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1. Introduction

A log-normal distribution is perhaps the most popular model for skewed data [1].
However, a log-normal distribution is defined only on the positive real line. Many of its
application areas involve data spanning the entire real line. One example is the modeling of
stock returns. The log-normal distribution is a popular model for stock returns. However,
stock returns can be positive or negative. Positive stock returns correspond to profits,
while negative stock returns correspond to losses. Other application areas of log-normal
distributions involving data spanning the entire real line are discussed later on. Hence, a
double log-normal distribution is needed.

We follow the procedure presented in [2] to construct a double log-normal (DLN)
distribution. Consider the following two transforms [2]:

(i) The random sign transform (RST) given by

W = (2Y− 1)X;

(ii) The random sign mixture transform (RSMT) given by

Z = YX1 − (1−Y)X2,

where Y is a Bernoulli random variable (RV) with parameter β and X, X1 and X2 are
non-negative RVs independent of Y. The probability density function (PDF) of W is

fW(w; β, θ) =

{
β fX(|w|; θ), w < 0,
β fX(w; θ), w ≥ 0,
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and the PDF of Z is

fZ(z; β, θ1, θ2) =

{
β fX2(|z|; θ2), z < 0,
β fX1(z; θ1), z ≥ 0,

where fX(·; θ), fX1(·; θ1), fX2(·; θ2) are the PDFs of non-negative RVs X, X1 and X2, re-
spectively, with (vector) parameters θ, θ1 and θ2, respectively. If X is an RV from a family
of distributions F1, then W is said to have a double F1 distribution. If X1 and X2 are
independent RVs from a family of distributions F2, then Z is said to have a double F2
distribution.

There are many double continuous distributions on the real line. However, the words
‘double’ or ‘reflection’ are sometimes used to denote the distribution of the absolute value
of a random variable. Some double continuous distributions based on the RST are:

1. Double exponential distribution (Laplace) [3].
2. Double generalized gamma distribution [4].
3. Double Weibull distribution [5].
4. Double gamma distribution [6].
5. Double generalized Pareto distribution [7].
6. Double Lomax distribution [8].
7. Double Lindley distribution [9].

Some double continuous distributions based on the RSMT are:

1. Double half-normal distribution [10,11].
2. Double exponential distribution [12].
3. Double inverse gamma distribution [13].
4. Double Gompertz distribution [14].
5. Double Pareto II distribution [15].
6. Double inverse Gaussian distribution [16].

We construct the DLN distribution using the RSMT, i.e., the distribution of Z when X1
and X2 independently follow the log-normal distribution.

The remainder of this paper is organized as follows. In Section 2, the statistical
properties of the DLN distribution are presented. The maximum likelihood estimates
(MLEs) of the parameters and their asymptotic distributions are studied in Section 3.
Simulations to check the finite sample performance of the estimators of the parameters
and the corresponding confidence intervals are presented in Section 4. An application of
the proposed double distribution to a real data set from a DNA microarray is presented in
Section 5. Finally, the conclusions and comments are stated in Section 6.

2. Statistical Properties

We present the statistical properties of the DLN distribution in this section.

2.1. Probability Density Function

The PDF of the DLN distribution is

fZ(z) =

{
β fX2(|z|; µ2, σ2), z < 0,
β fX1(z; µ1, σ1), z ≥ 0,

where for −∞ < µ1, µ2 < ∞ and σ1, σ2 > 0, and

fXj

(
x; µj, σj

)
=

1√
2π σ x

exp

[
−
(
ln(x)− µj

)2

2σ2
j

]
, x > 0, j = 1, 2 (1)

are the PDFs of the LN distributions.
Figure 1 shows the bimodality of the PDF of the DLN distribution for selected param-

eter values.
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Figure 1. PDF of the DLN distribution: (β, µ1, σ1, µ2, σ2): (0.3, −0.5, 1, 0.5, 1) ( ), (0.5, −0.5, 1, 0.5,
1) ( ), (0.8,−0.5, 1, 0.5, 1)( ).

The DLN distribution has two modes given by

Mode(Z) = − Mode(X2) and Mode(X1),

where

Mode
(
Xj
)
= eµj−σ2

j , j = 1, 2 (2)

are the modes of the LN distributions.

