
Citation: Li, Y. Optimal Control for

an Epidemic Model of COVID-19

with Time-Varying Parameters.

Mathematics 2024, 12, 1484. https://

doi.org/10.3390/math12101484

Academic Editors: Gennady Bocharov,

Babak Shiri and Zahra Alijani

Received: 11 April 2024

Revised: 3 May 2024

Accepted: 8 May 2024

Published: 10 May 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimal Control for an Epidemic Model of COVID-19 with
Time-Varying Parameters
Yiheng Li

Department of Mathematics, Shanghai University, Shanghai 200444, China; lyiheng2024@163.com

Abstract: The coronavirus disease 2019 (COVID-19) pandemic disrupted public health and economies
worldwide. In this paper, we investigate an optimal control problem to simultaneously minimize
the epidemic size and control costs associated with intervention strategies based on official data.
Considering people with undetected infections, we establish a control system of COVID-19 with
time-varying parameters. To estimate these parameters, a parameter identification scheme is adopted
and a mixed algorithm is constructed. Moreover, we present an optimal control problem with
two objectives that involve the newly increased number of infected individuals and the control
costs. A numerical scheme is conducted, simulating the epidemic data pertaining to Shanghai during
the period of 2022, caused by the Omicron variant. Coefficient combinations of the objectives are
obtained, and the optimal control measures for different infection peaks are indicated. The numerical
results suggest that the identification variables obtained by using the constructed mixed algorithm
to solve the parameter identification problem are feasible. Optimal control measures for different
epidemic peaks can serve as references for decision-makers.

Keywords: parameter identification; optimal control; epidemic peak; mixed algorithm; time-varying
parameter
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic disrupted health systems and
economies throughout the world [1,2]. During 2020, about one-third of the US population
was infected, and the United States experienced the highest numbers of reported cases and
deaths [1]. COVID-19 has led to delays in essential medical services in Europe, including
treatment for cardiovascular diseases [3]. Since its arrival, disruptions to childhood vaccine
delivery have further jeopardised childhood vaccination efforts [4]. Long COVID has re-
sulted in individuals losing nearly half of their income [5]. Overall, the COVID-19 pandemic
had an unprecedented effect on lives, livelihoods, and economies around the world [6].
Therefore, it is crucial to further investigate modeling and control measures of COVID-19
on total health expenditure and development assistance for health, which can contribute
to limiting the transmission of future high-consequence pathogens and future pandemic
preparedness [7,8].

Since the outbreak of the COVID-19 epidemic, a large number of models have been
proposed to describe, simulate, and forecast its transmission rule. Some models are individual-
based [9] or multi-scale [10], some models are based on cells and viruses [11] or stochastic
processes [12,13], and others are developments of classical SIR and SEIR models [14–20]. On
the other hand, there are a lot of studies about control measures. Vaccination [21,22] and
testing [23,24] are pharmaceutical interventions. In the absence of effective vaccines and
treatment, non-pharmaceutical intervention measures are essential [25]. For example, using
face masks [26], quarantining [27], and maintaining social distancing [28–30] are all effective
methods. Albi et al. [31] put forward an optimal control problem of a socially structured
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epidemic model in the presence of uncertain data to reduce the spread of epidemics by
applying non-pharmaceutical intervention measures. Sereno et al. [32] investigate how to
minimize an epidemic’s final scale while keeping the infected peak prevalence controlled at
any time. Kuddus et al. [33] perform a mathematical analysis of COVID-19 and find out the
most effective control measure with the cost-benefit of the health economy. Zhang et al. [34]
establish a stochastic SAIR epidemic model to investigate the dynamics and control strategies
of COVID-19. Reza et al. [35] delve into the numerical solutions of a six-compartment
fractional model with a Caputo derivative. They report on the sensitivity of the most critical
parameter and its influence on COVID-19 dynamics, along with its impact on the basic
reproduction number.

In this paper, we aim to simultaneously minimize the newly increased number of
infected individuals and the control costs associated with the intervention strategies based
on official data. Different from the works mentioned above, the original contributions of
the content studied in this paper are as follows:

(i) Undetected infections are considered.
(ii) The parameter identification method to estimate the time-varying transmission

rate functions in the epidemic model is employed.
(iii) The optimal control measures for different infection peaks are shown.

We establish a control epidemic system of COVID-19 that involves individuals with
undetected infections and time-varying parameters. To determine these time-varying
parameters, we adopt the parameter identification scheme and construct a mixed algorithm.
Moreover, we put forward an optimal control problem that includes two objectives: one is
the newly increased number of infected people, and the other is the control cost associated
with intervention strategies. Coefficient combinations of these objectives are indicated to
attain different infection peaks. A numerical scheme is carried out using the official data in
Shanghai 2022.

