This is due to language policies:
English has been defined as the main medium of instruction in the educational system,
and the mother tongues are taught as L2s (Dixon 2005). A recent study with young adults
(university students) indicates that most of the participants exhibited bilingual or trilingual
identities (Siemund et al. 2014).

While many Singaporeans may not actively use more than two languages, they are still
exposed to significant linguistic diversity, as speakers of the various ethnic and linguistic
groups live side by side and interact on a daily basis (Leimgruber 2013). Singlish, a
creolised form of English arising due to the language contact between British colonisers
and indigenous Chinese, Malay, and Indian populations, is also frequently used and is part
of the Singaporean identity (Siemund et al. 2014). The use of Singlish further increases the
linguistic variety to which Singaporeans are exposed.

The United Kingdom (UK), on the other hand, is predominantly monolingual, with En-
glish as its official language, reported as the main language by 91.1% (52.6 million) of usual
residents, according to Census 2021 data. The most common main languages other than
English (English or Welsh in Wales) are: Polish (1.1%, 612,000), Romanian (0.8%, 472,000),
Panjabi (0.5%, 291,000), and Urdu (0.5%, 270,000) (Office for National Statistics 2022). Re-
search suggests that there is significantly less linguistic diversity in the UK than in more
multilingual countries (e.g., South Africa) (Wigdorowitz et al. 2022), with the majority of
the population speaking only English (Gough 2023). However, there may be variation
in the linguistic diversity in the UK (and Europe, more generally) in different areas (e.g.,
rural vs. urban). When compared to more rural areas or smaller cities, larger cities such as
London, Brussels, or Berlin may exhibit more linguistic diversity as a result of frequent in-
teraction between groups, even though societal attitudes still privilege the major languages
differently than is the case in Singapore (Bunk and Wiese 2024; Siemund et al. 2014).

In summary, this study sheds light on the relationship between multilingual experience
and cognitive ability, using a variety of tasks and examining two diverse sociolinguistic
contexts. To this effect, the study has two main aims: (i) to assess the differences in the
linguistic profiles of young adults in the UK and Singapore; (ii) to identify whether different
multilingualism experience factors influence cognitive performance and determine whether
the relationship between linguistic experience and cognitive performance is different in
these two contexts (UK and Singapore).
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2. Materials and Methods
2.1. Participants

All participants were university students in either the UK (University of Cambridge,
Cambridge, UK) or Singapore (Nanyang Technological University—NTU, Singapore). The
UK sample included 51 participants (33 females; aged 19–30; M = 24.0; SD = 3.18), and the
Singapore sample comprised 36 participants (27 females; aged 18–27; M = 21.3; SD = 2.15).
The participants received monetary compensation for the participation (GBP 8 per hour of
participation for participants in the UK and SGD 20 for the participants in Singapore).

All participants exhibited normal or corrected-to-normal vision and had no history of
neurological impairment or brain injury.

All participants rated themselves as highly proficient in English2. We did not focus
on a specific language combination, hoping to increase the ecological validity of the study
and make our samples more representative in terms of the language realities of each of the
contexts. We encouraged participants to report all the languages they have used in their
lifespan, but they were asked to indicate proficiency and daily use for each language at the
time of the study. In the UK, the languages other than English reported by the participants
were: Afrikaans, Arabic, Bulgarian, Danish, French, German, Greek, Hokkien, Indonesian,
Italian, Korean, Mandarin, Norwegian, Portuguese, Russian, Serbian, Sinhalese, Spanish,
and isiZulu. In Singapore, the languages, other than English, reported were: Cantonese,
French, German, Hindi, Hokkien, Indonesian, Japanese, Korean, Malay, Mandarin, Tamil,
Telugu, and Teochew. More information on self-reported language proficiency and use in
the different groups is presented in Section 3.1.

2.2. Materials and Procedure
2.2.1. Procedure

Participants were tested individually following a remote guided protocol for super-
vised web-based testing that was developed during the pandemic [for a detailed description
of the protocol, see Leong et al. (2022)]. To ensure high-quality data, we required partici-
pants to have access to a personal computer with Windows 7 or 10 or MAC OS, minimum
8GB RAM, a webcam and microphone, administrator rights to download and install soft-
ware, and a reliable internet connection. We ensured that all the requirements were met
by employing a screening questionnaire administered before accepting individuals for
participation. Furthermore, by using the remote guided testing (RGT) protocol, we could
make sure that participants were concentrating when performing the tasks, as they were
connected via a video call with the experimenter, sharing their screens throughout testing.

The participants also signed a consent form and completed a demographics and
language questionnaire before beginning the testing session. During the testing session,
participants were assessed on a battery of cognitive tasks measuring EF and SL. They also
completed a test of non-verbal intelligence, in which they were required to solve matrix
puzzles of increasing difficulty. A test of verbal intelligence (the Vocabulary subtest from
the Wechsler Abbreviated Scale of Intelligence, 2nd edition (WASI-II); Wechsler (2011)) was
also administered. For the remaining cognitive tests, five pseudo-randomised orders of
tasks were created, and each participant was assigned to one of these. The testing session
lasted for about 2.5 to 3 h in total. Frequent breaks between tasks were planned by the
experimenter, but we also checked with the participants throughout the process to see if
they needed additional breaks.

The study was approved by the University of Cambridge and NTU Singapore re-
view boards.

2.2.2. Background Measures
Demographics

Information on demographics, including gender, age, and SES, was collected using an
extensive demographics questionnaire (Appendix A). For SES, we used a composite score
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ranging from 0 to 1, which comprised measures of parental and maternal education, as
well as annual income. Higher scores indicate higher SES.

Intelligence3

Non-Verbal Intelligence (NVIQ)

To measure NVIQ, we used a seven-item progressive matrices test, inspired by the
Raven’s Standard Progressive Matrices (Raven et al. 2000). The task was hosted on the
iABC website, a Cambridge University in-house platform (I-ABC: A Personalised Learning
Study—Adaptive Brain Lab n.d.). Participants were presented with a 3 × 3 grid of images,
with the final image left blank, and were asked to select which of six options best completed
the grid.

The duration of the task is about 7 min.

Verbal Intelligence (VIQ)

We used the Wechsler Abbreviated Scale of Intelligence, 2nd edition (WASI-II)
(Wechsler 2011) Vocabulary subtest to measure the participants’ VIQ. The Vocabulary
subtest requires participants to define up to 30 words. It assesses participants’ word under-
standing and reflects language development, expressive language skills, and retrieval of
information from long-term memory. Raw scores range from 3 to 59 (for this age group),
but they were transformed based on the age-related standards. The adjusted scores ranged
from 20 to 80.

The duration of the task is about 6 min.
The background demographics for each group are summarised in Tables 1 and 2. The

groups differed significantly in regard to age, SES, NVIQ, and VIQ.

Table 1. Means and standard deviations (SD) for Age, SES, intelligence.

Background Measure
UK Singapore

Mean SD Mean SD t p

Age 24.0 3.18 21.3 2.15 −4.36 <0.0001
SES a 0.59 0.17 0.45 0.17 −3.76 0.0003

NVIQ b 0.65 0.24 0.48 0.24 −3.31 0.001
VIQ c 63.5 10.5 51.7 7.89 −5.68 <0.0001

a SES values could range from 0 to 1. b NVIQ values could range from 0 to 1. c VIQ values could range 20 to 80.

Table 2. Information on gender, dominance in English, and videogame usage.

Background Measure
UK Singapore

N N X2 p

Female 33 (of 51) 27 (of 36) 1.05 0.307
English-dominant (use) 42 (of 51) 31 (of 36) 0.22 0.638

Videogame usage 18 (of 51) 20 (of 36) 3.52 0.061

For this reason, as discussed in the Section 2.3, we did not perform direct comparisons
between the two contexts; that is, we did not add Country as a predictor in our models.
Instead, we employed separate models for each context. Given the great differences in
these demographic measures, as well as other factors outside of our experimental control
(such as the educational system), a difference between countries would not necessarily be
meaningful or easily interpreted. It is the language-related effects present in each country
that are of interest to us, rather than the effect of the country per se.

2.2.3. Language Measures

In our attempt to quantify multilingualism as a multifactorial continuum, we used an
extensive questionnaire, collecting information on several language background variables.
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Specifically, we required participants to provide the following information: languages they
use (or have used), age of acquisition of each language, and hours (and percentage) of daily
use. They also reported the context of acquisition and the context of use, but these data are
not analysed in the present study, as we only focused on continuous variables.

Following the adaptive control hypothesis (ACH) (Green and Abutalebi 2013), we
asked participants to rate how frequently they use their languages in a single-language, a
dual-language, and in a dense code-switching context. The values ranged from 1 (never) to
5 (always). The full language questionnaire, with the exact phrasing used in the questions,
can be found in Appendix B.

Finally, the questionnaire included a section in which participants had to rate their
proficiency in listening, reading, spoken interaction, spoken production, and writing in
each of their languages. To prevent participants from providing mechanical responses, we
did not ask them to simply select a value, but provided them with different descriptions
of proficiency, based on the Common European Framework of Reference for Languages
(CEFR) (Council of Europe 2020). These were then converted to values ranging from 1 to 6.4

Based on this information and following the methods in recent literature regarding the
effects of multilingualism on cognitive control (Li et al. 2021; Yow and Li 2015), we calcu-
lated the following indices: Balanced Proficiency, Balanced Usage, and Entropy. Balanced
Proficiency was calculated as the difference between Proficiency1 (the highest proficiency
score of the two most proficient languages) and Proficiency2 (the lowest proficiency score
of the two languages).5 Balanced Usage was calculated as the difference between Usage1
(the highest usage score of the two most used languages) and Usage2 (the lowest usage
score of the two languages).6 Higher scores in Balanced Proficiency and Balanced Usage
indicated greater differences between the languages, and, therefore, greater “imbalance”,
whereas a value of 0 indicated perfect balance. We focused on the first two languages
to make our results comparable to those from existing studies, but also because all of
our participants mainly used (and were most proficient in) the first two languages they
reported. Nevertheless, as we possessed information on all the languages that each par-
ticipant used, we also calculated a richer metric of linguistic diversity, that is, Language
Entropy (Gullifer et al. 2018; Gullifer and Titone 2020). This is particularly relevant for
the Singapore context, which is highly multilingual, with four official languages (English,
Mandarin, Malay, and Tamil) (Siemund et al. 2014). We used the Language Entropy R
package (Gullifer and Titone 2018) for our evaluation. Unlike the Balanced Usage met-
ric, Language Entropy allowed us to take into account the usage of all of a participant’s
languages. The participants were asked to list all of their languages and the percentage
of use for each one. The sum of the percentages added up to 100%. The percentages
were converted to proportions (e.g., 47% to 0.47), and the following equation was used to
calculate Language Entropy:

H = −
n

∑
i=1

Pilog2(Pi)

Here, n represents the possible languages, and Pi is the proportion of use of languagei.
Language Entropy scores range from 0 to log2(n). Lower entropy scores indicate lower
diversity and the use of predominantly one language in a compartmentalised fashion.
Higher entropy scores indicate higher language diversity and a more balanced use of
languages, as well as language switching. Participants who only used one language had a
Language Entropy score of 0.