2.2. Cumulative Distribution Function

The cumulative distribution function (CDF) of the DLN distribution is

FZ(z) = P(Z ≤ z) =

{
β
[
1− FX2(|z|; µ2, σ2)

]
, z < 0,

β + β FX1(z; µ1, σ1), z ≥ 0,
(3)

where

FXj

(
x; µj, σj

)
= P

(
Xj ≤ x

)
= Φ

(
ln(x)− µj

σj

)
, x > 0, j = 1, 2

are the CDFs of the LN distributions and

Φ(a) = P(Z ≤ a) =
∫ a

−∞

1√
2π

e−z2/2 dz, −∞ < a < ∞

is the CDF of the standard normal distribution.
Figure 2 shows the CDF of the DLN distribution for selected parameter values. We

can observe that FZ(0) = β and hence FZ(0) decreases as β increases.
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Figure 2. CDF of the DLN distribution: (β, µ1, σ1, µ2, σ2): (0.3, −0.5, 1, 0.5, 1) ( ), (0.5, −0.5, 1, 0.5,
1) ( ), (0.8,−0.5, 1, 0.5, 1)( ).

2.3. Hazard Rate Function

The survival function of the DLN distribution is

SZ(z) = P(Z > z) =

{
1− β SX2(|z|; µ2, σ2), z < 0,
β SX1(z; µ1, σ1), z ≥ 0,

(4)

where

SXj

(
x; µj, σj

)
= P

(
Xj > x

)
= 1−Φ

(
ln(x)− µj

σj

)
, x > 0, j = 1, 2

are the SFs of the LN distributions.
The hazard rate function (HRF) of the DLN distribution is

hZ(z) =
fZ(z)
SZ(z)

=


β fX2(|z|; µ2, σ2)

1− β SX2(|z|; µ2, σ2)
, z < 0,

fX1(z)
SX1(z; µ1, σ1)

, z ≥ 0.
(5)

Figure 3 shows the HRF of the DLN distribution for selected parameter values. This
figure shows that the HRF of the DLN distribution can be bimodal with one mode on each
side of the origin.
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Figure 3. HRF of the DLN distribution: (β, µ1, σ1, µ2, σ2): (0.3, −0.5, 1, 0.5, 0.9) ( ), (0.5, 0.5, 0.9,
−0.5, 1) ( ), (0.8, 0, 1, 0, 0.5)( ).
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2.4. Moments and Associated Measures

The rth raw moment of the DLN distribution is

E(Zr) = β E(Xr
1) + (−1)r β E(Xr

2), r ≥ 1, (6)

where

E
(

Xr
j

)
= er µj+r2 σ2

j /2, j = 1, 2 (7)

are the rth moments of the LN distributions.
In particular, the first four raw moments of Z are

E(Z) = β eµ1+σ2
1 /2 − β eµ2+σ2

2 /2,

E
(

Z2
)

= β e2µ1+2σ2
1 + β e2µ2+2σ2

2 ,

E
(

Z3
)

= β e3µ1+9σ2
1 /2 − β e3µ2+9σ2

2 /2,

E
(

Z4
)

= β e4µ1+8σ2
1 + β e4µ2+8σ2

2 .

The variance, skewness and kurtosis of the DLN distribution can be obtained using
the well-known expressions:

Variance(Z) = E
(

Z2
)
− [E(Z)]2,

Skewness(Z) =
E
(
Z3)− 3E

(
Z2)E(Z) + 2[E(Z)]3

[Var(Z)]3/2 ,

Kurtosis(Z) =
E
(
Z4)− 4E

(
Z3)E(Z) + 6E

(
Z2)[E(Z)]2 − 3[E(Z)]3

[Var(Z)]2

upon substituting for the raw moments.
Figure 4 shows the mean, variance, skewness and kurtosis of the DLN distribution as

a function of β for selected values of (µ1, σ1, µ2, σ2). We can observe that the skewness can
be negative or positive, i.e., the DLN distribution can be skewed to the left or skewed to
the right.
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Figure 4. Mean, variance, skewness and kurtosis of the DLN distribution as a function of β:
(µ1, σ1, µ2, σ2) : (−0.5, 1, 0.5, 1)( ), (0.5, 1,−0.5, 1) ( ), (0.5, 1, 0.5, 1)( ).