The structure of this paper is outlined as follows. In Section 2, the control epidemic
system of COVID-19 with time-varying parameters is established, the control reproduction
number is derived, and the parameter identification method and the mixed algorithm
are constructed. Section 3 puts forward a bi-objective optimal control model and the
characteristics of optimal controls. Numerical simulations are performed with the official
data of Shanghai 2022 in Section 4. Section 5 concludes the paper.

2. COVID-19 Control System

Let Z+ be the set of positive integers. For any n ∈ Z+, define Zn = {1, 2, · · · , n} as
the set of natural numbers from 1 to n.

People are divided into eight groups: susceptible individuals (S(t) for short), infected
individuals with infectiousness in the incubation period (P(t) for short), asymptomatic
individuals (A(t) for short), symptomatic individuals (I(t) for short), tested asymptomatic
individuals (TA(t) for short), tested symptomatic individuals (TI(t) for short), undetected
removed individuals (RU(t) for short), and reported removed individuals (RR(t) for short).
Asymptomatic individuals have no symptoms and do not seek medical attention, so some
of them may not be detected and are self-healing. Let S(t) + P(t) + A(t) + I(t) + TA(t) +
TI(t) + RU(t) + RR(t) ≜ N(t) be the total number of people, t be time, and T be the
terminal time.

Since the tested asymptomatic and tested symptomatic individuals are isolated,
they are not infectious. Here, we only consider that the infected individuals with infec-
tiousness in the incubation period, the asymptomatic individuals, and the symptomatic
individuals are infectious; let βP(t), βA(t), and β I(t) be the infection rates of the in-
fectious people P(t), A(t), and I(t) at time t, respectively. 1

α is the period from the
beginning of being infectious to the time at which symptoms first appear. Although
asymptomatic individuals never have symptoms, we treat asymptomatic individuals as
a special case of symptomatic individuals for simplicity. The ratios of the symptomatic
individuals and the asymptomatic individuals at time t are σ(t) and 1 − σ(t). λ(t) is
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the tested rate; µ(t) and µT(t) are the transmission rates from the asymptomatic to the
symptomatic people and from the tested asymptomatic to the tested symptomatic people
at time t, respectively. γU(t), γA(t), and γI(t) are the removed rates of the asymptomatic,
the tested asymptomatic, and the tested symptomatic individuals at time t.

Let u(t) be the control measures, such as the use of face masks, proper hand-washing,
maintaining physical distancing at time t, and so on.

Based on the actual spreading process of COVID-19, we establish a control epi-
demic model:

S′(t) = −S(t)[1 − u(t)] βP(t)P(t)+βA(t)A(t)+β I(t)I(t)
N(t) ,

P′(t) = S(t)[1 − u(t)] βP(t)P(t)+βA(t)A(t)+β I(t)I(t)
N(t) − αP(t),

A′(t) = α[1 − σ(t)]P(t)− [µ(t) + γU(t) + λ(t)]A(t),

I′(t) = ασ(t)P(t) + µ(t)A(t)− λ(t)I(t),

T′
A(t) = λ(t)A(t)− [µT(t) + γA(t)]TA(t),

T′
I(t) = λ(t)I(t)− γI(t)TI(t) + µT(t)TA(t),

R′
U(t) = γU(t)A(t),

R′
R(t) = γA(t)TA(t) + γI(t)TI(t).

(1)

Considering the biological sense, all variables are non-negative and the initial conditions are

S(0) ≥ 0, P(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, TA(0) ≥ 0, TI(0) ≥ 0, RU(0) ≥ 0, RR(0) ≥ 0. (2)

The model (1) and the initial conditions (2) are called the control system of COVID-19, the
diagram of which is indicated in Figure 1.

Figure 1. A compartment diagram of the COVID-19 control system.

Let

x(t) = (S(t), P(t), A(t), I(t), TA(t), TI(t), RU(t), RR(t))T ≜ (x1(t), · · · , x8(t))T .

According to refs. [36,37], we can obtain the existence, uniqueness, and non-negativeness
of solution x(t) of the COVID-19 system, whose set is denoted as X.
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2.1. Control Reproduction Number

Let P(t) = 0, A(t) = 0, I(t) = 0, TA(t) = 0, TI(t) = 0; we can obtain the disease-
free equilibria (N(0), 0, 0, 0, 0, 0, 0, 0). And we calculate the control reproduction number
according to ref. [38]:

Rc(u) =
βP(t)[1 − u(t)]

α
+

βA(t)[1 − u(t)][1 − σ(t)]
µ(t) + γU(t) + λ(t)

+
β I(t)[1 − u(t)]{µ(t) + σ(t)[γU(t) + λ(t)]}

λ(t)[µ(t) + η(t) + λ(t)]
.

