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Abstract: We introduce a novel stochastically correlated two-factor (i.e., bivariate) diffusion process
under the square-root format, for which we analytically obtain the corresponding solutions for the
conditional moment-generating functions and conditional characteristic functions. Such solutions
recover verbatim those of the uncorrelated case which encompasses a range of processes similar to
those produced by a bivariate square-root process in which entries are correlated in the standard
way, that is, via a constant correlation coefficient. Note that closed-form solutions for the conditional
characteristic and moment-generating functions are not available for the latter. We focus on the
financial scenario of obtaining closed-form expressions for the exact price of a zero-coupon bond and
Asian option prices using a Fourier cosine series method.

Keywords: stochastic correlation; CIR model; conditional characteristic functions; stochastic differential
equation; financial modeling; option pricing; COS method

1. Introduction
1.1. Motivation

Scalar square-root diffusion processes, also called CIR processes, due to Cox et al. (1986),
have two properties that are important in applications in finance: (i) they ensure mean
reversion of the state variables towards a long-run level and (ii) unlike the Vasicek (1977)
model, they do not take negative values. The importance of such properties clearly repli-
cates in the multi-dimensional scenario, especially when correlation is allowed among the
the process entries.

In turn, stochastic models found in finance, especially in interest rate markets, usually
assume uncorrelated state variables that contradict both intuition and historical data. In
fact, considerable difficulties arise in the pricing procedures when entering correlation
in the model, even when numerical solutions of the corresponding partial differential
equations are given by finite difference or finite element methods. Concerning this matter,
we quote Brigo and Mercurio (2006): “requiring dW1dW2 = ρdt with ρ ̸= 0 in the two-factor
CIR model would indeed destroy analytical tractability: It would no longer be possible to compute
bond prices and rates analytically starting from the short rate factors.” On the other hand, as
argued by Brigo and Mercurio (2006), whenever the correlation plays a more relevant role
or when higher precision is needed in the pricing procedure, we need to resort to models
that allow for more realistic patterns.

Developing an analytical solution for the moment-generating and characteristic func-
tions of a two-factor CIR model with stochastic correlation is essential for accurately pricing
financial derivatives and managing risk in markets where interest rates are governed by two
stochastic interdependent factors. This requires solving a partial differential equation that
accounts for the dynamic interplay between the two factors under a stochastic correlation.

Int. J. Financial Stud. 2024, 12, 31. https://doi.org/10.3390/ijfs12020031 https://www.mdpi.com/journal/ijfs

https://doi.org/10.3390/ijfs12020031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijfs
https://www.mdpi.com
https://orcid.org/0000-0001-9763-6395
https://orcid.org/0000-0002-3096-3129
https://orcid.org/0000-0001-6920-2397
https://doi.org/10.3390/ijfs12020031
https://www.mdpi.com/journal/ijfs
https://www.mdpi.com/article/10.3390/ijfs12020031?type=check_update&version=1


Int. J. Financial Stud. 2024, 12, 31 2 of 24

Achieving this would significantly enhance our comprehension of and capacity to forecast
the behavior of financial instruments in a more integrated and realistic manner, reflecting
the inherent linkages in interest rate markets.

The central research question guiding this study is how to incorporate stochastic
correlation into a bivariate square-root model, thereby improving the pricing of interest
rate derivatives influenced by the two interdependent stochastic factors.

1.2. Contribution

In this study, we present a bi-dimensional (two-factor) mean reversion stochastically
correlated process in which entries are produced by two concatenated CIR-type models
(Cox et al. 1986). This process is affine according to Duffie and Singleton (2003).

We obtained the closed-form solution—of the exponential format—of the conditional
moment-generating function and the conditional characteristic function of the density
function of the integral of the process governed by the model as well as those of the process
itself at the final time T. The key point that permitted us to apply the above transforms to
the problem of pricing derivatives, particularly with respect to fixed income markets, was
that the integral of the process—and not the process per se—was an adequate mathematical
object to achieve the results.

It is noteworthy that by setting our stochastic correlation to zero, we reduced our
model to a pair of scalar uncorrelated square-root diffusions. We believe that the proposed
model encompasses a range of processes similar to those produced by a bivariate CIR
process in which entries are correlated in the standard way, that is, exhibiting a constant
correlation coefficient, with the advantage of exhibiting an analytical solution.

We applied our results in the context of interest rate financial markets where the inter-
est rate process stems from the two-factor stochastically correlated CIR model presented in
this paper. We obtained closed-form expressions for the price of a zero-coupon bond and,
in the following, for the price of the IDI option, an Asian option that commonly appears in
Brazilian fixed-income markets. For the latter case, we used the fast and accurate pricing
method based on the Fourier series expansions proposed by Fang and Oosterlee (2008) and
applied it to interest rate options as in da Silva et al. (2019).

Via numerical simulations, we showed the (good) behavior of the two-factor process
in the face of a certain stochastic correlation condition, under stringent circumstances.
Moreover, a result concerning the effect of the sensitivity parameter (ϵ) on the stochastic cor-
relation coefficient (ϱ), and ultimately, the possibility of emulating bivariate CIR processes
with a constant correlation coefficient, was unveiled. Focusing on the financial scenario, we
analyzed the impact of the correlation parameter (ρ) on the conditional probability density
functions associated with the interest rate process—which in turn stems from the two-factor
process—again obtaining a good confirmation (non-negativity). In addition, option price
curves were obtained and parameterized by ρ. We also used real financial market data for
the model design. Finally, to address model performance, we calibrated the model to the
term structure of interest rates. We compared the uncorrelated CIR model, stochastically
correlated model, and stochastically correlated model with jumps.

The mathematical tools we relied on were the Feynman–Kac formula explained by
Oksendal (2007), the separation of variables approach found in Duffie (2001), the Riccati
equations (Reid 1972) with known explicit solutions with step-by-step solutions shown by
Bouziane (2008), and the series expansions proposed by Fang and Oosterlee (2008).