2.2.4. EF and SL Measures
Cognitive Flexibility

A total of five tasks were administered to measure CF.

(1) Task-Set switching (TSS)

In Task-set switching (TSS), adapted from Kehagia et al. (2017), participants had to
categorise the stimuli on their screens based on certain rules. For each trial, a digit (1 to
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9) and a letter (A, E, I, U, C, F, T, or X) were presented in the centre of the screen. The
participants were required to switch between two tasks, one concerning the number and
one the letter. The target stimuli in each trial were accompanied by a cue indicating whether
the participants had to focus on the number or the letter. A circular shape (a vertical or
horizontal ellipse) was used as a cue for the letter task. An angular shape (square or rhomb)
was used as a cue for the number task. The stimuli (letter and number) were presented one
above the other. In the letter task, when the circular-shape cue appeared, participants had
to decide whether the presented letter was a vowel or a consonant. For vowels, participants
had to press the left-arrow key on their keyboard, and for consonants, they were to press
the right-arrow key. In the number task, the task with the angular-shaped cue, participants
had to decide whether the number was odd or even. They had to press the left-arrow key
for odd numbers and the right-arrow key for even numbers.

There were four blocks in total, each comprising 49 trials. The first trial of each block
was excluded from the analysis, as it could not be regarded as either a switch or repeat. A
switch trial is defined as a trial in which the participant has to perform a task different from
the one they performed in the previous trial, i.e., switching from performing the number
task to performing the letter task, and the switch was indicated by a change in cue (from
angular to circular). In repeat trials, participants would perform the same task as the one
performed in the previous trial, (e.g., continue performing the number task), so the cue
would not change (remaining angular). The ratio of switch and repeat trials in each block
was 1:2. In each trial, participants initially saw the cue for 300 ms, and then the letter and
number pair appeared on the screen, inside the cue. The cue and stimuli remained on
screen until the participants provided a response or for a maximum 2000 ms. After that, a
fixation cross appeared in the centre of the screen for a variable inter-trial interval of 1700,
1825 or 1950 ms. No feedback was offered after selection. Before the experimental part of
the task began, a very detailed set of instructions was provided to the participants, and they
practiced on five sample trials, during which they were given feedback for their responses.
The task was administered through Gorilla (Gorilla 2022). The duration of the task is about
25 min (see Figure 1).
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The mean accuracy for switch and non-switch trials was calculated for each participant.
The mean reaction time (RT) for switch and non-switch trials was also calculated, after
error trials were removed, along with trials faster than 300 ms, and trials > 2.5 SD from the
mean. The TSS switch cost was then calculated as follows:

1. TSS switch Accuracy cost = mean Accuracy in switch trials − mean Accuracy in
non-switch trials

2. TSS switch RT cost = mean RT in switch trials − mean RT in non-switch trials

(2) Trail Making Test (TMT)

The Trail Making Test (TMT) (Armitage 1946) is a test of visual attention and task
switching. We administered a computerised version of the task hosted on Millisecond-
Inquisit (Inquisit 6 2021). The participants were asked to use the mouse to connect a series
of nodes as quickly and accurately as possible, without interrupting the course of the line.
When the participants made an error, the software automatically interrupted the line and
required them to continue from the last correct node they had reached.

The task consists of two trails, Trail A and Trail B. In Trail A, participants are required
to connect nodes numbered from 1 to 25, in ascending order. In Trail B, numbers alternate
with letters, so participants must switch between the two, going from 1 to A to 2 to B to 3 to
C and so on, up to the number 13. Participants completed two short training trials, one
before Trail A and one before Trail B. The duration of the task is about 3 min (see Figure 2).
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The outcome measures yielded from TMT are latency (response time) and number of
errors for Trail A and Trail B. We used latency scores to calculate the Trail B:A ratio, which
was then entered in our analyses.

(3) Wisconsin Card Sorting Test (WCST)

The Wisconsin Card Sorting Test (WCST) evaluates the ability to adapt to unannounced
rule changes (Grant and Berg 1948). We implemented a computerised version of the task,
using the iABC platform.

The participants are required to sort cards into four different categories. No in-
structions are given regarding the categorisation rules, but participants receive trial-level
feedback after each selection, that is, whether they sorted the card correctly. The four
categories appear as four different cards, each containing spaceships of different shapes
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and colours. These are: one blue spaceship of shape 1, two orange spaceships of shape 2,
three yellow spaceships of shape 3, and four green spaceships of shape 4. The cards that the
participants are asked to sort have similar designs and vary in colour (four options), shape
(four options), and number (four options). In this version of the task, the participants must
sort 60 trials in total. Every 10 trials, the rule changes. Each rule (colour, shape, number) is
tested two times. Participants have a maximum of 5000 ms in which to give a response.
The duration of the task is about 3 min (see Figure 3).
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The number of perseverative errors, that is, erroneous responses showing that the
participant has failed to switch to the new relevant rule, was used in analyses.

(4) Intra-Extra Dimensional Set Shift (IED) task

The Intra-Extra Dimensional Set Shift (IED) task (Robbins et al. 1994) is a test of
rule acquisition and reversal. It is considered an analogue of the WCST, yet with fewer
dimensions (colour and shape). The IED task involves visual discrimination, set formation,
shifting, and flexibility of attention. The task was administered through the CANTAB®

cognitive assessment software (Cambridge Cognition 2019).
The participants are presented with two cards in each trial and are asked to choose one

of the two. They receive feedback after each selection (the words “correct” or “incorrect”
appear on the screen). They must figure out the rule through trial and error. After they
reach the criterion of six correct responses, the stimuli and/or rule changes. In the first
stages, the task only involves simple stimuli consisting of one dimension, for example, two
white lines differing in shape. As the task proceeds, the stimuli become more complex, for
example, white lines and pink shapes; thus, the number of potentially relevant dimensions
increases to two, i.e., shape and colour. The rule shifts are initially intra-dimensional; thus,
for example, the white lines remain the only relevant dimension (colour). Later in the
task, an extra-dimensional shift in the rule occurs, so the pink shapes become the pertinent
dimension (shape). There are nine stages in total, and the extra-dimensional shift occurs in
Stage 8. If the participants fail to reach the criterion of six correct responses after 50 trials,
the task terminates. Explicit instructions are offered through voice-over technology in the
first few trials of the task until the participant is familiarised with the process. The duration
of the task is about 7 min (see Figure 4).

The outcome measures included the total number of errors (which included an ad-
justment of 25 errors per stage, for participants who did not complete all stages) and
the number of errors in Stage 8, which was the extra-dimensional shift stage. Again, for
participants who did not reach Stage 8, 25 errors were assumed. The former is an index of
the participants’ overall efficiency in attempting the test, whereas the latter is a measure of
their ability to shift attentional set.
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(5) Probabilistic Reversal (PR) Learning task

In the Probabilistic Reversal (PR) Learning task (Cools et al. 2002), participants were
presented with two stimuli (two different spaceships), each with a specific probability of
being correct (80% vs. 20%). The participants were asked to select one of the two spaceships,
and they would receive feedback after each selection. The rule defining the most probably
correct stimulus changed at some point without warning, and the probabilities were then
reversed. The participants had to learn and adapt to the new rule. There were 80 trials
in total, 40 of each probabilistic structure. The task was administered through the iABC
platform. The duration of the task is about 4 min (see Figure 5).
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The outcome measure used was the number of perseverative errors participants made
after the probabilities had been switched.

Inhibition

(1) Stroop task

The Stroop task (Stroop 1935) measures the interference of word meaning with the
naming of the colour in which the words are written, as indicated by RT and Accuracy
differences between colour-meaning incongruent and congruent conditions. It is a task of
inhibitory control. We implemented a computerised version of the task requiring keyboard
responding, hosted on the Millisecond-Inquisit platform (Inquisit 6 2021).

Participants see names of colours, written in colour, and are asked to indicate the
colour of the word (and not its meaning) through key press, as quickly and accurately as
they can. Specifically, they were required to press “D” for red, “F” for green, “J” for blue,
and “K” for yellow. The colour of the presented word may or may not match the meaning
(e.g., “RED” printed in red or green). In congruent trials, the meaning of the word and its
colour are the same, whereas in incongruent trials, they are not. The stimuli stay on the
screen until a response is provided, and latencies are measured from the onset of the stimuli.
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If the participants give an incorrect response, an X is shown on the screen for 400 ms, and
then a blank screen appears for 200 ms. If their response is correct, no feedback is given.
There were 180 trials in total, 75% of which were congruent and 25% incongruent. The
different keys and the colours they corresponded to were present on the screen throughout
the task. The duration of the task is about 8 min (see Figure 6).
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Figure 6. Example sequence of the Stroop task.

The mean accuracy for the congruent and incongruent trials was calculated for each
participant. The mean RT for the congruent and incongruent trials was also calculated,
after error trials were removed, along with trials faster than 300 ms, and trials > 2.5 SD,
from the mean. The Stroop cost was then calculated as follows:

1. Stroop Accuracy cost = mean Accuracy in incongruent trials − mean Accuracy in
congruent trials

2. Stroop RT cost = mean RT in incongruent trials − mean RT in congruent trials

Working Memory

Two tasks were used to measure WM, one for visuospatial and one for verbal WM.

(1) Spatial Working Memory (SWM) task

We used the Spatial Working Memory (SWM) task from the CANTAB® (Cambridge,
UK) cognitive assessment battery (Cambridge Cognition 2019; Robbins et al. 1994). This is a
self-ordered EF task requiring the retention and manipulation of visuospatial information.

The participants view some coloured boxes on the screen. They are asked to find all the
yellow tokens and are told there is one in each box, so once they have found it, they need
not revisit that box again. In the first stage, there are 4 boxes, and this number gradually
increases to 6, 8, and 12. The colour and position of the boxes change as the participants
progress through the stages. Explicit instructions are offered through voice-over technology
in the first few trials of the task until the participant is familiarised with the process. The
duration of the task is about 8 min (see Figure 7).

Outcome measures include the number of errors in each stage (selecting the same box
twice in a run, even though it has been found to be empty, and revisiting boxes in which a
token has already been found), as well as strategy. Strategy reflects the number of times a
participant begins a new search pattern at the same box where they started their previous
search. Starting one’s search consistently from the same box demonstrates planned strategy
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rather than random selection. Therefore, a lower score indicates better strategy, with a score
of 1 indicating that the participant always began their searches at the same box.
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(2) Backward Digit Span (BDS) task

We measured executive verbal Working Memory with the Backward Digit Span
(BDS) task (Blackburn and Benton 1957). The stimuli (random numbers from 1 to 9)
were presented auditorily, and participants were asked to repeat them in reverse order.
There were eight stages in total, each with two trials. The participants started at Stage 1 with
two digits and moved to the next stage if they answered at least one trial correctly. In Stage
8, the final stage, participants had to recall nine numbers backwards. The administration
stopped once a participant answered both trials in a stage incorrectly. A practice trial using
two numbers was offered in the beginning. The duration of the task is about 8 min.