2.5. Harmonic Mean

The harmonic mean of an RV V is defined as

HM(V) =
1

E[1/V]
,

provided E[1/V] exists.

Proposition 1. The harmonic mean of the RSMT Z is

HM(Z) =
1

β
HM(X1)

− β
HM(X2)

.

Proof. Since

1
HM(Z)

= E[1/Z]

=
∫ ∞

0

1
z

β fX1(z)dz +
∫ 0

−∞

1
z

β fX2(−z)dz

= β E[1/X1]− β E[1/X2]

=
β

HM(X1)
− β

HM(X2)
,

the proposition follows.

Corollary 1. The harmonic mean of the DLN distribution is

HM(Z) =
1

β
HM(X1)

− β
HM(X2)

,
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where

HM
(
Xj
)
= eµj−σ2

j /2, j = 1, 2

are the harmonic means of the LN distributions.

Figure 5 shows the harmonic mean of the DLN distribution as a function of β for
selected parameter values.
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Figure 5. Harmonic mean of the DLN distribution as a function of β: (µ1, σ1, µ2, σ2): (−0.5, 1, 0.5, 1)
( ), (0.5, 1,−0.5, 1) ( ), (0.5, 1, 0.5, 1)( ).

2.6. Entropies

Entropies are measures of a system’s variation, instability or unpredictability. For an
RV V with PDF fV(v), the following are two well-known entropies:

1. Tsallis entropy [17]:

Tα(V) =
1

α− 1

{
1− E

[
f α−1
V (V)

]}
, 0 < α 6= 1.

2. Shannon entropy [18]:

H(V) = −E[ln fV(V)] = lim
α→1

Tα(V).

Proposition 2. The Tsallis entropy of the RSMT Z is

Tα(Z) = Tα(Y) + βα Tα(X1) + β
α Tα(X2)

for 0 < α 6= 1, where

Tα(Y) =
1− βα − β

α

α− 1
.

Proof. See [16].

Corollary 2. The Shannon entropy of the RSMT Z is

H(Z) = lim
α→1

Tα(Z) = H(Y) + β H(X1) + β H(X2),

where

H(Y) = lim
α→1

Tα(Y) = −β ln(β)− β ln(β).
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Proposition 3. The Tsallis entropy of the LN distribution with parameters (µ, σ) is

Tα(X) =
1

α− 1

{
1−

(
1√

2π σ

)α−1 1√
α

exp
[

µ(1− α) +
σ2

2α
(1− α)2

]}

for 0 < α 6= 1.

Proof. Since

1− (α− 1)Tα(X) =
∫ ∞

0
f α
X(x)dx

=
∫ ∞

0

(
1√

2π σ

)α 1
xα

exp
{
− α

2σ2 [ln(x)− µ]2
}

dx

=

(
1√

2π σ

)α ∫ ∞

−∞
e(1−α)y exp

[
− 1

2
(
σ/
√

α
)2 (y− µ)2

]
dy

=

(
1√

2π σ

)α−1 1√
α

exp
[

µ(1− α) +
σ2

2α
(1− α)2

]
,

the proposition follows.

Corollary 3. The Shannon entropy of the LN distribution with parameters (µ, σ) is

H(X) = lim
α→1

Tα(X) =
1
2
+ µ + ln

(√
2π σ

)
.

Proposition 4. The Tsallis entropy of Z ∼ DLN(β, µ1, σ1, µ2, σ2) is

Tα(Z) = Tα(Y) + βα Tα(X1) + β
α Tα(X2)

for 0 < α 6= 1, where

Tα(Y) =
1− βα − β

α

α− 1

and

Tα

(
Xj
)
=

1
α− 1

1−
(

1√
2π σj

)α−1
1√
α

exp

[
µj(1− α) +

σ2
j

2α
(1− α)2

], j = 1, 2.

The proof of Proposition 4 follows directly from Propositions 2 and 3.