1.3. Paper Outline

The remainder of this paper is organized as follows: Related works are presented
in Section 2. Section 3 presents the stochastically correlated two-factor affine model and
its probability background. In Section 4, we derive the expressions for the conditional
moment-generating function and conditional characteristic function associated with the
model. Section 5 addresses applications to finance, and Section 6 presents the numerical
results. Finally, Section 7 concludes the paper.
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2. Literature Review

Stochastic correlation models in financial markets have garnered significant interest
for their implications for risk management and derivative pricing. L. Márkus and Kumar
(2019) established the main required properties such as (i) taking values between (−1, 1),
(ii) varying around a constant mean value in the mean-reverting sense, and (iii) having
a probability mass tending to zero at the boundaries. L. Márkus and Kumar (2019) com-
pared five stochastic correlation models typically found in the literature. Kim and Jo (2014)
proposed a correlated stochastic process, highlighting its inherent scale invariance and con-
vergence properties, which are crucial for financial data analysis. Concurrently, Leippold
and Trojani (2010)’s research on matrix affine jump diffusions introduces a comprehensive
framework for assessing multivariate financial risks, such as jumps in the correlation struc-
ture, emphasizing the versatility and depth of their approach. Teng et al. (2017) further
contribute to this discourse by scrutinizing stochastic correlations within the context of
European-style Quanto options pricing, revealing the limitations of the traditional constant
correlation assumptions.

Complementing these studies, Márkus and Kumar (2021) investigated the stochas-
tic correlation between asset prices by employing innovative goodness-of-fit procedures
that underscore the complexities of asset price interdependence. This body of work
collectively advances our understanding of stochastic correlations, offering nuanced in-
sights into their practical applications and theoretical underpinnings in financial modeling.
Luo and Seco (2017) compared forecasting performance using a set of models to evaluate
stochastic correlation. In the realm of fixed-income products, Stehlíková (2020) finds a par-
tial differential equation solution for bond prices using a series expansion for the stochastic
correlation term.

More recently, Kim et al. (2023) developed a multi-asset option pricing model applied
to the Quanto option. The authors assumed that asset processes follow a normal tempered
stable process with the Ornstein–Uhlenbeck stochastic correlation process. The authors
demonstrated that the model is justified by empirical results.

3. The Model

Let (Ω,F ,Q, {Ft}t∈[0,T]) be a filtered space, where {Ft}t∈[0,T] is a filtration, Q is a
probability measure, and the adapted processes Z1 = (Z1(t), t ∈ [0, T]) and Z2 = (Z2(t),
t ∈ [0, T]) are independent standard Brownian Motions under Q (see, e.g., Protter (2005)).

We introduce a pair of square-root diffusions (Cox et al. 1986), in which the underlying
variables are stochastically correlated, as follows. For t ∈ [0, T] and the initial conditions
x1(0) = x̄1 and x2(0) = x̄2,

dx1(t) = κ1(θ1 − x1(t))dt + σ1

√
x1(t)dW1(t) (1)

and

dx2(t) = κ2(θ2 − x2(t))dt + σ2

√
(1 − ρ2)

√
x2(t)dW2(t), (2)

where x̄1 > 0 and x̄2 > 0 are prescribed random variables and ρ ∈ [0, 1) is the correlation
coefficient. We have that κi, θi, and σi are positive real numbers. Each stochastic process
xi(t) is pulled to a mean level θi at a rate κi with volatility parameter σi. We have that
W1 and W2 are stochastically correlated processes, where W1(t) = Z1(t) is a Brownian
Motion and

W2(t) =
∫ t

0
ϱ(t)dZ1(t) +

∫ t

0

√
1 − ϱ(t)2dZ2(t) (3)

is an Itô process (Oksendal 2007).
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Hence, according to Musiela and Rutkowski (1998),

d[W1, W1](t) = d[W2, W2](t) = dt, and d[W1, W2](t) = ϱ(t)dt. (4)

The correlation ϱ is specified via the adapted stochastic process

ϱ(t) =
ρϵ√

x1(t)x2(t)(1 − ρ2)
, (5)

ρ ∈ (−1, 1). Note that if ρ = 0, then W2 = Z2 and we recover the standard uncorrelated case.
If we change the specification of ϱ to a constant, say, ϱ = ρ, then W2 = ρZ1 +

√
1 − ρ2)Z2

and E[W2
2 (t)] = t, and so W2 becomes a standard Brownian Motion.

The dynamics in (1) and (2) also reads[
dx1(t)
dx2(t)

]
=

[
κ1(θ1 − x1(t))
κ2(θ2 − x2(t))

]
dt + σ̄(x1(t), x2(t))

[
dZ1(t)
dZ2(t)

]
, (6)

where

σ̄(x1(t), x2(t)) =
[

σ1
√

x1(t) 0
0 σ2

√
(1 − ρ2)

√
x2(t)

][
1 0

ϱ(t)
√

1 − (ϱ(t))2

]
(7)

and Z1 and Z2 are independent standard Brownian Motions, as defined at the beginning
of the section. Using specification (5) and some algebraic manipulation, it follows that
σ̄(x1(t), x2(t))σ̄(x1(t), x2(t))′ is of affine form (Duffie 2001).

In the above equations, κi are the speeds of adjustment, θi are the long-term means, σi
are the volatility factors, ρ is a correlation parameter, and ϵ is a sensitivity factor—a useful
parameter as we shall see in Section 6. Equations (1) and (2) produce the Feller processes
known in the context of finance as the CIR processes due to Cox et al. (1986). According
to Bertini and Passalacqua (2008), the following condition must hold to ensure a strong
solution for (1) and (2) and to avoid the possibility of negative values of x1 and x2.

2κ1θ1

σ2
1

+
2κ2θ2

σ2
2 (1 − ρ2)

≥ 1. (8)

Moreover, we rely on having

ϱ(t)2 ≤ 1 a.s. ∀ t ∈ [0, T]. (9)

To conform with the condition above, we benefit from the existence of the sensitivity
parameter ϵ, setting it as follows.

ϵ ∈
[

0, (1 − ρ2)
√

min(x̄1, θ1)
√

min(x̄2, θ2)

]
. (10)

The comprehensive numerical results in Section 6 assert that the above condition
suffices to ensure the good behavior of the correlation process and that the bivariate process
x covers a broad range of CIR-type correlated processes.

4. Underpinning Results

The following theorems consider the stochastically correlated two-factor process
x(t) = (x1(t), x2(t))′, as given by the system in Equation (6), relying on the fact that this
process is affine in the sense of Duffie (2001). Here, the symbol ’ stands for the transpose.