The outcome measure was the number of correct responses, ranging from 0 to 16.

Statistical Learning

Statistical learning was measured through a specific instantiation of learning under
uncertainty, termed the structure learning (SL) task.

(1) Structure Learning (SL) task

To measure statistical learning ability, we used a novel methodological framework,
coined Structure Learning (SL) (Karlaftis et al. 2019; Wang et al. 2017a, 2017b). A detailed
description of the SL task can be found in (Wang et al. 2017a, 2017b). Briefly, it is a visual
statistical learning paradigm, in which participants are required to learn complex context-
based probabilistic contingencies and not just to memorise simple frequency statistics.
Participants are exposed to sequences of visual stimuli and are periodically asked to predict
the upcoming symbol, without receiving trial-level feedback (see Figure 8).
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In the version of the task employed in this study, four highly discriminable visual
symbols were used. The sequences of symbols were generated by a 1st-level Markov model,
which means that each new symbol depends on the symbol that appeared immediately
before it. However, at each time point, the generated symbol is determined probabilistically.
For each given symbol, only one of two others are allowed to follow, one with high
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(80%) and one with low (20%) probability. This makes the sequence stochastic and not
deterministic. In other words, symbol A is most likely (80%) followed by symbol B, but
20% of the time, it will be followed by symbol C. The model is summarised below:

Level 1
Target

A B C D

Context

A 0.8 0.2
B 0.8 0.2
C 0.2 0.8
D 0.8 0.2

Participants were familiarised with the process over five practice trials. The duration
of the task is about 55 min.

The outcome measures used for the analyses were a performance index (PI) and a
strategy index [strategy integral curve difference (ICD)]. The former indicates how closely
the participants’ responses reflected the presented probabilistic structure, with higher
scores denoting better performance. The latter indicates the strategy they used. Strategy
ICD values close to 0 reflected a matching strategy, and larger positive values reflected a
maximising strategy. Negative values indicated random performance. Participants employ
a matching strategy when they select symbols by trying to follow the presented structure
as closely as possible, while with the maximisation strategy, participants consistently select
the most probable symbol.

The performance index (PI) was calculated as the difference in performance between
the final two blocks (Blocks 6 and 7) and the initial two blocks (Blocks 1 and 2). This
estimate is preferrable to an average PI score, as it more accurately depicts improvement
in performance and hence, learning. Strategy ICD was computed across the seven blocks.
Details on the computation of PI and strategy ICD can be found in the original papers by
Wang et al. (2017a, 2017b).

2.3. Analysis

In this study, we aimed to assess the influence of multiple multilingual experience
factors, attempting to identify those that best capture the effects of multilingualism on
cognitive performance. We also tried to evaluate cognitive performance in a thorough and
extensive manner, using a variety of tasks of CF, inhibition, WM, and SL.

Multiple linear regression models were used separately for each of the cognitive
measures (described in Section 2.2.4), with the language background variables entered as
predictors (described in Section 2.2.3), following the methods of recent papers employing
a similar approach (Li et al. 2021; Soveri et al. 2011; Yow and Li 2015). We employed
separate models for each context; that is, we did not add Country as a predictor in the
models but conducted distinct analyses for the UK and Singapore. This is because: (1) the
two samples differed significantly regarding most background variables (Age, SES, NVIQ,
VIQ); (2) the UK and Singapore are distinct environments with different education systems,
which may also have dissimilar impacts on EF development. This means that even if a
significant Country effect were to arise, it would not necessarily be meaningful, and it
could have been driven by factors outside our control and experimental design. It is the
language-related effects present in each country that are of interest to us, rather than the
effect of country per se.

Before our main analysis, we performed a data-cleaning procedure on the tasks that
included RT indices. Specifically, in TSS, the first trial of each block was removed of the
analysis, as it could not be evaluated as either a switch or repeat. When calculating RT
costs, we had to remove the error and post-error trials because the type of trial could not be
determined after an error had occurred. We then removed responses faster than 300 ms,
as well as those that were 2.5 SD slower than the mean. For the Stroop task, we excluded
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trials with responses faster than 300 ms, as well as those that were 2.5 SD above the mean
in the incongruent and congruent condition, respectively.

In the UK group, one participant was excluded from the TSS analysis due to too many
excessively slow or fast responses, which together resulted in more than 35% data loss
for that participant. One participant was not included in the TMT analysis because due
to technical issues, their responses were not recorded. We decided to not exclude the
participants completely (i.e., we kept their scores for the tasks they had completed without
issues), as removing them would reduce our sample size and because generalised linear
models (GLM), which were used for our analysis, can handle missing values.

To simplify the interpretation of the analyses and graphs, we switched the signs
in the Accuracy cost measures. Specifically, the Accuracy cost in TSS was calculated as
the difference in accuracy between the switch and non-switch trials (or repeat and pure
trials, for the mixing cost). As participants generally perform worse on switch trials, this
difference (or Accuracy cost) was usually negative, with values closer to (or above) zero,
signifying better performance or more flexibility, and more negative values signifying
worse performance. However, for RT costs, the opposite pattern emerges: higher RTs
(slower responses) are associated with switch trials, so the difference between switch and
non-switch trials is usually positive, with values closer to (or below) zero indicating better
performance, and more positive values indicating worse performance. Therefore, to avoid
confusion, we switched the signs for Accuracy cost so that lower values indicate better
performance for this measure as well. The same logic applies for the Stroop task, this time
regarding the difference between the incongruent and congruent trials.

The multiple regression models for our main analysis were run in R version 4.2.2
(R Core Team 2021), using the glm() (generalised linear models) function. The best com-
bination of factors was determined using the stepAIC() function of the MASS package in
R (Venables and Ripley 2002). The direction of the search was set to “both” (default), so a
forward–backward search was performed, which, at each step, decides whether to include
or exclude a predictor. A predictor that was included/excluded previously can later be
included/excluded, until the lowest Akaike information criterion (AIC) is reached. After
identifying the best structure including the language-related predictors of interest, we then
performed warranted inclusion and gradually added standardised VIQ and NVIQ scores,
age, and SES to the models to determine whether their inclusion would improve the model
fit (χ2, AIC) (Cunnings 2012). Importantly, there were no issues with collinearity between
the background variables and language variables in the models reported. Correlation
matrices, with all background and language measures, are included in Appendix C. The
plots were generated using the ggplot2 package (Wickham 2016).

3. Results
3.1. Language Profiles in the UK and Singapore
3.1.1. Differences between Groups

The mean scores and standard deviations (SDs) of each group regarding the language
background measures of interest are presented in Table 3. Pairwise comparisons revealed
that the groups differed significantly in: (a) L2 AoA (Mann–Whitney U = 178, p < 0.0001),
with the Singapore group acquiring their L2 significantly earlier; (b) Balanced Usage (Mann–
Whitney U = 688, p = 0.046), with the Singapore group being more balanced in the use of
their two languages; (c) Dual-Language context use (Mann–Whitney U = 1205.5, p = 0.011),
with the Singapore group using their languages in a dual-language context more frequently;
(d) Code-Switching (Mann–Whitney U = 1327.5, p = 0.0003), with the Singapore group
using their languages in a dense code-switching context more frequently.
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Table 3. Means and standard deviations (SD) for language background measures.

UK Singapore

Mean SD Mean SD MW U p

Age of L2 Acquisition
(L2 AoA) (in years) 8.47 4.24 2.98 1.95 178 <0.0001

Usage1 0.87 0.15 0.81 0.16
Usage2 0.13 0.15 0.19 0.16

Proficiency1 5.98 0.07 5.97 0.14
Proficiency2 4.24 2.11 4.39 1.11

Balanced Usage
(Usage1 − Usage2) a 0.75 0.30 0.62 0.32 688 0.046

Balanced Proficiency
(Proficiency1 − Proficiency2) b 1.74 2.12 1.57 1.11 1038.5 0.295

Language Entropy c 0.50 0.44 0.64 0.39 1068 0.196
Single-Language d 3.86 1.22 3.89 1.01 883.5 0.756
Dual-Language d 2.67 1.28 3.36 0.90 1205.5 0.011

Dense Code-Switching d 2.31 1.14 3.19 0.86 1327.5 0.0003
a Difference between Usage1 and Usage2. Usage1 indicates use of most frequent language (irrespective of whether
it was L1 or L2 or two L1s, in certain cases). Usage2 indicates use of second most frequent language (irrespective
of whether it was L1 or L2). Usage of each language was rated on a scale from 0 to 1. Higher values in Balanced
Usage indicate a greater difference between languages, thus, more unbalanced profiles. b Difference between
Proficiency1 and Proficiency2. Proficency1 indicates the most proficient language. Proficency2 indicates the second
most proficient language. Values of Proficiency in each language ranged from 0 (no proficiency) to 6. Higher
values in Balanced Proficiency indicate a greater difference between languages, thus more unbalanced profiles.
c Higher Entropy scores indicate higher language diversity and more balanced use of languages. Entropy scores
are based on all of a participants’ languages. d Based on the ACH, participants were asked to rate how frequently
they use their languages in a Single-Language, a Dual-Language, and a Dense Code-Switching context. Values
range from 1 (never) to 5 (always).

3.1.2. Differences between Groups

The different language variables of interest showed different correlations in the two
groups. These can be found in Table 4 for the UK sample and Table 5 for the Singapore sample.

Table 4. Correlation matrix for the language background measures in the UK sample.

1 2 3 4 5 6 7

Balanced Usage –
Language Entropy −0.85 *** –

Balanced Proficiency 0.54 *** −0.68 *** –
L2 AoA 0.11 −0.20 0.45 * –

Single-Language 0.03 0.02 0.02 −0.02 –
Dual-Language −0.34 0.34 −0.32 −0.35 0.05 –
Code-Switching −0.33 0.28 −0.27 −0.35 −0.10 0.80 *** –

Asterisks indicate significance after Holm–Bonferroni correction (Holm 1979). * p < 0.05. *** p < 0.001.

Table 5. Correlation matrix for the language background measures in the SG sample.