Corollary 4. The Shannon entropy of Z ∼ DLN(β, µ1, σ1, µ2, σ2) is

H(Z) = H(Y) + β H(X1) + β H(X2),

where

H(Y) = −β ln(β)− β ln
(

β
)

and

H
(
Xj
)
=

1
2
+ µj + ln

(√
2π σj

)
, j = 1, 2.

Figure 6 shows the Tsallis and Shannon entropies of the DLN distribution as a function
of β for selected parameter values.
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Figure 6. Tsallis and Shannon entropies of the DLN distribution as a function of β: (µ1, σ1, µ2, σ2):
(−3, 1, 3, 1)( ), (3, 1, −3, 1) ( ), (0, 1, 0, 1) ( ).

Note that the Tsallis and Shannon entropies can be negative for continuous distribu-
tions.

3. Maximum Likelihood Estimation

In this section, MLEs of the parameters of the DLN distribution and their asymptotic
distributions are derived.

Let z1, z2, . . . , zn be a random sample from the DLN(β, µ1, σ1, µ2, σ2) distribution. The
log-likelihood function is

ln L(β, µ1, σ1, µ2, σ2) =
n

∑
i=1

ln
[
β fX1(zi; µ1, σ1)

]
1{zi>0} +

n

∑
i=1

ln
[
β fX2(|zi|; µ2, σ2)

]
1{zi<0},

where 1A denotes the indicator function. The MLEs of the parameters (β, µ1, σ1, µ2, σ2) are:

β̂ =
n1

n
,

µ̂1 =
1
n1

n

∑
i=1

ln(zi)1(zi>0),

σ̂1 =

√
1
n1

n

∑
i=1

[ln(zi)− µ̂1]
21(zi>0),

µ̂2 =
1
n2

n

∑
i=1

ln(|zi|) 1(zi<0),

σ̂2 =

√
1
n2

n

∑
i=1

[ln(|zi|)− µ̂2]
21(zi<0),

where

n1 =
n

∑
i=1

1(zi>0), n2 =
n

∑
i=1

1(zi<0), n1 + n2 = n.

The Fisher information matrix about (β, µ1, σ1, µ2, σ2) is

I(β, µ1, σ1, µ2, σ2) =

IY(β) 0 0
0 β IX1(µ1, σ1) 0
0 0 β IX2(µ2, σ2)

,

where IY(β) = 1
β β

is the Fisher information matrix about β and

IXj

(
µj, σj

)
= diag( 1

σ2
j

, 2
σ2

j
), j = 1, 2 is the Fisher information matrix about

(
µj, σj

)
.
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Moreover, the asymptotic distribution of the MLEs as n→ ∞ is

√
n


β̂− β

µ̂1 − µ1
σ̂1 − σ1
µ̂2 − µ2
σ̂2 − σ2

 d−→ MVN
(

0, I−1(β, µ1, σ1, µ2, σ2)
)

,

where d−→ denotes convergence in distribution, MVN stands for multivariate normal distribu-
tion and

I−1(β, µ1, σ1, µ2, σ2) = diag

(
ββ,

σ2
1

β
,

σ2
1

2β
,

σ2
2

β
,

σ2
2

2β

)
.

4. Simulations

This section details simulations to check the finite sample performance of the MLEs of
the parameters of the DLN distribution. The performance is evaluated in terms of biases,
mean squared errors of the MLEs and coverage probabilities of the corresponding 95%
confidence intervals.

The simulation was repeated M = 10,000 times. In each of the M repetitions, a random
sample of size n = 50, 100, . . . , 500 was drawn from the DLN distribution with selected
parameter values (β, µ1, σ1, µ2, σ2) = (0.3,−2, 1,−1, 2), (0.5, 0, 1, 1, 2), (0.8, 2, 1,−1, 2) and
(0.547,−2.812, 1.016,−2.224, 0.764), using the following algorithm:

1. Generate Yi ∼ Bernoulli(β), i = 1, 2, . . . , n;
2. Generate X1,i ∼ LN(µ1, λ1), i = 1, 2, . . . , n;
3. Generate X2,i ∼ LN(µ2, λ2), i = 1, 2, . . . , n;
4. Set Zi = Yi X1,i − (1−Yi) X2,i, i = 1, 2, . . . , n.

