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Abstract: Predictive maintenance (PdM) is one of the most powerful maintenance techniques based
on the estimation of the remaining useful life (RUL) of machines. Accurately estimating the RUL
is crucial to ensure the effectiveness of PdM. However, current methods have limitations in fully
exploring condition monitoring data, particularly vibration signals, for RUL estimation. To address
these challenges, this research presents a novel Robust Multi-Branch Deep Learning (Robust-MBDL)
model. Robust-MBDL stands out by leveraging diverse data sources, including raw vibration signals,
time–frequency representations, and multiple feature domains. To achieve this, it adopts a specialized
three-branch architecture inspired by efficient network designs. The model seamlessly integrates
information from these branches using an advanced attention-based Bi-LSTM network. Furthermore,
recognizing the importance of data quality, Robust-MBDL incorporates an unsupervised LSTM-
Autoencoder for noise reduction in raw vibration data. This comprehensive approach not only
overcomes the limitations of existing methods but also leads to superior performance. Experimental
evaluations on benchmark datasets such as XJTU-SY and PRONOSTIA showcase Robust-MBDL’s
efficacy, particularly in rotating machine health prognostics. These results underscore its potential for
real-world applications, heralding a new era in predictive maintenance practices.

Keywords: remaining useful life; industrial prognostics; rotating machines; deep learning; multimodal
neural network

MSC: 68T20

1. Introduction

Accurately estimating the remaining useful life (RUL) plays a pivotal role in predic-
tive maintenance for rotating machines. The prediction of RUL has garnered significant
attention from both academic researchers and industry professionals. This is because accu-
rately predicting RUL can significantly enhance the effectiveness of predictive maintenance,
leading to increased machine reliability and reduced incidences of failures and associated
repair costs.

Existing RUL prediction models generally fall within two primary categories: the
model-based [1,2] and the data-driven approaches [3,4]. The model-based approach relies
on a certain level of physical knowledge about machine degradation to predict RUL, such as
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employing theories of the Paris law for bearing defect growth [5] and reliability laws [6–8].
However, integrating such physical knowledge into models can be challenging, especially
concerning complex machinery where such insights might not always be readily available.

The advent of Industrial Internet of Things (IIoT) technologies has facilitated the
accumulation of extensive data (evidenced by benchmark datasets for RUL detection,
e.g., [9,10]). This influx of data has significantly bolstered the application of the data-driven
approach for RUL detection. Unlike model-based methods, the data-driven approach
primarily relies on collected data, enabling its application to complex machines/systems
without a prerequisite for extensive physical knowledge.

Machine Learning (ML) is a popular data-driven approach that has been extensively
used in predicting the RUL of rotating machines. Several studies, including [11–14], have
employed well-known ML models such as Linear Regression (LR), Random Forest (RF),
and Support Vector Machines (SVM) to forecast RUL. However, these methods have some
significant drawbacks, such as suboptimal performance due to inflexible mathematical
formulas and time-consuming computations for big input data. Therefore, there has
been a significant shift towards Deep Learning (DL) [15,16] in preference to traditional
ML techniques.

In the literature, several DL models have been proposed to estimate the RUL of rotating
machines. These models often consist of simple neural network architectures, including
a series of several Long Short-Term Memory (LSTM) or convolutional layers [3,17,18].
The convolutional layers are directed towards the identification of spatial dependencies
within time series data, while the LSTM layers excel at identifying and capturing long-term
correlations. These models provide better results compared to ML models; however, their
performance is still limited due to their simple architecture, which does not allow for
the deep extraction of different vibration features. The aim of this work is to develop a
deep learning model with an advanced architecture that can efficiently extract vibration
features and provide a more accurate estimation of the remaining useful life (RUL) of
rotating machinery.