The moment-generating function (MGF) of a random variable X is defined as the
expected value of the exponential function of tX, where t is a real-valued parameter
(Ross 2007). Mathematically, the MGF MX(t) of a random variable X is given by:

MX(t) = E(etX)
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The MGF provides a systematic way to compute the moments of a distribution, such as the
mean, variance, skewness, and kurtosis, by taking derivatives of the MGF with respect to t
and evaluating them at t = 0.

Conversely, the characteristic function of a random variable X is defined as the ex-
pected value of the complex exponential function of itX, where i is the imaginary unit and
t is a real-valued parameter. Mathematically, the characteristic function ϕX(t) of a random
variable X is given by:

ϕX(t) = E(eitX)

Similar to MGF, the characteristic function provides a way to fully describe the distri-
bution of a random variable. It contains all information about the distribution, allowing for
the computation of moments and other statistical properties.

The conditional moment-generating function and the characteristic function of Theorem 1
are applied in Section 5 to calculate the price of a zero-coupon bond and the price of an
interest rate option, namely, the IDI option. In both cases, the interest rate is given by the
additive process η1x1(t) + η2x2(t), which stems from the two-factor process x.

Theorem 1. The closed-form solution of the conditional characteristic function (resp. conditional
moment-generating function) associated with the [t, T]-integral of the two-factor process x with
coefficient η = (η1, η2)

′ ∈ R2, namely,
∫ T

t η′x(s)ds (resp. −
∫ T

t η′x(s)ds), is given by

f̂ (x(t), t, u) = E[eiu
∫ T

t η′x(s)ds | x(t)] = eα(t,T)−β1(t,T)x1(t)−β2(t,T)x2(t) (11)

(
resp. G(x(t), t, u) = E[e−u

∫ T
t η′x(s)ds | x(t)] = eα(t,T)−β1(t,T)x1(t)−β2(t,T)x2(t)

)
(12)

where

α(t, T) =
∫ T

t
−κ1θ1β1(t, T)− κ2θ2β2(t, T) + ρϵσ1σ2β1(t, T)β2(t, T)ds, (13)

β j(t, T) =
2ηj

(
eγj(T−t) − 1

)
(γj + κj)e

γj(T−t) + (γj − κj)
, j = 1, 2, (14)

with

γ1 =
√

κ2
1 + 2iσ1uη1 and γ2 =

√
κ2

2 + 2iσ2(1 − ρ2)uη2 (15)

(
resp. γ1 =

√
κ2

1 + 2σ1uη1 and γ2 =
√

κ2
2 + 2σ2(1 − ρ2)uη2

)
. (16)

Proof. We address the proof of the moment-generating function. The proof for the charac-
teristic function case closely follows. Therefore, invoking Duffie and Singleton (2003), the
moment-generating function of a multifactor equation—say, an m-dimensional, stochastic
differential equation (SDE) of the form

dx(t) = µ(x(t))dt + σ(x(t))dW(t),

—has an exponential affine solution if the above coefficients are of the form

µ(x) = K0 + K1x and (σ(x)σ(x)′)ij = H0ij + H1ijx,

where K0, K1, H0ij, and H1ij have adequate dimensions and do not depend on x.
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The above SDE captures (1) and (2), setting m = 2, K0 = [κ1θ1; κ2θ2]
′, K1 =

[
−κ1 0

0 −κ2

]
,

and

(σ(x)σ(x)′) =
[

σ2
1 x1 ρσ1σ2ϵ

ρσ1σ2ϵ σ2
2 (1 − ρ2)x2

]
,

that is, the coefficients are of the affine form. To obtain det(σ(x)σ(x)′) > 0, we require

x1x2(1 − ρ2) > ρ2ϵ2. (17)

Applying the Feynman–Kac formula (Oksendal 2007) to the second expression of (12),
we obtain

∂G(x(t),t,u)
∂t +∇G(x(t), t, u)′(K0 + K1x) + ∑i,j

∂G(x(t),t,u)
∂xi∂xj

(H0ij + H1ijx) = uη′xG(x(t), t, u). (18)

Therefore, invoking the last expression of Equation (11), we have:

∂α

∂t
+ x1(t)

∂β1

∂t
+ x2(t)

∂β2

∂t
+ [κ1(θ1 − x1(t))]β1 + [κ2(θ2 − x2(t))]β2 +

1
2

σ2
1 x1(t)β2

1

+
1
2

σ2
2 x2(t)β2

2(1 − ρ2) + ρσ1σ2β1β2ϵ = uη′x(t).

Gathering the terms in x1 and x2 gives us

∂α

∂t
= −κ1θ1β1 − κ2θ2β2 − ρσ1σ2β1β2ϵ (19)

and the Riccati differential equations

∂β1

∂t
= −κ1β1 −

σ2
1

2
β2

1 + η1 (20)

and
∂β2

∂t
= −κ2β2 −

σ2
2

2
β2

2(1 − ρ2) + η2. (21)

Now, for terminal conditions, we have

α(T, T) = β1(T, T) = β2(T, T) = 0

After some algebraic manipulation, we obtain that the solutions of Riccati
Equations (20) and (21) are given by Equations (13) and (14).

The characteristic function version of the following theorem is applied in Section 6 to
calculate the probability density function of the additive process η1x1(t) + η2x2(t).

Theorem 2. The closed-form solution of the conditional characteristic function associated with the
two-factor process x at time T with coefficient η = (η1, η2)

′ ∈ R2, namely, η′xT , is given by

f̂ (x(t), t, u) = E[eiuη′x(T) | x(t)] = e(α(t,T)−β1(t,T)x1(t)−β2(t,T)x2(t)), (22)

where

α(t, T) =
∫ T

t
−κ1θ1β1(s)− κ2θ2β2(s) + ρϵσ1σ2β1(s)β2(s)ds, (23)

β1(t, T) =
−2κ1e−κ1tiuη

σ2
1 (e

−κ1t − 1)iuη − 2κ1
, (24)

β2(t, T) =
−2κ2e−κ2tiuη

σ2
2 (1 − ρ2)(e−κ2t − 1)iuη − 2κ2

. (25)
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Proof. Following the same steps as those in the proof of Theorem 1, we obtain the Riccati
differential equations

∂β1

∂t
= −κ1β1 −

σ2
1

2
β2

1 (26)

and
∂β2

∂t
= −κ2β2 −

σ2
2

2
β2

2(1 − ρ2), (27)

and are given the terminal conditions

α(T, T) = 0, and β1(T, T) = iuη1, and β2(T, T) = iuη2,

Again, after some algebraic manipulation, we obtain Equations (24) and (25), respec-
tively, satisfying Riccati Equations (26) and (27).