For u = 0, the control reproduction number Rc(u) transforms into the basic reproduc-
tion number:

R0(t) =
βP(t)

α
+

βA(t)[1 − σ(t)]
µ(t) + γU(t) + λ(t)

+
β I(t){µ(t) + σ(t)[γU(t) + λ(t)]}

λ(t)[µ(t) + γU(t) + λ(t)]
.

where Rc(u) and R0(t) are the functions of time. We will show their change trend on the
numerical aspect later.

2.2. Parameter Identification

In the control system of COVID-19, the variables βP(t), βA(t), β I(t), γU(t), γA(t),
γI(t), σ(t), µ(t) and λ(t) are unknown. To estimate them, the control variable u(t) is set to
zero in the control system. Let

p(t) = (βP(t), βA(t), β I(t), γU(t), γA(t), γI(t), σ(t), µ(t), λ(t))T .

Next, we use the parameter identification method to determine p(t).
We aim to make the COVID-19 system without control describe the spreading process

better. For this, we put forward the following objective functional:

L1(p) =
∫ T

0

[
|TA(p; t)− Adata(t)|

Adata(t)
+

|TI(p; t)− Idata(t)|
Idata(t)

+
|RR(p; t)− Rdata(t)|

Rdata(t)

]
dt, (3)

which means the accumulative relative errors between the output of the control system and
the official data. Adata(t), Idata(t), and Rdata(t) denote the official data of the asymptomatic,
symptomatic, and removed individuals at time t. We introduce

L2(p) =
T∨
0

βP(t) +
T∨
0

βA(t) +
T∨
0

β I(t), (4)

to describe the total variation in the infection rates, the definition of which is shown in
refs. [39,40]. Thus, the objective functional is

L(p) = L1(p) + aL2(p), (5)

where a ≥ 0 is a given weighting factor.
Moreover, the infection rate of symptomatic individuals is the largest among the

three kinds of infected individuals, that is,

βP(t) < β I(t), βA(t) < β I(t). (6)

In addition, since the removed time for symptomatic individuals is longer than that for
asymptomatic people, we have

γI(t) < γU(t), γI(t) < γA(t). (7)
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Therefore, based on (3)–(7), we propose an identification problem (IP for short):

(IP) min L(p),

s.t.



x(p; t) ∈ X,
βP(t) ≤ β I(t), βA(t) ≤ β I(t),
γI(t) ≤ γU(t), γI(t) ≤ γA(t),
σmin ≤ σ(t) ≤ σmax,
λmin ≤ λ(t) ≤ λmax,
µ(t) ≤ µmax,
γmin

U ≤ γU(t) ≤ γmax
U ,

γmin
A ≤ γA(t) ≤ γmax

A ,
γmin

I ≤ γI(t) ≤ γmax
I ,

0 ≤ p(t) ≤ 1, t ∈ [0, T].

where 0 < σmin < σmax < 1, 0 < λmin < λmax ≤ 1, 0 < µmax < 1, 0 < γmin
U < γmax

U < 1,
0 < γmin

A < γmax
A < 1, 0 < γmin

I < γmax
I < 1.

To solve the above problem, we construct a mixed algorithm; its steps are as follows:

Step 1o. Guess x(0), a ≥ 0, ε1 ≥ 0, ε2 > 0, m1 ∈ Z+, m2 ∈ Z+, m ∈ Z+, Nd ∈ Z+, m1 > m2.
Step 2o. Divide the interval [0, T] into m segments: 0 = t0 ≤ t1 ≤ · · · ≤ tm = T. Introduce

the following objective functional:

L̃(p) =
m

∑
i=0

[
|TA(p; ti)− Adata(ti)|

Adata(ti)
+

|TI(p; ti)− Idata(ti)|
Idata(ti)

+
|RR(p; ti)− Rdata(ti)|

Rdata(ti)

]

+a
m−1

∑
i=0

[|βP(p; ti+1)− βP(p; ti)|+ |βA(p; ti+1)− βA(p; ti)|+ |β I(p; ti+1)− β I(p; ti)|].