1 2 3 4 5 6 7

Balanced Usage –
Language Entropy −0.84 *** –

Balanced Proficiency 0.13 −0.17 –
L2 AoA −0.08 −0.03 0.18 –

Single-Language 0.03 0.14 −0.12 −0.07 –
Dual-Language −0.36 0.35 −0.16 −0.05 −0.24 –
Code-Switching −0.41 0.26 −0.17 0.02 −0.14 0.69 *** –

Asterisks indicate significance (p < 0.05) after Holm–Bonferroni correction. ** p < 0.01. *** p < 0.001.
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UK Sample

Balanced Usage significantly correlated with Language Entropy (r = −0.85, p < 0.001),
even after applying a Holm–Bonferroni correction for multiple comparisons. This is not
unexpected, as both indices reflect balance of use, but the Language Entropy index is a
slightly “richer” metric, as it encompasses all languages an individual uses and not just
two. Both Balanced Usage and Language Entropy significantly correlated with Balanced
Proficiency (r = 0.54 and r = −0.68 respectively, ps < 0.001). Balanced Proficiency also
correlated with L2 AoA (r = −0.85, p = 0.032), with more unbalanced participants indicating
a later L2 AoA. Dual-Language context use significantly correlated with Dense Code-
Switching (r = 0.80, p < 0.001). Finally, Dual-Language context use and Code-Switching
showed high correlations with Balanced Usage, Entropy, and Balanced Proficiency, but
these were not significant after applying the Holm–Bonferroni correction (p > 0.05). All
correlations for the UK sample can be seen in Table 4.

Singapore Sample

Similar to the results for the UK sample, Balanced Usage significantly correlated
with Language Entropy (r = −0.83, p < 0.001) in the Singapore sample as well, even after
applying a Holm–Bonferroni correction for multiple comparisons. Dual-Language context
use significantly correlated with Dense Code-Switching (r = 0.69, p < 0.001). Finally, Dual-
Language context use and Code-Switching showed high correlations with Balanced Usage
and Entropy and Balanced Proficiency, but these were not significant after applying the
Holm–Bonferroni correction (p > 0.05). No other correlations were found to be significant
in the Singapore sample. All correlations for the Singapore sample can be seen in Table 5.

3.2. Language Effects on Cognitive Performance

As some of our language background variables correlated significantly with each
other, potentially leading to issues of multicollinearity (Dormann et al. 2013), we performed
a generalised linear regression, using only specific combinations of factors, to produce
feasible and interpretable models (Kuhn and Johnson 2013; Yow and Li 2015).

The combinations for the UK sample were the following:

i. Language Entropy and L2 AoA;
ii. Balanced Proficiency, Single-Language context use, Code-Switching;
iii. Balanced Proficiency, Single-Language context use, Dual-Language context use.

Language Entropy significantly correlated with Balanced Usage, and as Entropy is a
richer metric, we decided to use it in our models. In addition, Entropy significantly corre-
lated with Balanced Proficiency, so they were not entered in the same models. Correlations
with Dual-Language and Code-Switching did not reach significance after performing the
Holm–Bonferroni correction, but they were still high, so we chose not to include these
indices in the same model. Models including combinations ii and iii did not differ signifi-
cantly, so we will only report models with Code-Switching as a predictor, where relevant.

The combinations for the Singapore sample were the following:

i. Language Entropy, L2 AoA, Balanced Proficiency, Single-Language context use,
Code-Switching;

ii. Language Entropy, L2 AoA, Balanced Proficiency, Single-Language context use,
Dual-Language context use.

Again, as Language Entropy significantly correlated with Balanced Usage, we only
used Entropy in our models. The correlations present in the UK sample did not apply in
the Singapore sample, so we could add all the predictors in one model, with the exception
of Code-Switching and Dual-Language context, which again correlated significantly. We
therefore ran separate models with Code-Switching and Dual-Language Switching, but
again, these yielded virtually identical results, so we will only report models with Code-
Switching as a predictor. As suggested by Ooi et al. (2018), dual-language and dense-code
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switching contexts are difficult to distinguish in the linguistic environment of Singapore, as
it is very likely that individuals engage in both contexts with similar frequency.

As described in Section 2.3, the best combination of predictors was identified using
stepwise model selection with AIC values. Importantly, after entering the language-related
predictors of interest, we performed warranted inclusion of age, SES, NVIQ, and VIQ to
assess whether any language effects remained after controlling for potential confounding
variables. We report the best models for each cognitive measure (lowest AIC). Only models
that were significant and improved the base model (intercept only) are reported. Full model
results can be found in Appendix D.

3.2.1. UK Sample

1. Cognitive Flexibility (CF)

Task-Set Switching (TSS)

Accuracy cost

For the TSS task, the best model for Accuracy cost included VIQ as a predictor
[AIC = −104.46, F(1,48) = 7.84, p = 0.007, R2 = 0.14, R2

adjusted = 0.12], and the VIQ coefficient
was significant (β = 0.003, t = 2870; p = 0.007).

2. Working Memory (WM)

Spatial Working Memory (SWM)

Strategy score

The best model for SWM Strategy included L2 AoA, Age, SES, NVIQ, and VIQ
[AIC = 251.78, F(5,39) = 4.03, p = 0.005, R2 = 0.34, R2

adjusted = 0.26]. The effect of SES
(β = −9.861, t = −3.081; p = 0.004) and VIQ (β = −0.113, t = −2.105; p = 0.042) were
significant, with higher SES and VIQ leading to better Strategy. None of the language
background measures had a significant effect.

However, as there was a correlation between Age and VIQ (which did not remain
significant after correcting for multiple comparisons), we also ran separate models. The
model including VIQ was better than the model including Age [AIC = 252.97, F(4,40) = 4.13,
p = 0.007, R2 = 0.29, R2

adjusted = 0.22]. The remaining outputs were virtually the same as
those for the previously reported model. Both can be found in Appendix D.

3. Structure Learning (SL)

SL Performance Index (PI)

The best model for SL PI improvement included Balanced Proficiency, Code-Switching,
and VIQ [AIC = −68.21, F(5,39) = 6.26, p = 0.001, R2 = 0.29, R2

adjusted = 0.24]. The effects of
Balanced Proficiency and VIQ were significant (β = −0.022, t = 2.635, p = 0.011; β = 0.006,
t = 3.486, p = 0.001). Higher Balanced Proficiency scores indicate less balanced profiles, so
participants with less balanced proficiency showed reduced learning compared to the results
for the more balanced profiles. Higher VIQ also correlated with increased performance.

However, as there were correlations between Balanced Proficiency and VIQ, and
Code-Switching and VIQ (which did not remain significant after correcting for multiple
comparisons), we also ran separate models. The model including VIQ only was the best
[AIC = −64.52, F(1,49) = 9.98, p = 0.003, R2 = 0.17, R2

adjusted = 0.15]. The effect of VIQ was
significant (β = 0.005, t = 3.158, p = 0.003). The outputs for both models can be found in
Appendix D.

The significant models for the UK sample are summarised in Table 6.
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Table 6. Summary of the significant multiple regression models for the UK sample: background
variables as predictors of performance in EF and SL tasks.

Variable TSS
Accuracy Cost

SWM
Strategy

SL
PI

β β β

(Intercept) −0.082 26.193 *** −0.184
L2 AoA – −0.095 –

Balanced Proficiency – – −0.022 *
Code-Switching – – −0.021

VIQ 0.003 ** −0.081 0.006 **
NVIQ – −3.867 –

SES – −9.915 ** –
R2 0.14 0.29 0.29
F 7.84 ** 4.13 ** 6.26 **

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

3.2.2. Singapore Sample

1. Cognitive Flexibility (CF)

Trail Making Test (TMT) B:A Ratio

The best model for TMT B:A Ratio included L2 AoA and Balanced Proficiency
[AIC = 27.80, F(2,33) = 5.90, p = 0.006, R2 = 0.26, R2

adjusted = 0.22]. The effect of Balanced
Proficiency was significant (β = 0.123, t = 2.377, p = 0.002), and the effect of L2 AoA ap-
proached significance (β = 0.059, t = 2.009, p = 0.053). Participants with more balanced
proficiency showed a reduced B:A ratio and thus, greater flexibility. Earlier L2 AoA also
resulted in increased flexibility (but only marginally significantly).

Intra-Extra Dimensional (IED) Set Shift

Total Errors

The best model for Total Errors in the IED task included Code-Switching, Single-
Language context use, and Age [AIC = 349.23, F(3,32) = 3.632, p = 0.023, R2 = 0.25,
R2

adjusted = 0.18]. Only the effect of Code-Switching was significant (β = 15.705, t = 2.753,
p = 0.010). Importantly, our model suggests that individuals who engage in more Code-
Switching make more errors in the IED task (see Figure 9).

After visual observation of the effect of Code-Switching on total errors, we thought
that the effect may be driven by extreme outliers. We therefore conducted the analysis
again, after removing the outliers (i.e., scores that fell into the 1.5 inter-quartile ranges (IQR)
below/above the 1st/3rd quartile). The effect of Code-Switching disappeared. The best
model [AIC =177.47, F(1,29) = 6.024, p = 0.020, R2 = 0.17, R2

adjusted = 0.14], after removing
the outliers, included VIQ only (β = 0.224, t = 2.454, p = 0.02).

Extra-Dimensional Shift Errors

The best model for Extra-Dimensional Shift Errors included Entropy, Age, and NVIQ
[AIC = 238.48, F(3,32) = 8.618, p = 0.0002, R2 = 0.45, R2

adjusted = 0.40]. All coefficients were
found significant: Entropy (β = 11.366, t = 4.090, p = 0.0002), Age (β = 1.362, t = 2.823,
p = 0.008), and NVIQ (β = −11.077, t = −2.432, p = 0.021). Higher Entropy scores led to
more errors, as did higher age. Higher NVIQ led to reduced number of Extra-Dimensional
Shift Errors (see Figure 10).



Languages 2024, 9, 136 19 of 44

Languages 2024, 9, x FOR PEER REVIEW  19  of  46 
 

Total Errors 

The best model  for Total Errors  in  the  IED  task  included Code‐Switching, Single‐

Language context use, and Age [AIC = 349.23, F(3,32) = 3.632, p = 0.023, R2 = 0.25, R2adjusted 

= 0.18]. Only the effect of Code‐Switching was significant (β = 15.705, t = 2.753, p = 0.010). 

Importantly, our model suggests that individuals who engage in more Code‐Switching 

make more errors in the IED task (see Figure 9).   

 

Figure 9. Effect of Code‐Switching on number of Total Errors in the IED task. 

After visual observation of the effect of Code‐Switching on total errors, we thought 

that the effect may be driven by extreme outliers. We therefore conducted the analysis 

again, after removing  the outliers  (i.e., scores  that  fell  into  the 1.5  inter‐quartile ranges 

(IQR) below/above the 1st/3rd quartile). The effect of Code‐Switching disappeared. The 

best model [AIC =177.47, F(1,29) = 6.024, p = 0.020, R2 = 0.17, R2adjusted = 0.14], after removing 

the outliers, included VIQ only (β = 0.224, t = 2.454, p = 0.02). 