2. Related Work and Contributions

Recent advancements in deep learning have shown great potential in accurately
predicting remaining useful life (RUL). One effective technique is to combine multiple deep
learning networks, such as the convolutional neural network (CNN), LSTM, Autoencoder,
and Transformer, to leverage their individual strengths. Hinchi and Tkiouat [19] proposed a
deep learning framework based on convolutional and LSTM units. The model extracts local
features directly from sensor data using a convolutional layer, captures the degradation
process using an LSTM layer, and finally estimates the RUL using the LSTM outputs. The
performance of the model was evaluated on the PRONOSTIA dataset. Zhu et al. [20] used
the wavelet transform to obtain a time–frequency representation (2D feature) instead of
using raw vibration data. They proposed a Multiscale CNN model that simultaneously
maintains global and local information, in contrast to a traditional CNN. The model showed
superior performance compared to the traditional CNN when tested on the PRONOSTIA
dataset. Mo et al. [21] proposed a combination of the Transformer encoder and gated
convolutional unit (GCU). While the Transformer encoder captures short-term and long-
term dependencies in time series, the GCU facilitates the consideration of local contexts at
each time step. The experimental study confirmed that the proposed model outperforms
the CNN, LSTM, and Auto-encoder models. In [18], the raw data are first denoised
using a Bi-LSTM autoencoder before being passed into the Transformer encoder for RUL
prediction. The denoising step’s effectiveness was confirmed through various experiments.
Wei et al. [22] presented a new approach called the self-adaptive graph convolutional
network (SAGCN) that incorporates a self-attention mechanism to capture the correlation
of features at different time points without using recurrent characteristics. The proposed
method was evaluated on the XJTU-SY dataset, and the results demonstrated its superiority
over existing data-driven methods, such as graph CNN, CNN-LSTM, CNN, and Generative
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Adversarial Network (GAN). Zheng et al. [23] utilized an autoencoder to extract crucial
features and minimize noise. They estimated the RUL using a deep reinforcement learning
model based on the Twin Delayed Deep Deterministic Policy Gradient algorithm (TD3).
The researchers proved that their model outperformed the LSTM and CNN models on
the XJTU-SY dataset. Xu et al. [24] and Al-Dulaimi et al. [25] introduced effective models
for the RUL estimation. These models include two parallel branches: one based on LSTM
and the other based on CNN. The outputs of these two branches are then combined by a
fully connected (FC) multilayer. Using parallel architecture, features are independently
extracted by two branches to maximize CNN and LSTM advantages. Experiment studies
have shown that these models outperform other existing models, such as deep CNN,
deep LSTM, and the multiobjective deep belief network, on both the PRONOSTIA and
XJTU datasets. Huang et al. [26] highlighted the significant role of operational data in
predicting RUL and proposed an architecture consisting of two parallel Bi-LSTM networks
to extract features from both raw and operational data. In 2021, Huang et al. [27] proposed a
novel parallel architecture consisting of a deep convolutional neural network (CNN) and a
multilayer perceptron (MLP). This architecture aims to extract informative representations
simultaneously from both raw data and 2D features. The model’s performance on the
XJTU-SY and PRONOSTIA datasets surpasses that of MLP, Bi-LSTM, and Multiscale-
CNN. Recently, Cheng et al. [28] developed a novel parallel model with two branches:
Bi-LSTM and Bi-directional Gated Recurrent Unit (Bi-GRU) to extract different 1D features
(frequency domain and time domain) and 2D features (time–frequency domain). The model
outperforms the Bi-LSTM, Bi-GRU, RNN, stacked denoising auto-encoder (SDAE), extreme
learning machine (ELM), and MLP on the XJTU-SY dataset.

Table 1 presents a summary of related work. Despite the numerous advantages, the
existing DL models have the following drawbacks:

• Most works only exploit a limited set of features or data, particularly raw data. This
can result in a loss of information and reduced performance of the models.

• The existing models typically have a maximum of two branches. These branches
consist of several layers of either CNN or LSTM. They lack the depth required to
efficiently extract complex vibration data.

• The linear fully connected layer (FC) used to fuse the different data branches is not
flexible or efficient enough for RUL prediction.

• The performance of current multi-branch models is adversely affected by noise and
anomaly data, which makes them less robust. Noise filtering is usually necessary to
ensure the models’ robustness [29].

Table 1. Summary of the related work.