A comprehensive step-by-step solution to the partial differential equations of the affine
jump diffusion models can be found in Bouziane (2008).

Remark 1. It is worth mentioning that the two-factor uncorrelated CIR process given by

dx1(t) = κx(θ1 − x1(t))dt + σ1

√
x1(t)dW1(t), (28)

dx2(t) = κr(θ2 − x2(t))dt + σ2

√
x2(t)dW2(t), (29)

introduced in the famous paper by Cox et al. (1986), in which a closed-form solution is shown in the
work of Brigo and Mercurio (2006), is a particular case of the analytical solution (11) with ρ = 0.

5. Applications to Finance: Fixed-Income Markets with Decomposed Nominal Rates

We consider a financial interest rate market underpinned by the short rate stochastic
process R = (R(t), t ∈ [0, T]) which stems from the two-factor stochastically correlated
(affine) CIR model given by (1)–(4), namely,

R(t) = η1x1(t) + η2x2(t), (30)

(η1, η2)
′ ∈ R2. We assume that Q is a risk-neutral probability measure.

Recalling the Fisher effect (Fisher 1930) in economics, we have that the nominal
short rate R(t) can be decomposed into the real interest rate and inflation expectation.
This conforms to our setting, simply particularizing (η1, η2) = (1, 1) and denoting, for
convenience, the real interest rate and inflation by x1(t) and x2(t), respectively.

Under this framework, and relying on Theorem 1, we obtain the price of a bond and
an interest rate option as follows:

Bond Pricing

The zero-coupon bond is an interest rate derivative that pays 1 at the expiration date T
and no other payment before T. Relying on the seminal work of Harrison and Pliska (1981),
the no-arbitrage price at time t ∈ [0, T] of the zero-coupon bond expiring at T is given by

D(t, T) = EQ
[
e−

∫ T
t R(s)ds|R(t)

]
. (31)

Proposition 1. Consider an interest rate market with nominal short rate given by Equation (30),
(η1, η2) = (1, 1), where the real yield x1(t) and inflation premium x2(t) follow the stochastically
correlated square-root diffusion model (1)–(4). Then, the dynamic of the no-arbitrage price of the
bond at time interval [0, T] is given by
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dD(t, T) = D(t, T)
{
[η1x1(t) + η2x2(t)]dt

+
[
σ1β1(t, T)dWQ

1 (t) + σ2(1 − ρ2)β2(t, T)dWQ
2 (t)

]}
. (32)

Proof. Using the moment-generating function version of Theorem 1, we have that the
solution to Equation (31) is of the exponential affine form, as given by the right side of (11)
with (η1, η2) = (1, 1). Relying on Ito’s formula and after some algebraic manipulation, it
follows that

dD(t, T) = D(t, T)
[
−αt(t, T) + β′

1(t, T)x1(t) + β′
2(t, T)x2(t)

− κ1(θ1 − x1(t))β1(t, T)− κ2(θ2 − x2(t))β2(t, T)+

+
1
2

σ2
1 x1(t)β1(t, T)2 +

1
2

σ2
2 (1 − ρ2)x2(t)β2(t, T)2 + σ1σ2ρϵβ1(t, T)β2(t, T)

]
dt+

+ D(t, T)
[
σ1β1(t, T)dWQ

1 (t) + σ2(1 − ρ2)β2(t, T)dWQ
2 (t)

]
. (33)

Using Equations (20) and (21) for β′
1(t, T) and β′

2(t, T), respectively, we obtain
Equation (32).

We may notice that the drift that ultimately appears in dynamic (32) is the short rate
process itself, as it should be.

As stated by Brigo and Mercurio (2006) and shown in the work of Jamshidian and
Zhu (1997), for example, a two-factor model can explain up to 91% of the variations in the
yield curve. Such a model is required to provide a realistic evolution of the zero-coupon
bond curve. Therefore, we contribute to this by sophisticating the modeling of the term
structure of interest rates via the additive two-factor model given by (1)–(4), (30), and
(η1, η2) = (1, 1). We also provide a leak concerning the statement made by Brigo and
Mercurio (2006), in which the authors say that “requiring dW1dW2 = ρdt with ρ ̸= 0 in the
two-factor CIR model would indeed destroy analytical tractability: It would no longer be possible
to analytically compute bond prices and rates starting from the short rate factors.” Indeed, we
have shown that bond prices are analytically tractable under the two-factor correlated
CIR model.

6. Numerical Results

In this section, we discuss some issues of the stochastically correlated square-root
diffusion process given by Equations (1)–(4). In Section 6.1, we study the model’s behavior
in the face of the condition given by the inequality (9)—which involves the stochastic
correlation coefficient ϱ. In Section 6.2, we study the variation in the stochastic correlation
coefficient ϱ in time and in probability space for fixed parameters ρ and ε. In the following,
we let these parameters vary.

Using the Fourier series, in Section 6.3, we present the conditional probability density
function of the integral of the short-rate process R—the weighted sum of the components
of the two-factor CIR model (1)–(4) (see Equation (30)). The conditional probability density
function is provided equally for R at terminal date T. This conditional density function
is the cornerstone of obtaining the price of financial derivative contracts. We shall see
that, in the long run, the correlation parameter ρ plays a sensitive role in the volatility of
the zero-coupon bond and, therefore, on the prices of the interest rate derivatives. In the
following section, we obtain the price of the IDI option (Section 6.4). Section 6.4 presents
the calibration results for the term structure of interest rates.

Nonetheless, the important stochastic correlation analysis will be carried out varying
ϵ in the whole range given by (34). Our dynamic is as given by Equations (1)–(4) with
κ1 = 0.15, κ2 = 0.15, θ1 = 0.05, θ2 = 0.05, σ1 = 0.015, σ2 = 0.025, T − t = 1 year, and initial
condition x1(0) = 0.05 and x2(0) = 0.05. We also set η1 = η2 = 1. We benefit from the
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existence of the sensitivity parameter ϵ, setting it equal to the maximal value of the range
given by (10), that is,

ϵ = (1 − ρ2)
√

min(x1(0), θ1)
√

min(x2(0), θ2). (34)

This maximum value is maintained throughout this section. Nonetheless, the impor-
tant stochastic correlation analysis will be carried out varying ϵ in the whole range given
by (10).