Then, the problem (IP) can be transformed into the following problem (NIP for short):

(NIP) min L̃(p),

s.t.



x(p; ti) ∈ X,
βP(ti) ≤ β I(ti), βA(ti) ≤ β I(ti),
γI(ti) ≤ γU(ti), γI(ti) ≤ γA(ti),
σmin ≤ σ(ti) ≤ σmax,
λmin ≤ λ(ti) ≤ λmax,
µ(ti) ≤ µmax,
γmin

U ≤ γU(ti) ≤ γmax
U ,

γmin
A ≤ γA(ti) ≤ γmax

A ,
γmin

I ≤ γI(ti) ≤ γmax
I ,

0 ≤ p(ti) ≤ 1, i ∈ Zm.

Step 3o. Randomly generate m1 groups of initial values

p̃0
i (0) =

i (βP(0), βA(0), βI(0), γU(0), γA(0), γI(0), σ(0), µ(0), λ(0))T ≜ p̃0
i , i ∈ Zm1 .

Let p̃k
i (t)(i ∈ Zm1) denote the kth iteration identification variable by the ith initial

value p̃0
i . Set k = 0.

Step 4o. For every p̃0
i (i ∈ Zm1), use the interior algorithm to solve the problem (NIP), and

obtain p̃k+1
i .
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Solving constrained optimization problems using interior-point methods is equivalent
to solving a series of approximate minimization problems. In the context of the (NIP)
problem, let x(p; t) ∈ X denote the equality constraint h(p), and let other inequality
constraints be denoted as g(p). Construct the following series of approximation problems:

min
p,s

L̃µj(p, s) = min
p,s

L̃(p)− µ ∑
j

ln(sj), s.t. s ≤ 0, h(p) = 0, g(p) + s = 0.

During the process of solving the approximation problems, if the problem exhibits local
convexity around the current iteration, Newton’s method is employed for resolution.
However, if it is non-convex, a trust region algorithm is applied instead.

Judge whether the stop condition is met: if the optimality tolerance is smaller than ε1
or k > Nd holds, output p̃⋆

i = p̃k+1
i , and turn to Step 5o; otherwise, set k = k + 1.

Step 5o. From the m1 groups of p̃⋆
i (i ∈ Zm1), choose m2 groups which satisfy the constraint

conditions and take them as the initial population. Let

p̂l(t) = (βP(t), βA(t), β I(t), γU(t), γA(t), γI(t), σ(t), µ(t), λ(t))T
l ,

be the lth iteration identification variable. Set l = 0.

Step 6o. Use the genetic algorithm to solve the problem (NIP), and find p̂l+1. Judge whether

the stop condition is satisfied: if
∣∣∣L̃(p̂l+1

)
− L̃

(
p̂l
)∣∣∣ ≤ ε2, output the optimal

solution p∗ = p̂l+1; otherwise, set l = l + 1.

3. Optimal Control Problem

To control the disease with effect, we propose two objectives during the epidemic period:

J1(u) =
∫ T

0

S(t)[βP(t)P(t) + βA(t)A(t) + β I(t)I(t)]
N(t)

dt,

J2(u) =
∫ T

0
u2(t)dt.

where J1(u) denotes the newly increased number of infected individuals and J2(u) denotes
the costs of control measures. We introduce the following the combination functional with
two coefficients C1(≥ 0) and C2(≥ 0) :

J(u) = C1
J1(u)
J1(0)

+ C2
J2(u)
J2(1)

.

where J1(0) is the newly increased number of infected individuals without control and
J2(1) is the control cost with u ≡ 1.

The goal is to minimize the epidemic size and control costs simultaneously. Therefore,
we put forward the following optimal control problem (OCP for short):

(OCP) min J(u),

s.t.

{
x(u; t) ∈ X,
0 ≤ u(t) ≤ 1.

Based on ref. [41], we can obtain that there exists an optimal control u∗(t) which is the
optimal solution of the problem (OCP). Next, we will present the characterization of the
optimal control.
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Theorem 1. Let u∗(t) be the optimal control of the problem (OCP) andX∗ = (S∗(t), P∗(t), A∗(t),
I∗(t), T∗

A(t), T∗
I (t), R∗

U(t), R∗
R(t))

T denote the corresponding solution of the control system. Then,
there exist continuous functions yk(t)(k ∈ {S, P, A, I, TA, TI, RU, RR}) satisfying the follow-
ing system:

y′S(t) =
{
[1 − u∗(t)][yS(t)− yP(t)]− C1

J1(0)

}
· [N∗(t)−S∗(t)][βP(t)P∗(t)+βA(t)A∗(t)+β I(t)I∗(t)]