The parameter values (β, µ1, σ1, µ2, σ2) = (0.547,−2.812, 1.016,−2.224, 0.764) are those
estimated in the real data application in Section 5.

The measures examined in this simulation study are:

1. The bias of the MLEs:

Bias
(

θ̂
)
=

1
M

M

∑
j=1

(
θ̂j − θ

)
, θ = β, µ1, σ1, µ2, σ2.

2. The mean squared error (MSE) of the MLEs:

MSE
(

θ̂
)
=

1
M

M

∑
j=1

(
θ̂j − θ

)2
, θ = β, µ1, σ1, µ2, σ2.

3. The coverage probability (CP) of the 95% confidence interval of each parameter:

CP(θ) =
1
M

M

∑
j=1

1{(θ̂j−1.96 S.E.(θ̂j), θ̂j+1.96 S.E.(θ̂j))}, θ = β, µ1, σ1, µ2, σ2.

The results of the simulation study are reported in Figures 7–9.

1. Figure 7 shows that the absolute biases of the MLEs are small and approach zero as n
increases.

2. Figure 8 shows that the MSEs of the MLEs are small and decrease as n increases.
3. Figure 9 shows that the coverage probabilities of the 95% confidence intervals are

close to the nominal level.
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These conclusions show that the MLEs of the DLN distribution are well behaved for
point as well as interval estimation.
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Figure 7. Bias of the MLEs of the parameters of the DLN distribution:
(β, µ1, σ1, µ2, σ2): (0.3,−2, 1,−1, 2) ( ), (0.5, 0, 1, 1, 2) ( - - -), (0.8, 2, 1,−1, 2) (.....),
(0.547,−2.812, 1.016,−2.224, 0.764) (−.−).
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Figure 8. MSE of the MLEs of the parameters of the DLN distribution: (β, µ1, σ1, µ2, σ2):
(0.3,−2, 1,−1, 2) ( ), (0.5, 0, 1, 1, 2) ( - - -), (0.8, 2, 1,−1, 2) (.....), (0.547, −2.812, 1.016, −2.224,
0.764) (−.−).
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Figure 9. CP of the 95% confidence intervals of the parameters of the DLN distribution:
(β, µ1, σ1, µ2, σ2): (0.3, −2, 1, −1, 2) ( ), (0.5, 0, 1, 1, 2) (- - -), (0.8, 2, 1, −1, 2) (.....), (0.547, −2.812,
1.016, −2.224, 0.764) (−.−).

5. Application

In this section, we apply the proposed DLN distribution to a real data set from a DNA
microarray reported in [19]. According to Wikipedia, “A DNA microarray (also commonly
known as DNA chip or biochip) is a collection of microscopic DNA spots attached to a
solid surface. Scientists use DNA microarrays to measure the expression levels of large
numbers of genes simultaneously or to genotype multiple regions of a genome”. The data
labelled as “SID 377353, ESTs [5’:, 3’:AA055048]” consist of the following 118 observations:
0.029, 0.062, 0.011, 0.009, 0.065, −0.128, 0.133, 0.116, 0.184, 0.111, −0.066, −0.049, 0.05,
0.137, 0.162, 0.173, 0.033, 0.107, 0.11, 0.147, 0.118, 0.172, 0.284, −0.137, 0.038, −0.145, −0.181,
−0.155, 0.198, 0.024, 0.079,−0.252, 0.062, 0.097, 0.032, 0.026, 0.195, 0.019, 0.138,−0.3,−0.105,
−0.11, −0.168, −0.173, −0.15, 0.078, 0.113, −0.047, 0.024, 0.001, −0.075, 0.014, 0.058, −0.083,
−0.339, −0.177, −0.073, −0.044, −0.106, −0.159, −0.101, −0.074, −0.126, −0.131, −0.22,
−0.184, −0.105, 0.173, 0.151, 0.064, −0.007, −0.005, −0.189, −0.219, −0.301, −0.212, −0.088,
0.157, 0.042, 0.184, 0.114, 0.102, 0.119, −0.064, −0.075, 0.073, 0.038, 0.017, −0.134, −0.118,
−0.097, 0.059, 0.025, −0.102, −0.096, −0.035, 0.057, −0.055, 0.015, −0.23, −0.115, 0.255,
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0.034, 0.078, 0.129, 0.081, 0.032, 0.047, −0.145, 0.012, −0.224, 0.074, −0.06, −0.137, 0.034,
0.009, −0.139, −0.141.