Extra‐Dimensional Shift Errors 

The best model for Extra‐Dimensional Shift Errors included Entropy, Age, and NVIQ 

[AIC = 238.48, F(3,32) = 8.618, p = 0.0002, R2 = 0.45, R2adjusted = 0.40]. All coefficients were 

found significant: Entropy (β = 11.366, t = 4.090, p = 0.0002), Age (β = 1.362, t = 2.823, p = 

0.008), and NVIQ (β = −11.077, t = −2.432, p = 0.021). Higher Entropy scores led to more 

errors, as did higher age. Higher NVIQ led to reduced number of Extra‐Dimensional Shift 

Errors (see Figure 10). 

Figure 9. Effect of Code-Switching on number of Total Errors in the IED task.

Languages 2024, 9, x FOR PEER REVIEW  20  of  46 
 

 

Figure 10. The effect of Code‐Switching on number of total errors in the IED task (after removing 

outliers) was not significant. 

2. Inhibition 

Stroop Task 

RT cost 

For the Stroop RT cost, the best model  included Balanced Proficiency, Single‐Lan‐

guage context use, and Code‐Switching [AIC = 428.86, F(3,32) = 6.748, p = 0.001, R2 = 0.39, 

R2adjusted = 0.33]. The effect of Balanced Proficiency was significant (β = 29.57, t = 2.192, p = 

0.036), with an increase in Stroop RT cost for participants with less balanced proficiency. 

The effects of Code‐Switching (β = 43.94, t = 2.505, p = 0.018) and Single‐Language context 

(β = 56.83, t = 3.850, p = 0.0005) were both significant. Interestingly, despite the two types 

of contexts negatively correlating with each other, they both led to increased RT costs in 

the Stroop task. In other words, both engaging in dense code‐switching and using  lan‐

guage(s)  in a single‐language mode seemed  to negatively  impact  inhibitory control, as 

measured by the Stroop task, yet the effect of single‐language use was stronger (see Figure 

11). 
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outliers) was not significant.
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2. Inhibition

Stroop Task

RT cost

For the Stroop RT cost, the best model included Balanced Proficiency, Single-Language
context use, and Code-Switching [AIC = 428.86, F(3,32) = 6.748, p = 0.001, R2 = 0.39,
R2

adjusted = 0.33]. The effect of Balanced Proficiency was significant (β = 29.57, t = 2.192,
p = 0.036), with an increase in Stroop RT cost for participants with less balanced proficiency.
The effects of Code-Switching (β = 43.94, t = 2.505, p = 0.018) and Single-Language context
(β = 56.83, t = 3.850, p = 0.0005) were both significant. Interestingly, despite the two types
of contexts negatively correlating with each other, they both led to increased RT costs in the
Stroop task. In other words, both engaging in dense code-switching and using language(s)
in a single-language mode seemed to negatively impact inhibitory control, as measured by
the Stroop task, yet the effect of single-language use was stronger (see Figure 11).
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Figure 11. Effects of Code-Switching and Single-Language context use on Stroop RT cost.

3. Working Memory (WM)

Spatial Working Memory (SWM)

Total Errors

The best model for SWM total errors included Entropy and SES [AIC = 318.22,
F(2,33) = 3.21, p = 0.053, R2 = 0.16, R2

adjusted = 0.11]. In fact, the model only approached
significance (p = 0.053). The coefficients were not significant, but Entropy negatively corre-
lated with the number of errors; that is, there was a tendency for participants with more
linguistically diverse profiles to make fewer errors, but the effect did not reach significance
(β = −13.456, t = −1.638, p = 0.11).



Languages 2024, 9, 136 21 of 44

Strategy score

The best model for SWM Strategy also included Entropy and SES [AIC = 205.07,
F(2,33) = 6.005, p = 0.006, R2 = 0.27, R2

adjusted = 0.22]. The model was significant, as was
the coefficient for SES (β = 9.473, t = 2.461, p = 0.019), with a higher SES correlating with a
higher Strategy score, that is, worse strategy. The effect of Entropy observed on total errors
was clearer here, as higher Entropy scores almost significantly correlated with better SWM
Strategy (β = −3.426, t = −2.007, p = 0.053).

Verbal Working Memory (VWM)

Backward Digit Span (BDS)

For the BDS task, the best model included Code-Switching, SES, and NVIQ [AIC = 181.81,
F(3,32) = 4.56, p = 0.009, R2 = 0.30, R2

adjusted = 0.23]. Only the intercept for NVIQ was
significant (β = 6.677, t = 3.233, p = 0.003). NVIQ significantly predicted length of backward
digit span.

Structure Learning (SL)

SL Performance Index (PI)

The best model for SL PI in the Singapore sample included Entropy and SES
[AIC = −51.40, F(2,33) = 12.75, p < 0.0001, R2 = 0.44, R2

adjusted = 0.40]. Both factors had
a significant and positive effect on SL PI improvement (Entropy: β = 0.179, t = 3.693,
p = 0.0008; SES: β = 0.437, t = 3.999, p = 0.0003). This means that participants with more
diverse linguistic profiles showed greater improvement in the SL task.

SL Strategy ICD

The model for SL Strategy ICD including Entropy approached significance [AIC = −34.66,
F(1,34) = 3.589, p = 0.067, R2 = 0.10, R2

adjusted = 0.07]. Higher Entropy scores correlated
with higher Strategy ICD scores, reflecting a maximisation strategy (Entropy: β = 0.116,
t = 1.894, p = 0.0667).

The significant models for the Singapore sample are summarised in Table 7.

Table 7. Summary of the significant multiple regression models for the Singapore sample: background
variables as predictors of performance in EF and SL tasks.

Variable TMT B:A
Ratio

IED
Total
Errors

IED
ED

Errors

Stroop
RT Cost

SWM
Strategy BDS SL PI

β β β β β β β

(Intercept) 0.86 *** 0.39 −24.93 * −35.41 11.84 *** 10.66 *** −0.23 ***
L2 AoA 0.06 – – – – – –

Balanced Proficiency 0.12 * – – 29.57 * – – –
Language Entropy – – 11.37 *** – −3.43 – 0.18 ***
Single-Language

Context – – – 56.83 *** – – –

Code-Switching – – – 43.94 * – −0.94 –
VIQ – 0.22 ** – – – – –

NVIQ – – −11.08 * – – 6.68 ** –
SES – – – – 9.47 * −4.50 0.44 ***
Age – – 1.36 ** – – – –
R2 0.26 0.17 0.45 0.39 0.27 0.20 0.44
F 5.90 ** 6.02 * 8.62 ** 6.75 ** 6.01 ** 4.56 ** 12.75 ***

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

4. Discussion

The aim of this study was twofold. First, after operationalising linguistic experience as
a multifactorial continuum, we assessed differences in the linguistic profiles of participants
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from the UK and Singapore. Second, we explored whether these multilingualism experience
factors correlate with cognitive performance in several tasks, and if the relationship varies
in the different contexts.

4.1. Linguistic Profiles

In terms of linguistic profiles, the UK and Singapore participants differed in three
important aspects. The Singapore group acquired their L27 at 2.98 years of age on average,
significantly earlier than did the UK group, which, on average, acquired an L2 at 8.46 years.
Participants from Singapore also exhibited a more balanced language usage, measured as
the difference between an individual’s first and second most used languages (weighted
against each other). Higher scores on the Balanced Usage metric reflect a greater difference
between a participant’s first and second most used languages, hence less balance, and the
average score for UK participants was 0.74 vs. 0.62 for Singapore participants. Finally, the
participants from Singapore reported a higher engagement in dual-language use and dense
code-switching contexts compared to the UK participants.

The above patterns align with the sociolinguistic realities of the UK and Singapore and
the expectations that come with them. The environment of Singapore is highly multilingual,
with the various ethnic and linguistic groups interacting frequently.8 Due to Singapore’s
bilingual education system, people are at least bilingual, but often trilingual or even
multilingual. Studies on the linguistic environment of Singapore suggest that languages
are acquired very early (if not from birth), partly through immersion and partly through
instruction (Leimgruber 2013; Ooi et al. 2018; Siemund et al. 2014). This is in line with our
findings, as most participants reported acquiring two languages from birth, while the rest
report acquiring a second language before the age of 8. Therefore, the significantly earlier L2
AoA for the Singapore group is expected. Notably, the UK group included participants who
were not UK nationals but who resided in the UK to attend university. These individuals
learned English at a young age, usually at the beginning of formal education. If our sample
was confined to UK nationals, the difference in L2 AoA would likely be more pronounced.

The difference in Balanced Usage was also expected. In recent years, English has
become more prominent in Singapore and is endorsed as the main working, educational,
administrative, and governmental language of the country. Still, three additional languages
are listed as official in the Constitution, providing recognition to the three major ethnic
groups (Chinese, Malays, and Indians) (Leimgruber 2013). It is therefore not surprising
that our Singapore sample exhibited more balanced language use (i.e., greater use of a
second language) than our UK sample. Despite our inclusion of non-UK nationals, who
were usually highly proficient English-as-an-L2 speakers, the monolingual environment
of the UK does not provide many occasions in which these speakers could use their L1.
These were restricted to communications with family and friends from home (as many
stated in the questionnaire). Interestingly, while the Singapore sample also had higher
Entropy scores than did the UK sample, the difference between the two groups did not reach
significance. Entropy was calculated based on the active use of all an individual’s languages
(not just the two most used, as in the Balanced Usage measure). This suggests that despite
exposure to diverse languages, Singaporeans might primarily engage in bilingual rather
than multilingual active language use. This is line in with the data from recent literature
(Cavallaro and Chin 2014; Siemund et al. 2014) and underscores the need for more refined
instruments for capturing both active use and passive exposure.

Greater engagement in dual-language and dense code-switching contexts among
Singapore participants is consistent with the linguistic diversity and code-switching preva-
lence in the country (Ong and Zhang 2010; Xie and Cavallaro 2016). In addition, the use
of Singlish is widespread. While our questionnaire did not include a question explicitly
regarding Singlish, Singaporeans could consider speaking Singlish as speaking one lan-
guage, with frequent code-switching. This could further explain the significant difference
between Singapore and the UK participants. In any case, opportunities for code-switching
for bi-/multilinguals residing in the UK are far more limited.
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4.2. Relationship between Language Experience and Cognitive Control in Different Contexts

Our second aim was to assess the relationship between different multilingualism
experience factors (L2 AoA, Balanced Proficiency, Balanced Usage, Language Entropy,
Context of Use) and cognitive performance (on EF and SL tasks), taking the sociolinguistic
context (UK vs. Singapore) into account.