Figure 1 illustrates a bivariate sample path evolving according to (1)–(4), with ρ = 0.5
and ϵ as above.
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Figure 1. Stochastically correlated paths generated randomly according to the model (1)–(4) with
parameters κ1 = 0.15, κ2 = 0.15, θ1 = 0.05, θ2 = 0.05, σ1 = 0.015, σ2 = 0.025, ρ = 0.5, T − t = 1 year,
and initial condition x1(0) = 0.05 and x2(0) = 0.05.

6.1. The Stochastic Correlation Condition (9) Is Mild, at Least at a Certain Niche

To verify whether the stochastic correlation coefficient ϱ(t) performs according to
condition (9), we produced 100.000 path simulations of the stochastically correlated CIR
process with time discretization ∆t = 0.01 years and a period of one year, using the simple
Euler scheme as given in the work of Glasserman (2004).

First, we used the work of Almeida and Vicente (2009), who provided us with pa-
rameter estimates based on real-world financial data. The authors used a three-factor
uncorrelated CIR process to model zero-coupon bonds. We tested all three possible combi-
nations of the parameters of the referenced paper, as shown in Table 1, and did not find a
rate of over 0.01% concerning pointwise violations of the stochastic correlation condition (9)
throughout [t, T], for the various values of ρ.

Table 1. Parameter values. Source: Almeida and Vicente (2009).

Parameter κ1 κ2 κ3 θ1 θ2 θ3 σ1 σ2 σ3

Value 11.1819 0.0003 2.0311 0.0291 4.7485 0.043 0.1507 0.0518 0.1228
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To test a more restrictive scenario, we set κ1 = κ2 = 0.75, θ1 = θ2 = 0.01, and
σ1 = σ2 = 0.03 for x1(t) = θ1 and x2(t) = θ2. In agreement with condition (8), the setup
above forces the model to violate the stochastic correlation condition. However, in the
beginning, no violation of this condition occurred for a variety of values of ρ. Violations
begin to appear when σ1,2 reaches 0.05. Nevertheless, the rate did not exceed 9% for a
reasonably broad range of σ1,2, typically up to 0.1. Hence, this shows that condition (9) is in
fact mild, at least for ϵ prescribed as in (34). In addition, we noticed that the violation rate
decreased with the correlation parameter ρ.

6.2. Hand-Conducting the Model via ϵ

Figure 2 shows a sample path ϱ(t, ω) of the stochastic correlation coefficient given by
(5). It suggests that ϱ has little variation over time. In addition, from the simulations, we
could infer that, for any ρ, 99% of the sample paths lay within the range of ±0.10.
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Figure 2. The instantaneous stochastic correlation coefficient path. The random sample of ϱ(t, ω)

evolves according to the model (1)–(4) with parameters κ1 = 0.15, κ2 = 0.15, θ1 = 0.05, θ2 = 0.05,
σ1 = 0.015, σ2 = 0.025, ρ = 0.5, T − t = 1 year, and initial condition x1(0) = 0.05 and x2(0) = 0.05.

Therefore, we may infer that our model can be a good approximation of correlated
CIR models with a constant correlation coefficient, with the advantage of exhibiting an
analytical pricing solution.

Now, for each ρ ∈ [−1,+1] and for ϵ prescribed by the relation (34), Figure 3 exhibits
the mean value over time of a corresponding sample path ϱ of the stochastic correlation
coefficient. Since ϱ does not vary much either in time or in space, we shall rename this
mean value as the operation point of the stochastic correlation coefficient, for each ρ.

As shown in Figure 3, this operation point covers the interval [−0.5,+0.5], which
is not very broad but still a reasonable range as we vary ρ. Alternatively, we can depart
from the maximum value of ϵ given by inequality (34) to an arbitrary value in a certain
confidence interval, so we can hand-conduct the curve of operation points to another more
desired range.
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Figure 3. The stochastic correlation mean for each ρ. The means of ϱ(t, ω) for varying ρ were
calculated from n = 1000 paths where the model evolves according to (1)–(4) with parameters
κ1 = 0.15, κ2 = 0.15, θ1 = 0.05, θ2 = 0.05, σ1 = 0.015, σ2 = 0.025, T − t = 1 year, and initial condition
x1(0) = 0.05 and x2(0) = 0.05.

Figure 4 shows the stochastic correlation mean surface for ϵ varying in the range
given by (10), and Figure 5 shows the corresponding standard deviation. These two graphs
illustrate some important findings. Firstly, for every ρ in (−1, 1), the following hold:

• The correlation mean vanishes when ϵ → 0 (see Figure 4).
• The correlation stochasticity also vanishes when ϵ → 0 (see Figure 5).

Figure 4. The stochastic correlation mean for each ρ and ϵ calculated from n = 1000 paths where
the model evolves according to (1)–(4) with parameters κ1 = 0.15, κ2 = 0.15, θ1 = 0.05, θ2 = 0.05,
σ1 = 0.015, σ2 = 0.025, T − t = 1 year, and initial condition x1(0) = 0.05 and x2(0) = 0.05.
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In addition, the model recasts the specific case of an uncorrelated CIR model when
either ρ = 0 or ϵ = 0, for any given parameter values.

Second, while not near the degenerated zero value, ϵ indeed introduces a correla-
tion between the entries of the process generated by the model, whose intensity varies
considerably as we hand-conduct it within the range established in (10).

These qualities underscore the versatility of the model in capturing a range of behav-
iors, including scenarios that are essential for theoretical analysis and practical applications.

Figure 5. The stochastic correlation standard deviation for each ρ and ϵ calculated from n = 1000
paths where the model evolves according to (1)–(4) with parameters κ1 = 0.15, κ2 = 0.15, θ1 = 0.05,
θ2 = 0.05, σ1 = 0.015, σ2 = 0.025, T − t = 1 year, and initial condition x1(0) = 0.05 and x2(0) = 0.05.