Papers Input Data Branch Branch Architecture Fusion Number Noise Filtering

[19] Raw data 1 CNN + LSTM No No

[20] 2D feature 1 Multiscale CNN No No

[21] Raw data 1 Transformer + GCU No No

[18] Raw data 1 Transformer encoder No Yes

[22] Raw data 1 Graph CNN + Self-attention No No

[23] Raw data 1 Reinforcement learning No Yes

[24] Raw data 2 LSTM + CNN FC No

[25] Raw data 2 LSTM + CNN FC No

[26] Raw data 2 Bi-LSTM + Bi-LSTM FC No+ Operational data

[27] Raw data 2 DCNN + MLP FC No+ 2D feature

[28] 1D feature 2 Bi-LSTM + Bi-GRU FC No+ 2D feature
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To address the above limitations, this study proposes a Robust Multi-Branch Deep
Learning (Robust-MBDL) model. This model comprises three branches specifically de-
signed to predict the RUL based on vibration data from rotating machinery. The Robust-
MBDL model has the following advantages:

1. Maximum Information exploitation: Multiple types of input data are considered,
including raw vibration signals, 11 time-domain features, three frequency-domain
features (1D data), and time–frequency representation (TFR) features generated by
Wavelet transformation (2D data). The use of raw vibration data, along with their
features, and operational condition information, improves the learning capacity of
our model while preserving important information.

2. Specialized Architecture consisting of three DL branches: Efficiently extracting various
types of features requires different network architectures. This paper introduces the
Robust-MBDL model, employing an advanced architecture consisting of three distinct
branches: a 1D data branch, a 2D data branch, and a raw data branch. These branch
architectures are largely adapted from the lightweight ResNet-34 architecture [30] and
the convolutional building block (CBB) [31]. They use skip connections to facilitate
learning, enabling the creation of complex models with many blocks, and improving
the ability to learn from complex vibration data.

3. Branches’ fusion via attention-based Bi-LSTM (AB-LSTM): By leveraging the outputs
of three data branches, the AB-LSTM fusion network focuses on significant features
and considers past and future information to provide an accurate prediction of RUL.

4. Noise Reduction using LSTM-Autoencoder: An unsupervised noise filter was devel-
oped based on the LSTM-Autoencoder architecture to reduce noise, remove abnormal
data from raw vibration signals, and thus enhance the model’s robustness [32,33].

The rest of this paper is organized as follows: Section 3 represents the high-level
architecture of our proposed Robust-MBDL model. We then comprehensively present
all the main components of our proposed model in Sections 4–7. Sections 8 and 9 show
our experimental setting and results. Finally, some conclusions drawn from this work are
presented in Section 10.

3. The High-Level Architecture of the Robust-MBDL Model

The architecture of our proposed Robust-MBDL consists of four primary components,
as shown in Figure 1.

• Noise filtering using LSTM-Autoencoder;
• Feature extraction;
• Health Indicators (HI) construction;
• Multi-branch deep learning (MBDL) network.

The process starts with data denoising and abnormal data clearing through an LSTM-
Autoencoder-based filter. The denoised data are then used to extract the different features
and also to construct the HI. Given the denoised data, 14 distinct 1D features (e.g., root mean
square and variance) and a 2D feature are extracted (i.e., the 2D feature is the spectrogram
obtained via the wavelet transform). The MBDL network is composed of three separate
branches that extract information from denoised data, 1D features, and 2D features. Two
blocks, AB-LSTM and GAP, follow each branch to proficiently handle the OC identification
and RUL prediction simultaneously.
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Figure 1. The high-level architecture of our proposed Robust-MBDL model.

4. Noise Filtering Using LSTM-Autoencoder

LSTM, a specialized form of RNN, effectively handles short- and long-term dependen-
cies in time series predictions by maintaining memory across numerous time steps. Unlike
traditional RNN, LSTM circumvents the vanishing gradient problem during training [34]. It
employs input, forget, and output gates to manage information flow, enabling the retention
of pertinent data and discarding unnecessary information. These mechanisms significantly
enhance the accuracy of time series predictions. The core of an LSTM cell involves several
gates regulating information flow: the input gate controls what enters the cell, the forget
gate manages what is removed from memory, and the cell state is updated by balancing
incoming and outgoing information, influencing the output and hidden state. Based on
these reasons, LSTM is applied in the proposed LSTM-Autoencoder model.