(N∗)2(t) ,

y′P(t) =
{
[1 − u∗(t)][yS(t)− yP(t)]− C1

J1(0)

}
· S∗(t){βP(t)[N∗(t)−P∗(t)]+βA(t)A∗(t)+β I(t)I∗(t)}

(N∗)2(t) ,

y′A(t) =
{
[1 − u∗(t)][yS(t)− yP(t)]− C1

J1(0)

}
· S∗(t){βA(t)[N∗(t)−A∗(t)]+βP(t)P∗(t)+β I(t)I∗(t)}

(N∗)2(t)

+ µ(t)[yA(t)− yI(t)] + γU(t)[yA(t)− yRU(t)] + λ(t)[yA(t)− yTA(t)],

y′I(t) =
{
[1 − u∗(t)][yS(t)− yP(t)]− C1

J1(0)

}
· S∗(t){β I(t)[N∗(t)−I∗(t)]+βP(t)P∗(t)+βA(t)A∗(t)}

(N∗)2(t)

+ λ(t)[yI(t)− yTI(t)],

y′TA(t) =
{
[1 − u∗(t)][yP(t)− yS(t)] +

C1
J1(0)

}
· S∗(t)[βP(t)P∗(t)+βA(t)A∗(t)+β I(t)I∗(t)]

(N∗)2(t)

+ µT(t)[yTA(t)− yTI(t)] + γA(t)[yTA(t)− yRR(t)],

y′TI(t) =
{
[1 − u∗(t)][yP(t)− yS(t)] +

C1
J1(0)

}
· S∗(t)[βP(t)P∗(t)+βA(t)A∗(t)+β I(t)I∗(t)]

(N∗)2(t)

+ γI(t)[yTI(t)− yRR(t)],

y′RU(t) =
{
[1 − u∗(t)][yP(t)− yS(t)] +

C1
J1(0)

}
· S∗(t)[βP(t)P∗(t)+βA(t)A∗(t)+β I(t)I∗(t)]

(N∗)2(t) ,

y′RR(t) =
{
[1 − u∗(t)][yP(t)− yS(t)] +

C1
J1(0)

}
· S∗(t)[βP(t)P∗(t)+βA(t)A∗(t)+β I(t)I∗(t)]

(N∗)2(t) ,

with transversality conditions

yS(T) = yP(T) = yA(T) = yI(T) = yTA(T) = yTI(T) = yRU(T) = yRR(T) = 0.

And the optimal control u∗(t) is presented by

u∗(t) = min
{

max
{

0,
S∗(t)J2(1)[yP(t)− yS(t)][βP(t)P∗(t) + βA(t)A∗(t) + β I(t)I∗(t)]

2C2 N∗(t)

}
, 1
}

. (8)

Proof. We construct a Hamilton function:

H =
S(t)[βP(t)P(t) + βA(t)A(t) + βI(t)I(t)]

N(t)J1(0)
+

u2(t)
J2(1)

+ yS(t)S′(t) + yP(t)E′(t)

+yA(t)A′(t) + yI(t)I′(t) + yTA(t)T′
A(t) + yTI(t)T′

I(t) + yRU(t)R′
U(t) + yRR(t)R′

R(t)

=
S(t)[βP(t)P(t) + βA(t)A(t) + βI(t)I(t)]

N(t)J1(0)
+

u2(t)
J2(1)

+yS(t)
{
−S(t)[1− u(t)]

βP(t)P(t) + βA(t)A(t) + βI(t)I(t)
N(t)

}
+yP(t)

{
S(t)[1− u(t)]

βP(t)P(t) + βA(t)A(t) + βI(t)I(t)
N(t)

− αP(t)
}

+yA(t){α[1− σ(t)]P(t)− [µ(t) + γU(t) + λ(t)]A(t)}
+yI(t)[ασ(t)P(t) + µ(t)A(t)− λ(t)I(t)]
+yTA(t){λ(t)A(t)− [µT(t) + γA(t)]TA(t)}
+yTI(t)[λ(t)I(t)− γI(t)TI(t) + µT(t)TA(t)]
+yRU(t)[γU(t)A(t)] + yRR(t)[γA(t)TA(t) + γI(t)TI(t)].
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Applying the Pontryagin’s minimum principle, we have

y′S(t) = − ∂H
∂S

=

{
[1− u(t)][yS(t)− yP(t)]−

C1

J1(0)

}
· [N(t)− S(t)][βP(t)P(t) + βA(t)A(t) + βI(t)I(t)]

N2(t)
,

y′P(t) = − ∂H
∂P

=

{
[1− u(t)][yS(t)− yP(t)]−

C1

J1(0)