6.3. The Conditional Probability Density Functions of the Short Rate Process

We use the COS method (Fang and Oosterlee 2008) to recover the conditional proba-
bility density function of the [t, T]-integral of the short rate process R. The approximation
of f is given by the following Fourier cosine series

f (x) ≈ A0

2
+

N

∑
j=1

Aj cos
(

jπ
x − a
b − a

)
, x ∈ [a, b], (35)

for a given N. An analogous result for a discretely distributed random variable can be
found in the work of da Silva et al. (2023). If f , with a domain in R, is a probability density
function of X, then:

aj ≈
2

b − a
ℜ
(

exp
(
−ijπ

a
b − a

)
f̂
(

jπ
b − a

))
≜ Aj, (36)

where f̂ is the characteristic function of X, that is,

f̂ (u) =
∫
R

exp(ixu) f (x)dx, (37)
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which approximates

∫ b

a
exp(ixu) f (x)dx. (38)

We set N = 100 to truncate this series. The parameters Aj are given by Equation (36),
which in turn is calculated using the characteristic function (12). The same procedure holds
to obtain the conditional probability density function of the short-rate process itself at
terminal date T, in which case the characteristic function is given by Equation (22).

Setting η1 = 0 (η2 = 0), Figures 6 and 7 show the marginal density function for x1(t)
(x2(t)).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Annual Interest rate

0

2

4

6

8

10

12

P
D

F

Probability Density Function

 = 0

 = 0.20

 = 0.40

 = 0.60

 = 0.80

Figure 6. The probability density functions of x1(t) using the Fourier cosine series given by (35),
where the characteristic function is given by the result of Theorem 2.

Figure 8 shows the (x1(t), x2(t))-conditional probability density functions of R(T)
versus the correlation parameter ρ. With a high correlation, the thin right tail of the
conditional probability density functions of R(T) could imply lower probabilities of extreme
positive returns and, hence, potentially less attractive derivative pricing under certain
market conditions. Conversely, a lower correlation leads to a more positively skewed
density, suggesting that the pricing of risk might increase for assets that are more sensitive
to idiosyncratic shocks. Such a nuanced understanding of the correlation dynamics between
stochastic factors is essential for investors and risk managers alike, as it influences the
valuation of bonds and derivatives and the construction of hedging strategies.

It can also be inferred from the figure that the stochastically correlated CIR processes
preclude negative values concerning the additive process R, thus preserving the properties
of the single- and two-factor uncorrelated square-root diffusion processes (see Figure 9 for
the surface of the density over time). Table 2 confirms this statement by presenting the
cumulative area under the probability density function for different values of ρ.
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Figure 7. The probability density functions of x2(t) using the Fourier cosine series given by (35),
where the characteristic function is given by the result of Theorem 2.
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Figure 8. The ρ-parameterized density functions of R(T) using the Fourier cosine series given by (35),
where the characteristic function is given by the result of Theorem 2.

Table 2. Numerical integral value of probability density function.

ρ 0 0.2 0.4 0.6 0.8 0.91 0.93 0.95 0.97 0.99

I 1.0002 1.0005 1.0005 1.0003 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Figure 10, in turn, shows the (x1(t), x2(t))-conditional probability density functions
of the [t, T]-integral of R versus ρ. The lower the correlation parameter, the higher the
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dispersion. It is worth noting how sensitive the shape of this density function is as we
vary the parameter ρ, which suggests that the correlation is a subject matter that cannot
be neglected. The probability density function above is used to calculate the price of the
IDI option.

Figure 9. The evolution of the density function of R(T) over time using the Fourier cosine series
given by Equation (35), where the characteristic function is given by the result of Theorem 2.
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Figure 10. The ρ-parameterized density functions of
∫ T

t R(s)ds using the Fourier cosine series given
by Equation (35), where the characteristic function is given by the result of Theorem 1.
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6.4. Pricing the IDI Option

As stated by Fang and Oosterlee (2008), the price of a European option can be approxi-
mated as

C(t, T) ≈ A0B0

2
+

n

∑
j=1

AjBj, (39)

where the Ak coefficients are given by (36) and

Bj =
∫ b

a
g(x) cos

(
jπ

x − a
b − a

)
dx, for j = 0, 1, ..., n, (40)

where g(x) refers to the payoff of the financial contract.
We assume an interest rate market with an underlying probability space (Ω,F,Q)

equipped with a filtration F = (Ft)t∈[0,T], where Q is the risk-neutral measure.
An overnight interest rate r̄ is the average interbank rate of a one-day period, calculated

daily and expressed as the effective rate per annum. According to da Silva et al. (2016), the
Interbank Deposit Rate Index (IDI) accumulates discretely, according to

y(T) = y(t)
t−1

∏
j=1

(1 + r̄j)
1

252 , (41)

where j denotes the end of the day and r̄j assigns the corresponding overnight rate.
If we approximate the continuous overnight rate by the instantaneous continuously

compounding interest rate, that is, r(t) = ln(1 + r̄(t)), the index can be represented by the
following continuous compounding expression:

y(T) = y(t)e
∫ T

t r(s)ds. (42)

Given non-negative interest rates, the index is a non-decreasing function of r(s).
A European call option is a contract that gives the owner the right, but not the

obligation, to buy a specified amount of underlying security at a specified price and time.
The payoff of the IDI call option maturing at T is:

max(y(T)− K, 0), (43)

where K is the strike price. Therefore, the price at time t of this option is

C(t, T) = E
[
e−

∫ T
t r(s)ds max(y(T)− K, 0)

∣∣∣r(t)]
= E

[
max

(
y(t)− Ke−

∫ T
t r(s)ds, 0

)∣∣∣r(t)]. (44)

To price the IDI option, we compute the characteristic function of the path-dependent
[t, T]-integral of the interest rate—namely, x(t, T) =

∫ T
t r(s)ds—which in turn gives us

the values of Aj associated with the model. Therefore, the price of the IDI option can be
calculated using the COS method. Equation (44) gives the payoff of the IDI call option so
that the coefficients Bj are given by

B0 =
∫ b

− ln
(

y(t)
K

) y(t)− Ke−xdx = y(t)
(

ln
(

y(t)
K

)
+ b − 1

)
+ e−bK, (45)
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and

Bj =
∫ b

− ln
(

y(t)
K

)(y(t)− Ke−x) cos
(

π j(x − a)
b − a

)
dx (46)

=

{(
b2 − 2ab + a2

)
eby(t) sin

π j ln
(

y(t)
K

)
+ πaj

b − a


+ (πa − πb)eb jy(t) cos

π j ln
(

y(t)
K

)
+ πaj

b − a


+

(
π2eb j2 +

(
b2 − 2ab + a2

)
eb
)

sin(π j)y(t)

+
(
(πb − πa)j cos(π j)− π2 j2 sin(π j)

)
K
}

.
{

(b − a)e−b

π j(π2 j2 + b2 − 2ab + a2)

}
.