In the UK sample, multilingualism factors had a limited impact on cognitive con-
trol, with significance observed only in the Structure Learning (SL) task. Specifically,
Balanced Proficiency significantly predicted SL Performance Index (PI) improvement. This
means that participants with more balanced proficiency had a greater capacity for learning
the stochastic sequences presented in the SL task. Prior literature supports the link be-
tween bilingual proficiency and statistical learning (Bartolotti et al. 2011; Onnis et al. 2018;
Potter et al. 2017). The interesting element of our SL task is that it involves learning stochas-
tic, that is, non-deterministic, sequences of stimuli, without explicit feedback. Participants
were, in some sense, required to impose order on chaos and to use subtle cues in their input
to form rules. This process is very similar to natural language learning, so it is not surpris-
ing that people who have had extensive experience in mastering two languages perform
better in such a task. The SL task was the only one to show sensitivity to multiple-language
experience in the UK sample, indicating its potential to unveil the so-far undeciphered
relationship between multilingualism and cognition. This task has been shown to cor-
relate with the executive and memory-related networks of the brain (Giorgio et al. 2018;
Karlaftis et al. 2018), and our analysis shows that it may also relate to linguistic experience.
It is therefore a very interesting avenue to explore in future research.9

The image emerging in the Singapore sample is quite different, as more tasks were
influenced by multilingualism-related factors. Out of the EF tasks, two measuring CF,
the Trail Making Test (TMT) and the Intra-Extra Dimensional (IED) Shift task, revealed
significant effects, as did the Stroop task, a task of inhibition, and the SWM task. Significant
effects were found in the SL task as well.

In the TMT, a significant effect of Balanced Proficiency emerged, revealing that in-
dividuals with greater balance between their two most proficient languages exhibited
a reduced B:A ratio, indicative of enhanced flexibility. Literature examining the perfor-
mance of bilinguals on the TMT is limited, but studies usually do not report an effect,
owing to the fact that the switching and visual attention involved in the TMT are arguably
not trained through multiple language control (Filippi et al. 2022; Stasenko et al. 2017;
Torres et al. 2022). Nevertheless, there are a few studies reporting benefits for bilinguals in
different age groups (Bialystok 2010; Estanga et al. 2017), but these usually evaluate the
performance in Trail A and Trail B separately, while the B:A ratio is in fact a more accurate
measure of CF (Kopp 2011). Notably, our study revealed a significant effect on B:A ratio in
the Singapore sample, warranting further exploration to determine generalisability across
bi-/multilingual populations. An intriguing hypothesis would be that people in Singapore
are often literate in more than one language, and that these languages also have distinct
writing systems, thus, these participants may have benefitted from exposure to multiple
scripts, positively impacting the visual attention and switching skills involved in the TMT
(Yin et al. 2022). Research on the effects of biliteracy and different scripts (alphabetic vs.
logographic) on EF is, however, extremely scarce, so this is only speculation.

The effects noted from the results of the IED task lean in a different direction. In the
two measures we evaluated, total number of errors and extra-dimensional errors (the latter
considered a more accurate measure of CF), increased Code-Switching and higher Entropy
(i.e., frequent use of more than two languages) had a negative impact, leading to more errors.
Such an effect is not unprecedented. A number of studies suggest that higher contextual or
everyday language-switching predicts higher switch costs (Jylkkä et al. 2017, 2021), while
other research that found reduced switch costs for bilinguals failed to link them to language-
switching frequency or fluency (Woumans et al. 2019). It could be argued that frequent
switching or increased exposure to multiple languages are not sufficient, in their own
right, to lead to cognitive benefits. In fact, there is evidence that the type of switching
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(mandatory vs. voluntary) poses different cognitive demands (Jevtović et al. 2020), so freely
code-switching between languages, without restrictions (e.g., when both interlocutors
speak both languages), may not require significant cognitive effort, thus not leading to
cognitive benefits. Nevertheless, inspection of the data revealed a few extreme outliers, so
we reran our analysis without them. This made the effect of Code-Switching disappear.
We therefore argue that frequent code-switching is not necessarily detrimental, but that
this may be the case for a few individuals. This calls for a more refined evaluation of
code-switching, as it may not in fact be a uniform practice.

The model for the Stroop RT cost in the Singapore sample was significant, with
Balanced Proficiency, Single-Language use, and Code-Switching all reaching levels of sig-
nificance. Regarding the balanced proficiency effect, greater balance between languages,
equivalent to greater proficiency in L2, led to a reduced Stroop effect. This finding is
interesting, as literature regarding the effects of L2 proficiency on inhibition is highly con-
troversial. In a study on elderly bilinguals, no effect of L2 proficiency was found, either on
a numerical or on a verbal Stroop task (Antón et al. 2016). Neuroimaging evidence suggests
that higher L2 proficiency is associated with more automatic and efficient inhibitory control
on a Simon task (Jia 2022). A positive effect on ERPs has also been reported in a non-verbal
Stroop task, but this effect did not stand up when behavioural measures were considered
(Jiao et al. 2019). Crucially, the two studies most similar to ours, employing comparable
methodology and focusing on young adults in Singapore, show dissimilar results. In
the study using a verbal Stroop task, the same as that used in our study, the effects of
L2 AoA and Balanced Usage were found to be significant. The effect of Balanced Profi-
ciency was in the same direction as that noted in our study but did not reach significance
(Yow and Li 2015). On the other hand, the study using a numerical Stroop task reported no
effect of Balanced Proficiency whatsoever (Li et al. 2021). It is difficult to extract a common
thread from this plethora of results, but a trend that seems to emerge is that Balanced
Proficiency may be more relevant for versions of the Stroop task with a verbal or linguistic
component, rather than for the numerical versions. While not entirely corroborated by the
reported literature, this hypothesis is worth exploring further, as it is highly likely that
the effects may be, to some extent, task-specific. It is interesting, and curious at the same
time, that our results do not fully align with those of other studies assessing very similar
samples. We should, however, bear in mind that all our participants reported quite high
proficiency in both their languages; hence, there was not much variation in their profiles.
In addition, the studies by Li et al. (2021) and Yow and Li (2015) used English–Mandarin
bilinguals only, whereas we did not apply such restrictions to our sample. This allows for
greater variation in the combinations of languages, which may be closer or further from
each other, potentially influencing the magnitude of the effects.

The Single-Language and Dense Code-Switching contexts both led to detrimental
effects in the Stroop task; that is, using one’s languages in a single-language mode, as
well as frequent code-switching, were both correlated with a greater Stroop effect. Both
effects are, in principle, plausible. Operating in a single-language context means that
the need to inhibit one’s other language is not regular, so inhibitory control is not exer-
cised frequently. Similarly, unrestricted code-switching, as mentioned, may not pose great
cognitive demands. Nevertheless, the fact that the effect of both contexts reached signifi-
cance is interesting and poses certain challenges for the adaptive control hypothesis (ACH)
(Green and Abutalebi 2013). Conceptually, these two contexts are opposing, as frequently
operating in single-language mode should equate to infrequent code-switching. While the
two measures negatively correlated in our sample, the correlation did not reach significance.
In addition, careful observation of our data showed that the individuals who drove the
negative effect of code-switching also drove the negative effect of single-language context
use. This hints towards two possible explanations: (1) these two contexts are not as easily
distinguishable as the ACH posits; (2) our operationalisation of the different contexts was
not entirely successful, as participants may not have understood their difference, or may
have been unable to place themselves in the most appropriate context, perhaps influenced
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by their thinking thinking of Singlish. A recent study conducted with young English–
Mandarin bilinguals in Singapore reports results very similar to ours, as Single-Language
and Dual-Language contexts were not found to be diametrically opposed, and Dual-
Language and Dense-Code-Switching contexts correlated highly (Lai and O’Brien 2020).
Evidently, the contexts proposed by the ACH may not be completely distinguishable, espe-
cially in the case of multilingual populations. The authors posit that three clearly distinct
interactional contexts may lack ecological validity in multilingual populations due to the flu-
idity of communicative environments and the general overlap of language experiences. The
ACH may provide a more nuanced approach than a simple comparison of monolinguals
and bilinguals, but a categorical operationalisation of linguistic contexts can still obscure
intricacies that arise in the natural linguistic ecology of bilinguals (and multilinguals).

Moving to SWM Strategy, the best significant model included SES and Entropy, with
Entropy nearly reaching significance (p = 0.053). While there is abundant literature re-
porting a positive relationship between bilingualism and SWM in multiple age groups
(Antón et al. 2019; Blom et al. 2014; Kerrigan et al. 2017; Luo et al. 2013; Morales et al. 2013;
Sullivan et al. 2016), the Entropy measure used here more broadly encompasses linguistic
diversity, taking all of a participant’s languages into account. A study with young multilin-
gual adults from South Africa found that the addition of a third language had detrimental
effects on an extensive set of WM tasks (Cockcroft 2022). This finding is not in line with
our results, but it highlights the importance of taking sociolinguistic context into account
when examining the relationship between language experience and cognitive processing.
Differences in the linguistic realities of Singapore and South Africa may generate differ-
ent cognitive demands, hence training different cognitive aspects. Importantly, the effect
of Entropy in our sample only approached significance, and the Singapore sample was
relatively small.

Finally, in the Singapore group, Entropy reached significance in the SL PI model and
approached significance in the SL Strategy ICD model (p = 0.067). We have already dis-
cussed the importance of the SL task, and our results here further demonstrate its potential
in uncovering the relationship between language and cognitive control. Interestingly, in the
Singapore sample, the model including Entropy rather than Balanced Proficiency reached
significance, unlike the results for the UK sample. This is noteworthy because Entropy
encompasses the use of all a participant’s languages, while Balanced Proficiency accounts
for proficiency in only the two most proficient languages. The role of sociolinguistic context,
therefore, once again becomes apparent, as different multilingual experience factors seem
to be pertinent in different contexts. We do not overestimate the effect of Entropy on SL
Strategy, as it only approached significance. However, we must highlight that different
strategies in the SL task have been associated with the activation of different areas of the
brain (Giorgio et al. 2018; Karlaftis et al. 2018), so it is intriguing to consider that linguistic
diversity could correlate with distinct brain activation patterns.

5. Conclusions

This study resonates with previous work suggesting that cognitive control is influ-
enced by an interplay of multiple language experience factors (Ooi et al. 2018). We add
that this interplay varies as a function of sociolinguistic context. The effects of multi-
lingual experience on cognitive performance were much more evident in our Singapore
sample. This underscores the significance of diversifying language research, particularly
in the Global South, to avoid a skewed representation based primarily on Western sam-
ples (Bak and Alladi 2016; Makoni et al. 2022). In our study, the effects of multilingual
experiences on cognitive performance were very limited in the UK sample, but were quite
dispersed in the Singapore sample. We therefore support the suggestion of Ooi et al. (2018)
that we should be talking of “bilingualisms” (or even “multilingualisms”) rather than sim-
ply bilingualism. Further investigations in Singapore, an exceptionally rich multilingual
environment, may reveal relationships between language and cognition that have so far
been masked.
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Another important insight is the great potential of the Structure Learning (SL) task
for research on the potential influence of multilingualism on cognitive functioning. Im-
portantly, this was the only task in which language-related effects surfaced for both the
UK and Singapore samples. As illustrated, this task relates to both executive function
(EF) and language learning. The prospect of SL acting as an intermediary link should be
further investigated.