Figure 10 shows the histogram of the data, which indicates bimodality around the
origin.

z
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Figure 10. Histogram of the microarray data.

For the sake of comparing the bimodal DLN distribution with other bimodal distribu-
tions, we consider the double inverse Gaussian (DIG) distribution proposed in [16]. The
PDF of the DIG distribution is

fZ(z) =

{
β fX2(|z|; ν2, λ2), z < 0,
β fX1(z; ν1, λ1), z ≥ 0,

(8)

where

fXj

(
x; νj, λj

)
=

√
λj

2π
x−3/2 exp

[
−

λj
(
x− νj

)2

2ν2
j x

]
, x > 0, νj, λj > 0, j = 1, 2 (9)

are the PDFs of inverse Gaussian distributions.
Table 1 gives the MLEs, their standard errors (S.E.s), estimated log-likelihoods and

Kolmogrov–Smirnov (KS), Anderson–Darling (AD) and Cramér–von Mises (CVM)
goodness-of-fit tests of the fitted DIG and DLN distributions. This table shows that the
MLE of β and its S.E. are the same for both the fitted DIG and DLN distributions, since
the Bernoulli parameter β is estimated independently in the RSMT. In addition, this table
shows that the MLEs of µ1 and µ2 in the fitted DLN distribution are both negative.
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Table 1. Summary of the fitted DIG and DLN distributions for DNA microarray data.

Model Parameter MLE S.E. ln L̂
KS

(p-Value)
AD

(p-Value)
CVM

(p-Value)

DIG

β 0.542 0.046

39.249 0.126 (0.046) 3.285 (0.020) 0.545 (0.030)
ν1 0.087 0.017
λ1 0.036 0.006
ν2 0.132 0.018
λ2 0.126 0.024

DLN

β 0.542 0.046

64.829 0.065 (0.709) 0.851 (0.446) 0.103 (0.570)
µ1 −2.812 0.127
σ1 1.016 0.090
µ2 −2.224 0.104
σ2 0.764 0.074

Table 1 shows that the three goodness-of-fit tests have much smaller (larger) test
statistics for the fitted DLN (DIG) distribution. This table also shows that the three goodness-
of-fit tests reject (accept) the DIG (DLN) distribution for the given data. This conclusion
is supported by the diagnostic plots in Figures 11 and 12. In these figures, (i) the PDF
and CDF plots indicate, in an informal way, that the fitted DIG (DLN) distribution may
not be suitable for the given data; (ii) the quantile–quantile (Q–Q) plots show that the
fitted DIG and DLN distributions inappropriately describe the tails of the distributions;
(iii) the probability–probability (P–P) plots show that the fitted DIG (DLN) distribution
inappropriately (appropriately) describes the center of the distribution.
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Figure 11. Diagnostic plots of the fitted DIG distribution.
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Figure 12. Diagnostic plots of the fitted DLN distribution.

6. Conclusions and Comments

We have proposed a bimodal distribution on the real line, referred to as the double
log-normal distribution. We have derived its statistical properties, including the probability
density, cumulative distribution and hazard rate functions, the moments and associated
measures and harmonic mean, as well as Tsallis and Shannon entropies. Additionally,
maximum likelihood estimates of the parameters and their asymptotic distribution are
provided. Simulation studies showed that the maximum likelihood estimation performed
well in terms of the bias, mean squared error and coverage probability of confidence
intervals. Application to a DNA microarray data set showed that the proposed distribution
is flexible and competitive for modeling bimodal data around the origin.

Instead of the log-normal distribution, one can consider the length biased log-normal
distribution developed in [20]. It will be interesting to formulate a double length biased
log-normal distribution.
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