The coefficients Aj are calculated using (36) according to the characteristic function
given by Theorem 1.

Figure 11 depicts the pricing of IDI options over a one-year timeframe with an initial
IDI value of y(t) = 100.000 and unveils an inverse relationship between the correlation
parameter ρ and option prices. In line with the probability density function results, the
findings indicate that a decrease in the correlation between the stochastic factors leads to
a substantial increase in option prices, with at-the-money options under low-correlation
scenarios commanding prices up to fourfold higher than their high-correlation counter-
parts. This observed phenomenon highlights the crucial impact of the correlation on
option valuation, emphasizing its role as a key determinant of market prices. Such revela-
tions have profound implications for interest markets: heightened option prices resulting
from lower correlations could signal increased market uncertainty, thereby influencing
investment strategies and risk management. Therefore, it is essential to consider the rela-
tionship between correlation and pricing, as this may have significant consequences on
investment decisions.
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Figure 11. IDI option prices calculated according to the formula given by (39). The characteristic
function is given by the formula developed in Theorem 2 and the coefficients Bj are given by (46).
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6.5. Term Structure Calibration

We calibrated the term structure of the interest rates over 14 months (from March 2019
to April 2020) with three models. As in the work of da Silva and Baczynski (2024), to test
the model in a complex environment, the selected period was marked by abrupt changes
in the Brazilian interest rate curve owing to the COVID-19 crisis.

The first model is the uncorrelated two-factor CIR model given by Equations (28) and (29).
The estimated parameters are listed in Table 3. The second model is the stochastically
correlated two-factor CIR model given by Equations (1), (2), and (4). The corresponding
estimated parameters are listed in Table 41.

To show the versatility of the analytical solution developed, we introduce a third
model encompassing the stochastically correlated two-factor CIR model enhanced with
jumps. The jumps enter to the factor of x1 such that Equation (1) becomes

dx1(t) = κ1(θ1 − x1(t))dt + σ1

√
x1(t)dW1(t) + dJ(t). (47)

According to Bouziane (2008), let the jump size J. be exponentially distributed with an
expected amplitude η > 0 and constant and positive intensity λ0. Therefore, the density
function of the jump size is given by

p(j; η) =
1
η

e−
j
η ∀ j ∈ R+. (48)

The term α in Theorem 2 given by Equation (19) is given by the solution of the
following differential equation:

∂α

∂t
= −κ1θ1β1 − κ2θ2β2 − ρσ1σ2β1β2ϵ + λ0

β2η

1 − β2η
. (49)

The estimated parameters of the stochastically correlated two-factor CIR model with
exponential jumps are presented in Table 5.

The monthly term structure calibration figures are presented in Appendix A. The left,
center, and right figures show the uncorrelated, stochastically correlated, and stochastically
correlated jump models, respectively.

The root-mean-squared error between the model and market prices was minimized
using the modified sequential quadratic programming method described by (Kienitz and
Wetterau 2012, p. 468). The first calibration starts with random initial guess parameter
values, and the subsequent guesses come from the calibrated values of the previous month.

Table 3. Parameter values for the uncorrelated model.

σ1 σ2 θ1 θ2 κ1 κ2 x1 x2

0.117 0.117 0.018 0.013 0.000 0.000 0.017 0.053
0.126 0.113 0.000 0.001 0.004 0.000 0.006 0.057
0.120 0.120 0.000 0.001 0.000 0.000 0.010 0.047
0.128 0.128 0.015 0.004 0.000 0.000 0.023 0.028
0.152 0.152 0.015 0.004 0.000 0.000 0.023 0.024
0.167 0.167 0.007 0.000 0.000 0.000 0.018 0.021
0.167 0.167 0.007 0.000 0.000 0.000 0.019 0.022
0.159 0.159 0.006 0.000 0.000 0.000 0.020 0.022
0.135 0.135 0.003 0.000 0.000 0.000 0.030 0.031
0.120 0.121 0.000 0.006 0.000 0.000 0.036 0.035
0.104 0.104 0.012 0.006 0.000 0.000 0.045 0.048
0.001 0.144 0.119 0.056 0.017 0.000 0.097 0.017
0.000 0.157 0.174 0.053 0.014 0.000 0.117 0.013
0.004 0.076 0.044 0.034 0.242 0.000 0.002 0.138



Int. J. Financial Stud. 2024, 12, 31 19 of 24

Table 4. Parameter values for the stochastic correlation model.

σ1 σ2 θ1 θ2 κ1 κ2 ρ ϵ x1 x2

0.074 0.153 0.000 0.000 0.000 0.000 1.000 0.050 0.031 0.038
0.055 0.161 0.003 0.021 0.000 0.000 0.999 0.050 0.062 0.000
0.018 0.672 0.001 0.096 0.000 0.000 1.000 0.050 0.048 0.008
0.025 0.669 0.000 0.092 0.006 0.000 1.000 0.044 0.042 0.008
0.031 0.702 0.011 0.092 0.000 0.000 1.000 0.049 0.042 0.002
0.048 0.700 0.007 0.087 0.000 0.000 1.000 0.039 0.031 0.001
0.022 1.472 0.000 0.087 0.000 0.000 1.000 0.046 0.021 0.013
0.188 3.235 0.000 0.003 2.283 0.000 1.000 0.037 0.000 0.027
2.657 2.679 0.003 0.000 3.797 1.570 1.000 0.046 0.000 0.035
3.006 19.999 0.000 0.000 15.026 3.801 0.991 0.050 0.002 0.039
4.014 19.999 0.000 0.000 14.843 4.087 0.990 0.049 0.000 0.069
0.547 19.602 0.000 0.000 15.273 0.352 1.000 0.050 0.000 0.113
0.600 19.601 0.000 0.000 15.271 0.335 1.000 0.050 0.000 0.130
0.592 19.601 0.002 0.008 15.271 0.367 1.000 0.045 0.001 0.146

Table 5. Parameter values for the stochastic correlation model with jumps.