Of course, our study includes certain limitations. Firstly, our UK and Singapore
samples were not restricted in terms of their linguistic profiles. This means that our partici-
pants varied in the combinations of languages they spoke, which led to less homogeneous
samples. While this increased ecological validity, future studies targeting specific lin-
guistic profiles could eliminate the confounding effects of typological divergence in the
participants’ languages.

Secondly, the cross-sectional design, though mitigated by controlling for confounding
variables, such as SES, age, and intelligence, remains subject to inherent limitations and
restricts causal inferences (Laine and Lehtonen 2018). Finally, between-group differences in
background variables (e.g., SES, age, intelligence) restricted our ability to perform direct
comparisons between Singapore and the UK. It would be interesting to directly compare
participants from the UK and Singapore, but there were too many parameters which were
out of our control to allow for the performance of this comparison.

Finally, challenges with the operationalisation of the adaptive control hypothesis
(ACH) and the measurement of multilingual experience highlight areas for refinement,
such as the use of more detailed and continuous measures like the Contextual Linguistic
Profile Questionnaire (CLiP-Q), which takes both individual and contextual diversity into
account (Wigdorowitz et al. 2020).
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Appendix A Demographics Questionnaire

1. When is your birthday (Enter x if you would prefer not to say)?

Enter in the form of: dd-mm-yyyy

2. What is your gender?

Male
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Female
Other
Prefer not to say

3. Are you now married, widowed, divorced, separated or never married?

Married
Widowed
Divorced
Separated
Never Married
Prefer not to say

4. Have you ever been diagnosed with any neurological or psychiatric disorders or
suffered from brain injury?

Yes: Please give details (optional)
No
Prefer not to say

5. Are you colour-blind?

Yes
No
Prefer not to say

6. Describe your handedness:

Right-handed
Left-handed
Ambidextrous
Prefer not to say

7. Choose one or more ethnicities that you consider yourself to be:

White or White American/British
Black or African American/British
Central/South American
Asian: Indian
Asian: Pakistani
Asian: Chinese
Asian: Malay
Asian: Other
Other (please specify)
Prefer not to say

8. In which country do you currently reside?
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8. In which country do you currently reside? 

 Country 

Pick a country 
 
9. In which country were you born? 

 Country 
Pick a country 

 
10. In which country did you spend the majority of your youth? 

 Country 
Pick a country 

 
11. Have you ever lived in a country other than the one in which you were born? 

Yes 
No 
Prefer not to say 

 
12. What is your current Residence Status 

Permanent Resident 
Non-permanent resident? 
Citizen  
Prefer not to say 

 
13. What is your Postcode/District? (Enter x if you would prefer not to say) 

(Enter your postcode with no spaces; e.g., cb28pq) 
 
14. What is the highest level of education you have completed? 

Primary school 
Secondary school 
University Degree (BA or equivalent) 
Master's degree 
Doctoral degree 
Professional degree (JD, MD) 
Prefer not to say 

 
15. Which statement best describes your current employment status? 

Working (paid employee) 
Working (self-employed) 
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11. Have you ever lived in a country other than the one in which you were born?

Yes
No
Prefer not to say

12. What is your current Residence Status

Permanent Resident
Non-permanent resident?
Citizen
Prefer not to say

13. What is your Postcode/District? (Enter x if you would prefer not to say)

(Enter your postcode with no spaces; e.g., cb28pq)

14. What is the highest level of education you have completed?

Primary school
Secondary school
University Degree (BA or equivalent)
Master’s degree
Doctoral degree
Professional degree (JD, MD)
Prefer not to say

15. Which statement best describes your current employment status?

Working (paid employee)
Working (self-employed)
Student
Homemaker
Not working (temporary layoff from a job)
Not working (looking for work)
Not working (retired)
Not working (unable to work)
Not working (other; please specify)
Prefer not to say

16. Indicate your best guess as to your household’s earnings in the last year (before tax)?
(*in Singapore $ and UK £ - depending on the sample)

Less than 10,000
10,000 to 19,999
20,000 to 29,999
30,000 to 39,999
40,000 to 49,999
50,000 to 59,999
60,000 to 69,999
70,000 to 79,999
80,000 to 89,999
90,000 to 99,999
100,000 to 149,999
150,000 or more
I don’t know
Prefer not to say

17. What type of dwelling does your family live in? (*Singapore Question)
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1- and 2-room flat
3-room flat
4-room flat
5-room and executive flat
Condominium or other Apartments
Landed property
Other
Prefer not to say

18. Is your family dwelling privately owned or rented? (*UK question)

Privately owned
Rented
Prefer not to say

19. Follow-up: What type of dwelling does your family reside in?

Detached
Semi-detached
Flat
Prefer not to say

20. How many children are there in your household?

1
2
3
4
5 or more
Prefer not to say

21. Which members compose your household? (select all that apply)

Parent(s)
Child(ren)
Grandparent(s)
Domestic Helper
Prefer not to say

22. What is the highest level of school your father has completed or the highest degree
they have received?

Primary school
Secondary school
University Degree (BA or equivalent)
Master’s degree
Doctoral degree
Professional degree (JD, MD)
Prefer not to say

23. What is the highest level of school your mother has completed or the highest degree
they have received?

Primary school
Secondary school
University Degree (BA or equivalent)
Master’s degree
Doctoral degree
Professional degree (JD, MD)
Prefer not to say

24. Which statement best describes your father’s current employment status?
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Working (paid employee)
Working (self-employed)
Homemaker
Not working (temporary layoff from a job)
Not working (looking for job)
Not working (retired)
Not working (unable to work)
Not working (other; please specify)
Prefer not to say

25. Which statement best describes your mother’s current employment status?

Working (paid employee)
Working (self-employed)
Homemaker
Not working (temporary layoff from a job)
Not working (looking for job)
Not working (retired)
Not working (unable to work)
Not working (other; please specify)
Prefer not to say

26. Do you play video games (of any sort)?

Yes
No
Prefer not to say

Appendix B Language Questionnaire & CEFR Grid

Q1. Participant ID

Q2. Please answer the following questions for all the languages/dialects you know (native
and non-native)

• Which language(s)
• Age of Acquisition (For languages you speak from birth, put 0).
• Context of Acquisition (e.g., home, environment, school).
• Hours of current Usage (in a day) (0–18 h).
• Percentage of current Usage (in a day). Put 0% if you do not use this particular

language (your answers should add up to 100%).
• Context of Usage (e.g., home, education, community, work, language school, etc.).

Q3. How often are the following statements true for your everyday use of language?

• I only/mainly use one of the languages I know.
Never � Rarely � Sometimes � Most of the time � Always �

• I use the languages I know in distinct contexts (e.g., Language 1 at home, Language 2
at school/work, etc.).
Never � Rarely � Sometimes � Most of the time � Always �

• I switch between the languages I know even within the same context (e.g., home or
school), but with different interlocutors.
Never � Rarely � Sometimes � Most of the time � Always �

• I switch between the languages I know even within the same conversation/interaction
(with the same interlocutor).
Never � Rarely � Sometimes � Most of the time � Always �

Q4. Select the number of non-native languages/dialects that you know.

Q5. You will now be presented with some statements describing levels of proficiency in a
language. Please write each of your additional languages/dialects under the box that most
accurately describes your competence in that language/dialect.
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Appendix C. Correlation Matrices 

Appendix C.1. Correlation Matrices of Background Measures   

UK Sample 

  1  2  3  4 

Age  –       

SES  0.06  –     

NVIQ  −0.009  0.12  –   

VIQ  −0.34 *  −0.01  −0.03  – 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

After applying a Holm–Bonferroni correction for multiple comparisons, the correla‐

tion between Age and VIQ was no longer significant. Still, for extra caution, we ran sepa‐

rate models as well.   

Singapore Sample 

  1  2  3  4 

Age  –       

SES  0.11  –     

NVIQ  −0.05  0.30  –   

VIQ  0.08  0.08  0.11  – 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

Appendix C.2. Correlation Matrices of Background and Language Measures 

UK Sample 

  Balanced Usage   

Balanced Usage  –   

Age  −0.23   

SES  0.02   

NVIQ  0.05   

VIQ  0.38 **  p = 0.006 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

Appendix C Correlation Matrices

Appendix C.1 Correlation Matrices of Background Measures

UK Sample

1 2 3 4

Age –
SES 0.06 –

NVIQ −0.009 0.12 –
VIQ −0.34 * −0.01 −0.03 –

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

After applying a Holm–Bonferroni correction for multiple comparisons, the correlation
between Age and VIQ was no longer significant. Still, for extra caution, we ran separate
models as well.

Singapore Sample

1 2 3 4

Age –
SES 0.11 –

NVIQ −0.05 0.30 –
VIQ 0.08 0.08 0.11 –

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Appendix C.2 Correlation Matrices of Background and Language Measures

UK Sample

Balanced Usage

Balanced Usage –
Age −0.23
SES 0.02

NVIQ 0.05
VIQ 0.38 ** p = 0.006

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The correlation between Balanced Usage and VIQ remained significant even after ap-
plying a Holm–Bonferroni correction. In any case, none of the significant models included
a combination of the two variables, so it did not affect our analysis.
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Language Entropy

Language Entropy –
Age 0.44 ** p = 0.001
SES −0.10

NVIQ -0.10
VIQ −0.39 ** p = 0.005

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The correlations remained significant even after applying a Holm–Bonferroni correc-
tion for multiple comparisons. We therefore ran separate models for these measures and
reported the best one, where relevant.

Balanced Proficiency

Balanced Proficiency –
Age −0.23
SES 0.02

NVIQ 0.05
VIQ 0.38 ** p = 0.006

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The correlation between Age and Balanced Proficiency remained significant even
after applying a Holm–Bonferroni correction. In any case, none of the significant models
included a combination of the two variables, so it did not affect our analysis.

The correlation between VIQ and Balanced Proficiency was not significant after ap-
plying a Holm–Bonferroni correction. Still, for extra caution, we ran separate models, in
addition to the combined model for these variables.

L2 AoA

L2 AoA –
Age −0.03
SES −0.006

NVIQ 0.19
VIQ 0.08

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Single-Language

Single-Language –
Age 0.20
SES 0.20

NVIQ −0.15
VIQ 0.23

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Dual-Language

Dual-Language –
Age 0.14
SES 0.06

NVIQ −0.18
VIQ −0.17

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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Code-Switching

Code-Switching –
Age 0.04
SES 0.02

NVIQ −0.08
VIQ −0.31 * p = 0.030

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The correlation between VIQ and Code-Switching was not significant after applying
a Holm–Bonferroni correction for multiple comparisons. Still, for extra caution, we ran
separate models, in addition to the combined model for these variables.