}
· S(t){βP(t)[N(t)− P(t)] + βA(t)A(t) + βI(t)I(t)}

N2(t)
,

y′A(t) = − ∂H
∂A

=

{
[1− u(t)][yS(t)− yP(t)]−

C1

J1(0)

}
· S(t){βA(t)[N(t)− A(t)] + βP(t)P(t) + βI(t)I(t)}

N2(t)
+ µ(t)[yA(t)− yI(t)] + γU(t)[yA(t)− yRU(t)] + λ(t)[yA(t)− yTA(t)],

y′I(t) = − ∂H
∂I

=

{
[1− u(t)][yS(t)− yP(t)]−

C1

J1(0)

}
· S(t){βI(t)[N(t)− I(t)] + βP(t)P(t) + βA(t)A(t)}

N2(t)
+ λ(t)[yI(t)− yTI(t)],

y′TA(t) = − ∂H
∂TA

=

{
[1− u(t)][yP(t)− yS(t)] +

C1

J1(0)

}
· S(t)[βP(t)P(t) + βA(t)A(t) + βI(t)I(t)]

N2(t)
+ µT(t)[yTA(t)− yTI(t)] + γA(t)[yTA(t)− yRR(t)],

y′TI(t) = − ∂H
∂TI

=

{
[1− u(t)][yP(t)− yS(t)] +

C1

J1(0)

}
· S(t)[βP(t)P(t) + βA(t)A(t) + βI(t)I(t)]

N2(t)
+ γI(t)[yTI(t)− yRR(t)],

y′RU(t) = − ∂H
∂RU

=

{
[1− u(t)][yP(t)− yS(t)] +

C1

J1(0)

}
· S(t)[βP(t)P(t) + βA(t)A(t) + βI(t)I(t)]

N2(t)
,

y′RR(t) = − ∂H
∂RR

=

{
[1− u(t)][yP(t)− yS(t)] +

C1

J1(0)

}
· S(t)[βP(t)P(t) + βA(t)A(t) + βI(t)I(t)]

N2(t)
.

And,

∂H
∂u

=
2uC2

J2(1)
+

S(t)[yS(t)− yP(t)][βP(t)P(t) + βA(t)A(t) + β I(t)I(t)]
N(t)

= 0.

Solving for u(t) yields

u(t) =
S(t)J2(1)[yP(t)− yS(t)][βP(t)P(t) + βA(t)A(t) + β I(t)I(t)]

2C2N(t)
.

Using the standard argument for bounds 0 ≤ u(t) ≤ 1, one obtains (8).

4. Numerical Results
4.1. Data Description and Parameter Value

We collected the epidemic data of Shanghai from 1 March to 30 May 2022 from the
official website of Shanghai Municipal Health Commission [42]. These data include the
daily confirmed cases in the hospital, the daily asymptomatic carriers under medical
observation, the daily cases from the asymptomatic to the confirmed, the cumulative
asymptomatic cases discharged from medical observation, the cumulative cured cases
discharged from the hospital, and the cumulative death cases. We take the time unit as
one day.

According to the 2022 Shanghai Statistics Yearbook [43], the total population of Shang-
hai at the end of 2021 was 24,894,300. So, we set the initial value of the susceptible
individuals as 24,894,300. At the beginning of the epidemic, there was one confirmed case
in Putuo District and ten asymptomatic cases; one asymptomatic case was discharged from
medical observation from 0:00 to 24:00 on 1 March 2022. So, TI(0) is set as 1, TA(0) is set as
10, and RR(0) is set as 1. Other initial values are indicated in Table 1.
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Table 1. Initial values of the COVID-19 system.

Parameter Value Source

S(0) 24,894,300 [43]
P(0) 0 Estimated
A(0) 14 Estimated
I(0) 2 Estimated
TA(0) 10 [42]
TI(0) 1 [42]
RR(0) 1 [42]
RU(0) 0 Estimated

Ref. [44] points out that the incubation period of the Omicron variant mostly ranges
from 2 to 4 days. Thus, α is set to 1

3 . The ratio σ is calculated based on the data of the
daily confirmed cases and the daily asymptomatic cases. Its minimum and maximum
are 0.0192 and 0.4458, respectively. Ref. [45] introduces the fact that several rounds of
nucleic acid screening were performed during the epidemic period in Shanghai; thus,
we estimate the range of the tested rates to be from 2

3 to 1. According to the data of the
daily confirmed cases and the daily asymptomatic cases, µmax is taken as 0.02693. For
the asymptomatic individuals, we set γmax

U = γmax
A = 1

3 and γmin
U = γmin

A = 1
40 . For the

symptomatic individuals, the length of stay in the hospital is 6 days [12], so we estimate
γmax

A = 1
6 ; moreover, symptom disappearance takes 2 to 3 months [46], so we set γmin

I = 1
60 .