σ1 σ2 θ1 θ2 κ1 κ2 ρ ϵ x1 x2 λ0 η

0.052 0.003 0.180 0.007 0.183 0.144 0.000 0.025 0.059 0.000 9.987 0.006
0.217 0.558 0.001 0.030 0.454 3.144 0.518 0.050 0.073 0.002 10.088 0.005
0.150 0.558 0.015 0.011 0.555 3.146 0.521 0.050 0.038 0.025 10.087 0.006
0.164 0.559 0.016 0.017 0.533 3.143 0.520 0.048 0.042 0.009 10.087 0.006
0.212 0.558 0.000 0.025 0.427 3.141 0.519 0.043 0.038 0.005 10.088 0.004
0.191 0.559 0.000 0.030 0.432 3.140 0.520 0.046 0.023 0.007 10.089 0.005
0.128 0.561 0.000 0.028 0.424 3.138 0.524 0.050 0.020 0.008 10.101 0.005
0.000 0.576 0.001 0.013 0.510 3.259 0.607 0.049 0.012 0.008 10.385 0.005
0.035 0.574 0.000 0.009 0.909 3.268 0.610 0.050 0.023 0.003 10.413 0.009
0.031 0.574 0.000 0.000 0.960 3.268 0.610 0.050 0.040 0.000 10.410 0.009
0.023 0.573 0.014 0.000 1.072 3.269 0.610 0.050 0.061 0.000 10.399 0.013
0.021 0.573 0.080 0.000 1.120 3.269 0.610 0.049 0.116 0.000 10.394 0.020
0.000 0.579 0.635 0.000 0.931 3.264 0.615 0.050 0.117 0.000 10.104 0.075
0.000 0.594 0.518 0.000 1.323 3.161 0.607 0.032 0.132 0.000 10.221 0.088

It is noteworthy that the stochastically correlated model improves the calibration in
comparison with the uncorrelated model for at least 7 of 14 months. Specifically, the error
between the calibration and market data is lower in months 7, 8, 9, 10, 11, and 12 of 2019
and in January 2020.

Furthermore, the stochastically correlated jump model shown in the right panels of
Appendix A almost matches the yield curves and provides stable correlation and jump
parameters over time. The estimated correlation coefficient ρ is approximately 0.55, the
annual frequency of jumps is approximately 10, and the expected jump sizes increase
from 50 basis points until the end of 2019 to 800 basis points during the turbulent period.
These parameters are coherent with the expected behavior, further validating the model’s
effectiveness in capturing market dynamics.

7. Conclusions

Our investigation into the stochastic correlation within a bivariate Cox–Ingersoll–Ross
model framework culminated in analytical solutions for conditional moment-generating
and characteristic functions. This achievement not only facilitates the derivation of pricing
formulas for a spectrum of interest rate derivatives but also provides a robust theoretical
underpinning for understanding the complex interdependencies within financial markets.
By introducing a variable correlation parameter (ϵ), our model adapts to varying degrees
of correlation between two factors, offering a flexible tool for capturing a wide array of
market behaviors, from tightly integrated markets to those with independent movements.
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Theoretically, our model extends the boundaries of stochastic correlation modeling
by permitting a dynamic correlation process, which is conspicuously absent in models
constrained by a constant correlation assumption. This theoretical advancement translates
to a more nuanced and precise modeling of the term structure of interest rates, which is
pivotal for both theoretical finance and risk management.

From a practical standpoint, the model’s applicability to the pricing of zero-coupon
bonds and Asian options, particularly the IDI option, and the calibration results demon-
strate its relevance to market practitioners. Note that obtaining analytical results is not
achievable in the case of bivariate CIR models with constant correlation coefficients.

In addition, the simulations herein strongly suggest that the model precludes negative
values while preserving the quality of the single- and two-factor uncorrelated CIR process.
Calibration showed that enhancing the stochastic correlation model with jumps translates
into an almost perfectly calibrated model.

Future research should seek mathematical proof that solidifies the model’s exclusion
of negative values for the additive process, as this is a foundational assumption in financial
contexts where negative interest rates are precluded. Additionally, it is crucial to identify a
specification for stochastic correlation that can accommodate a wider range of correlation
values, particularly those approaching the extreme bounds of the correlation spectrum.
This would enhance not only the model’s flexibility but also its capacity to mirror the
complex dynamics observed in financial markets, where correlations can vary significantly
during periods of market stress or tranquility.
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Appendix A. Yield Curve Calibration
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Figure A1. A comparison of the term structure calibration with the CIR uncorrelated, CIR stochasti-
cally correlated, and CIR stochastically correlated with exponential jump models, respectively, for the
following months: March 2019 (upper panels) and April 2019 (lower panels).
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Figure A2. A comparison of the term structure calibration with the CIR uncorrelated, CIR stochasti-
cally correlated, and CIR stochastically correlated with exponential jump models, respectively, for the
following months: May 2019 (upper panels) and June 2019 (lower panels).
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Figure A3. A comparison of the term structure calibration with the CIR uncorrelated, CIR stochasti-
cally correlated, and CIR stochastically correlated with exponential jump models, respectively, for the
following months: July 2019 (upper panels) and August 2019 (lower panels).
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Figure A4. A comparison of the term structure calibration with the CIR uncorrelated, CIR stochasti-
cally correlated, and CIR stochastically correlated with exponential jump models, respectively, for the
following months: September 2019 (upper panels) and October 2019 (lower panels).
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Figure A5. A comparison of the term structure calibration with the CIR uncorrelated, CIR stochasti-
cally correlated, and CIR stochastically correlated with exponential jump models, respectively, for the
following months: November 2019 (upper panels) and December 2019 (lower panels).
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Figure A6. A comparison of the term structure calibration with the CIR uncorrelated, CIR stochasti-
cally correlated, and CIR stochastically correlated with exponential jump models, respectively, for the
following months: January 2020 (upper panels) and February 2020 (lower panels).
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Figure A7. A comparison of the term structure calibration with the CIR uncorrelated, CIR stochasti-
cally correlated, and CIR stochastically correlated with exponential jump models, respectively, for the
following months: March 2020 (upper panels) and April 2020 (lower panels).

Note
1 We truncated the values to three decimal places.
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