Singapore Sample

Balanced Usage

Balanced Usage –
Age 0.07
SES 0.06

NVIQ −0.38 * p = 0.021
VIQ 0.0006

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

After applying a Holm–Bonferroni correction for multiple comparisons, the correla-
tion between NVIQ and Balanced Usage was no longer significant. In any case, none of
the significant models included a combination of the two variables, so it did not affect
our analysis.

Language Entropy

Language Entropy –
Age −0.05
SES −0.16

NVIQ 0.30
VIQ −0.16

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Balanced Proficiency

Balanced Proficiency –
Age −0.13
SES −0.04

NVIQ −0.03
VIQ 0.43 ** p = 0.009

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The correlation between VIQ and Balanced Proficiency remained significant even
after applying a Holm–Bonferroni correction for multiple comparisons. We therefore ran
separate models for these measures and report the best one, where relevant.

L2 AoA

L2 AoA –
Age 0.31
SES −0.06

NVIQ 0.02
VIQ 0.44 ** p = 0.007

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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The correlation between VIQ and L2 AoA remained significant even after applying a
Holm–Bonferroni correction for multiple comparisons. Nevertheless, none of the significant
models included a combination of the two variables, so the correlation did not affect
our analysis.

Single-Language

Single-Language –
Age −0.13
SES 0.04

NVIQ −0.15
VIQ −0.10

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Dual-Language

Dual-Language –
Age 0.006
SES −0.07

NVIQ 0.20
VIQ −0.16

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Code-Switching

Code-Switching –
Age −0.04
SES 0.003

NVIQ 0.01
VIQ −0.13

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Appendix D Regression Models

UK Sample
Task-Set Switching (TSS) Accuracy

AIC BIC
−104.46 −98.72

Estimate β S.E. t p

TSS Acc
cost

(Intercept) −0.082 0.071 −1.154 0.254

VIQ 0.003 0.001 2.800 0.007 **

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(1,48) = 7.84, p = 0.007,
R2 = 0.14, R2

adjusted = 0.12.

Spatial Working Memory (SWM) Strategy

AIC BIC
251.78 264.42
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Estimate β S.E. t p

SWM
Strategy

(Intercept) 35.933 7.030 5.111 <0.0001 ***

L2_AoA −0.095 0.132 −0.716 0.478

Age −0.317 0.187 −1.693 0.098

SES −9.861 3.201 −3.081 0.004 **

NVIQ −3.896 2.362 −1.649 0.107

VIQ −0.113 0.054 −2.105 0.042

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(5,39) = 4.03, p = 0.005, R2 = 0.34,
R2

adjusted = 0.26.

Due to a correlation between Age and VIQ (which did not remain significant after
multiple-comparison correction), we also ran separate models. The model with VIQ
(excluding Age) was better, so we report it below:

AIC BIC
252.97 263.81

Estimate β S.E. t p

SWM
Strategy

(Intercept) 26.193 4.133 6.338 <0.0001 ***

L2_AoA −0.095 0.136 −0.703 0.486

SES −9.915 3.275 −3.028 0.004 **

NVIQ −3.867 2.417 −1.600 0.117

VIQ −0.081 0.052 −1.578 0.122

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(4,40) = 4.13, p = 0.007, R2 = 0.29,
R2

adjusted = 0.22.

Structure Learning (SL) Performance Index (PI)

AIC BIC
−68.21 −58.55

Estimate β S.E. t p

SL PI
improvement

(Intercept) −0.184 0.122 −1.510 0.138

Balanced
Proficiency

−0.022 0.008 −2.635 0.011 *

Code-
Switching

−0.021 0.016 −1.324 0.192

VIQ 0.006 0.002 3.486 0.001 **

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(5,39) = 6.26, p = 0.001, R2 = 0.29,
R2

adjusted = 0.24.

Due to correlations between Balanced Proficiency and VIQ, and Code-Switching
and VIQ (which did not remain significant after multiple-comparison correction), we
alsoran separate models. The model with VIQ (excluding Balanced Proficiency and Code-
Switching) was better, so we report it below:

AIC BIC
−64.52 −58.72
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Estimate β S.E. t p

SL PI
improvement

(Intercept) −0.225 0.107 −2.108 0.040 *

VIQ 0.005 0.002 3.158 0.003 **

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(1,49) = 9.975, p = 0.003, R2 = 0.17,
R2

adjusted = 0.15.

Singapore Sample
Trail Making Test (TMT) Ratio

AIC BIC
27.80 34.14

Estimate β S.E. t p

TMT B:A
Ratio

(Intercept) 0.855 0.121 7.051 <0.0001 ***

L2 AoA 0.059 0.029 2.009 0.053

Balanced
Proficiency

0.123 0.052 2.377 0.0234 *

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(2,33) = 5.90, p = 0.006, R2 = 0.26,
R2

adjusted = 0.22.

Intra-Extra Dimensional (IED) Set Shift—Total Errors (with Outliers Included)

AIC BIC
349.23 357.15

Estimate β S.E. t p

IED Total
Errors

(incl. outliers)

(Intercept) −138.007 59.271 −2.328 0.026 *

Single-
Language

8.232 4.882 1.686 0.102

Code-
Switching

15.705 5.704 2.753 0.010 **

Age 3.627 2.267 1.600 .119

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(3,32) = 3.632, p = 0.023, R2 = 0.25,
R2

adjusted = 0.18.

(Without Outliers)

AIC BIC
177.47 181.78

Estimate β S.E. t p

IED
Total Errors

(w/o Outliers)

(Intercept) 0.392 4.835 0.081 0.936

VIQ 0.224 0.091 2.454 0.020 **

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(1,29) = 6.024, p = 0.020, R2 = 0.17,
R2

adjusted = 0.14.

Intra-Extra Dimensional (IED) Set Shift—Extra-Dimensional Shift Errors

AIC BIC
238.48 246.40
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Estimate β S.E. t p

IED Extra-
Dimensional
Shift Errors

(Intercept) −24.925 10.748 −2.319 0.027 *

Language
Entropy

11.366 2.779 4.090 0.0002 ***

Age 1.362 0.483 2.823 0.008 **

NVIQ −11.077 4.5547 −2.432 0.021 *

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(3,32) = 8.618, p = 0.0002, R2 = 0.45,
R2

adjusted = 0.40.

Stroop Task Reaction Time (RT)

AIC BIC
428.86 436.78

Estimate β S.E. t p

Stroop RT
Cost

(Intercept) −35.414 94.63 −2.086 0.045

Balanced
Proficiency

29.570 13.49 2.192 0.036 *

Single-
Language

56.830 14.76 3.850 0.0005 ***

Code-
Switching

43.940 17.54 2.505 0.018 *

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(3,32) = 6.748, p = 0.001, R2 = 0.39,
R2

adjusted = 0.33.

Spatial Working Memory (SWM) Total Errors

AIC BIC
318.22 324.55

Estimate β S.E. t p

SWM Errors

(Intercept) 26.592 10.987 2.420 0.021 *

Language
Entropy

−13.456 8.216 −1.638 0.111

SES 30.415 18.528 1.642 0.110

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(2,33) = 3.21, p = 0.053, R2 = 0.16,
R2

adjusted = 0.11.

Spatial Working Memory (SWM) Strategy

AIC BIC
205.07 211.41

Estimate β S.E. t p

SWM
Strategy

(Intercept) 11.843 2.282 5.189 <0.0001 ***

Language
Entropy

−3.426 1.707 −2.007 0.0530

SES 9.473 3.849 2.461 0.0192 *

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(2,33) = 6.005, p = 0.006, R2 = 0.27,
R2

adjusted = 0.22.
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Backward Digit Span (BDS)

AIC BIC
181.81 189.72

Estimate β S.E. t p

BDS

(Intercept) 10.656 2.264 4.708 <0.0001 ***

Code-
Switching

−0.944 0.551 −1.714 0.096

SES −4.495 2.842 −1.582 0.124

NVIQ 6.677 2.066 3.233 0.003 **

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(3,32) = 4.56, p = 0.009, R2 = 0.30,
R2

adjusted = 0.23.

Structure Learning (SL) Performance Index (PI)

AIC BIC
−51.40 −45.07

Estimate β S.E. t p

SL PI im-
provement

(Intercept) −0.234 0.065 −3.614 <0.001 ***

Language
Entropy

0.179 0.048 3.693 0.0008 ***

SES 0.437 0.109 3.999 0.0003 ***

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(2,33) = 12.75, p < 0.0001, R2 = 0.44,
R2

adjusted = 0.40.

Structure Learning (SL) Strategy ICD

AIC BIC
−34.66 −29.90

Estimate β S.E. t p

SL Strategy
ICD

(Intercept) −0.236 0.046 −5.154 <0.0001 ***

Language
Entropy

0.116 0.061 1.894 0.0667

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. F(1,34) = 3.589, p = 0.067, R2 = 0.10,
R2

adjusted = 0.07.

Notes
1 The “Global South” is a term that has been traditionally used to refer to economically disadvantaged nations. A broader definition

incorporates countries that have historically frequently faced colonisation by Global North countries (especially European), have
unstable democracies, and/or are in the process of industrialising (Finance Center for South-South Cooperation n.d.; World
Population Review 2023). We acknowledge that our sample of young University students in Singapore comprise a relatively
privileged group compared to other areas of the Global South.

2 Mean self-rated English Proficiency for the UK sample was 5.9 out of 6, and for the Singapore sample was 5.82 out of 6 (the
groups did not differ significantly t = 1.12, p = 0.27).

3 We tried to use well-validated tasks, whose psychometric properties have been thoroughly analysed, and which have been used
as indicators of general intelligence in multiple areas of the world (Kaufman et al. 2006; Raven 2000). However, we recognise that
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“culture-free” measures of intelligence suffer certain weaknesses (Gonthier 2022; Walker et al. 2009), and this should be taken into
account in future studies.

4 For participants who listed a single language, a score of 0 was added to L2 Proficiency in order to calculate Balanced Proficiency
score (i.e., difference in proficiency between most proficient and second most proficient language).

5 As most of our participants reported 6 out of 6 in L1 Proficiency, the Balanced Proficiency score mostly depends on L2 Proficiency.
6 For the calculation of Balanced Usage, we only included the first two most used languages, weighted against each other. For

example, if a participant reported 60% use of English, 30% use of French, and 10% use of German, we excluded German and
converted the percentages for English and French to 67% and 33% respectively. The outputs of the models, however, were not
different when we used unconverted percentages (unweighted Balanced Usage).

7 L2 here can technically be another L1 for participants that acquired both languages at birth.
8 As mentioned earlier, this interaction may also be present in the UK (and Europe more generally) in big centres with greater

cultural and linguistic variation, but societal attitudes still privilege the major languages (Bunk and Wiese 2024).
9 We must point out that there was an apparent correlation between Balanced Proficiency and VIQ in the UK sample, but this

stopped being significant when we corrected for multiple comparisons. Still, when we ran separate models, the model with VIQ
was better than the one with Balanced Proficiency.
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