In reference to the parameters associated with genetic algorithms, this paper assigns the
population size as ps, the crossover rate as cr, and the mutation rate as mr, and denotes the
maximum number of iterations for algorithm termination as Nm. The parameter values in
the control system, problem (IP), and genetic algorithm are shown in Table 2.

Table 2. Parameter values throughout this article.

Parameter Value Source Parameter Value Source

α 1
3 [44] γmax

U
1
3 Estimated

σmin 0.0192 [42] γmin
U

1
40 Estimated

σmax 0.4458 [42] a 1 Estimated
λmin

2
3 Estimated ε1 10−6 Estimated

λmax 1 Estimated ε2 10−6 Estimated
µmax 0.02693 [42] ps 100 Estimated
γmin

I
1
60 [46] cr 0.8 Estimated

γmax
I

1
6 [12] mr 0.2 Estimated

γmin
A

1
40 Estimated Nm 5 × 103 Estimated

γmax
A

1
3 Estimated Nd 10 × 103 Estimated

The numerical simulations in this study were conducted on a personal computer
equipped with an AMD Ryzen 5 5600 G processor, operating at a frequency of 3.9 GHz,
alongside 32 GB of DDR4 memory, and a 500 GB SSD hard drive. The computer ran on the
Windows 10 operating system (64-bit). MATLAB R2021a served as the primary numerical
computing tool. All experiments were performed locally on the computer, without the use
of remote computing resources.

4.2. Parameter Identification

Using the mixed algorithm and the parameter values in Tables 1 and 2, we obtain the
results of the identified parameters indicated in Figure 2. In Figure 2, we can observe that
the infection rate of symptomatic individuals is the highest among the three infection rates.

To validate the rationality of the identified results, we simulate the real-time number
of infected individuals with these values and compare them to the actual data shown in
Figure 3. From Figure 3, we can see that the simulation results with the identification
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parameters are consistent with the actual process. In addition, we calculate the coefficients
of determination as

R2
TA = 0.9693, R2

TI = 0.9906, R2
RR = 0.9989.

Thus, we can conclude that the obtained identification parameters are practical and applicable.

Figure 2. The obtained identification parameters.
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Figure 3. Comparisons of simulation results with the identification parameters to official data.

4.3. Optimal Control

Employing the Runge–Kutta scheme and the forward–backward sweep method, we
present the optimal controls with different combinations of coefficients based on Theorem 1.

Our purpose is to show the control costs corresponding to the different infection peaks
by adjusting C1 and C2. Five combinations of C1 and C2 are shown in Table 3. The optimal
controls u∗(t) corresponding to the five combinations of C1 and C2 are indicated in Figure 4.
We introduce the factor ρ, which is the ratio of the maximum number of tested symptomatic
individuals with optimal controls to the official maximum. The maximum number of
reported confirmed cases is 25,010 [42], so ρ = max{TI(u∗)}

25,010 . We can assess the effects of
optimal control measures on epidemic peaks using the factor ρ. Case 2, Case 3, and Case 4
can control the epidemic peak to about 50%, 10%, and 5% of the reported maximum, which
correspond to 12,537; 2501; and 1250 people. The maximums of the tested symptomatic
individuals for Case 1 and Case 5 are 23,194 and 1174, which correspond to two extremes.
For C1 < 1, the control measures do not work; for C1 > 1258, the infection peak cannot
decline. And the optimal newly increased number of infected individuals and the optimal
costs for five cases are also shown in Table 3. We can see that the epidemic peak becomes
smaller with the optimal epidemic size decreasing and the optimal control costs enlarging.
From Figure 4, we can observe that the optimal controls decrease with time in general. With
the increases in C1, the control costs increase. From Table 3 and Figure 4, we can conclude
that greater control costs indicates better effects in the interval [1, 1258] of C1.
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Figure 4. Optimal controls with different combinations of C1 and C2.

Table 3. Combinations of C1, C2, and optimal values.

Case 1 Case 2 Case 3 Case 4 Case 5

C1 1 28 451 1158 1258
C2 1 1 1 1 1
ρ 92.7395% 50.1279% 10% 4.9980% 4.6941%

J1(u∗) 655,816 359,886 73,119 36,700 34,466
J2(u∗) 0.0002 0.0440 0.5146 0.8742 0.9116

Using the five coefficient combinations in Table 3 and the optimal controls in Figure 4,
we show comparisons of the infected and removed individuals in Figures 5 and 6. In
Figure 5, the number of infected individuals with optimal controls is lower than the
reported data during the epidemic period. We present the maximums of the number of
infected individuals with optimal controls for five cases. For Case 1, the maximum numbers
of pre-symptomatic, asymptomatic, tested asymptomatic, and symptomatic individuals
are about 123,798; 36,025; 245,117; and 3067. For Case 2, the maximum numbers of pre-
symptomatic, asymptomatic, tested asymptomatic, and symptomatic individuals are about
65,636; 19,113; 132,385; and 1626. For Case 3, the maximum numbers of pre-symptomatic,
asymptomatic, tested asymptomatic, and symptomatic individuals are 12,371; 3609; 26,353;
and 304. For Case 4, the maximum numbers of pre-symptomatic, asymptomatic, tested
asymptomatic, and symptomatic individuals are about 6007; 1754; 13,127; and 147. For
Case 5, the maximum numbers of pre-symptomatic, asymptomatic, tested asymptomatic,
and symptomatic individuals are 5624; 1642; 12,319; and 138. We find that all maximums
with optimal controls are less than those without control or the official data. In Figure 6,
we show the removed individuals with different combinations. The maximum numbers of
undetected and reported individuals are about 77,780 and 597,816 for Case 1; 41,943 and
323,661 for Case 2; 8062 and 63,496 for Case 3; 3941 and 31,379 for Case 4; and 3692 and
29,428 for Case 5. From Figures 5 and 6, we can see that the optimal control measures with
five cases are effective and can provide reference for decision-makers.

Figure 7 shows the time-variant control reproduction number with different combi-
nations of C1 and C2. The black curve denotes the basic reproduction number R0. The
time-variant control reproduction numbers are higher than one. The control reproduction
numbers with different combinations of C1 and C2 are lower than the basic reproduction
number during the epidemic period.
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Figure 5. Numerical comparison of infected individuals with optimal controls to those without
control and official data under different combinations C1 and C2.

0

8,150

16,300

24,450

32,600

40,750

48,900

57,050

65,200

73,350

81,500

0

820

1640

2460

3280

4100

4920

5740

6560

7380

8200

 Without Control
 C1=1,C2=1

 C1=28,C2=1

 C1=451,C2=1

 C1=1158,C2=1

 C1=1258,C2=1

 R
U
(t

)

 

 

3/1 3/16
t / Year of 2022

3/31 4/15 4/30 5/15 5/30

  

 

 3/1 3/16 3/31 4/15 4/30 5/15 5/30

0

63,000

126,000

189,000

252,000

315,000

378,000

441,000

504,000

567,000

630,000

0

6500

13000

19500

26000

32500

39000

45500

52000

58500

65000

 Official data
 C1=1,C2=1

 C1=28,C2=1

 C1=451,C2=1

 C1=1158,C2=1

 C1=1258,C2=1

R
R
(t

)

 

 

3/1 3/16
t / Year of 2022

3/31 4/15 4/30 5/15 5/30

 

 

 

 

3/1 3/16 3/31 4/15 4/30 5/15 5/30

Figure 6. Numerical comparison of removed individuals with optimal controls to those without
control and official data under different combinations of C1 and C2.



Mathematics 2024, 12, 1484 13 of 15

Figure 7. The control reproduction number with different combinations of C1 and C2.

5. Conclusions

The purpose of this paper is to minimize the epidemic size and the control costs
simultaneously. A control epidemic system of COVID-19 was established. We derived the
control reproduction number. To estimate the time-varying parameter in the control system,
we applied the parameter identification method and constructed a mixed algorithm to
solve it. An optimal control problem with two objective functions was presented. We used
the official data of Shanghai in 2022 to perform the numerical simulations. The optimal
control measures with five coefficient combinations were presented.

The parameter identification method utilized in this study can be extrapolated to
other infectious disease models, facilitating a deeper examination of disparities between
parameters estimated via statistical methods. Drawing from official data from Shanghai in
2022, this paper deliberates optimal control strategies, elucidating the varying impacts of
different control measures on epidemic peaks. These research findings furnish invaluable
benchmarks for potential future outbreaks of similar diseases, equipping decision-makers
with strategic insights. Table 3 showcases optimal control strategies across five distinct
combinations, paving the way for the delineation of diverse optimal control objectives in
the future and the exploration of their ramifications on epidemic peaks.
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