An autoencoder is an artificial neural network widely used for learning the hidden
patterns of unlabeled data. An autoencoder contains two parts: an encoder and a decoder.
The encoder maps the input data to hidden patterns and the decoder tries to reconstruct
the output from the hidden patterns. The autoencoder is trained to minimize the difference
between the input and the reconstructed output. The autoencoder has been successfully
applied to different problems such as dimension reduction, anomaly detection, noise
reduction, etc. Notably, both the encoder and decoder in an autoencoder are designed to
adapt the data types for better learning [35]. In our paper, the proposed autoencoder is used
to reduce the noise in vibration data. To this end, the encoder and decoder are composed of
LSTM layers recently mentioned to explore the short- and long-term dependencies of the
vibration data. The detailed structure of our LSTM-Autoencoder is presented in Figure 2.

For more detail, the architecture contains two LSTM layers with 64 and 512 cells.
To enhance model robustness, ReLU activation and dropout layers are added after each
LSTM layer, inspired by Kunang et al. [36]. Moreover, a repeat vector layer is employed to
duplicate the previous vector. Finally, a time-distributed layer is applied to each temporal
slice of the input data. During the training process, the following mean squared error (MSE)
is minimized [37].

LAutoencoder =
T

∑
t=1

[ fAutoencoder(x(t))− x(t)]2, (1)
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where T represents the total number of segments within the training data. fAutoencoder(x(t))
denotes the LSTM-Autoencoder output derived from the input x(t) at time t.

Input layer
(None, l, 2)

LSTM, 512, seq=True

LSTM, 64, seq=False

LSTM, 512, seq=True

LSTM, 64, seq=True

Repeat vectors, 2

ReLU
Dropout

ReLU
Dropout

ReLU
Dropout

ReLU
Dropout

TimeDistributed(ReLU(Linear layer))

Output layer
(None, l, 2)

En
co
di
ng

De
co
di
ng

Figure 2. The architecture of LSTM-Autoencoder.

The optimization process involves minimizing LAutoencoder via Adam Optimization [38].
This proposed LSTM-Autoencoder is crucial for denoising vibration signals, strengthening
the overall Robust-MBDL model towards higher resilience.

5. Health Indicator (HI) Construction

The purpose of this step is to determine the remaining useful life (RUL) at every time
step. We employ two popular methods for this purpose: HI construction based on the first
prediction time (HI-FPT), which is inspired by the work of Huang et al. (2021) [27], and HI
construction based on Principal Component Analysis (PCA) using the Euclidean distance
metric (HI-PCA), as explained in detail in Xu et al. (2022) [24].

5.1. HI-FPT

Most industrial equipment, including rotating machines, tend to degrade only after
some time of operation. Trying to predict their remaining useful life (RUL) before any
signs of degradation is unreliable and unnecessary. Hence, it is crucial to detect the initial
degradation time, also known as the “First Prediction Time” (FPT) point. This time is
significant because it marks the point at which the RUL prediction becomes reasonable. In
this paper, the 3σ method, which has been recognized as a simple but efficient method to
detect the FPT point according to the literature [39,40], is applied. This method comprises
two phases, which are explained below:
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• Learning phase: We first select the data in the period in which degradation does not
exist, denoted (1, T0). The mean µ and the standard deviation σ are calculated from
the selected data as follows:

µ =
1
T0

T0

∑
i=1

xi and σ =

√√√√ 1
T0

T0

∑
i=1

(xi − µ)2 (2)

where xi represents the ith data point.
• Detecting phase: If there exist two consecutive data points that are out of the normal

interval [µ− 3σ, µ+ 3σ], the second point is considered as the FPT point. The condition
of two consecutive points is used to reduce the likelihood of making a wrong decision
due to noise.

The RUL is a function that increases linearly over time. Its maximal value is equal to 1 at
the FPT point and decreases to 0 at the failure time, denoted by tN . The value of RUL at an
instant t ∈ [FPT, tN ] is calculated as follows:

RULt =
tN − t

tN − FPT
. (3)

5.2. HI-PCA

According to the HI-PCA method, the RUL values are determined based on the covari-
ance matrix V calculated by PCA [24]. This matrix displays the shared features between
time series data and its neighboring points, which accurately reflect the surrounding points’
degradation trend. The calculation of the RUL value at tth time involves determining the
average Euclidean distance from that point in V to its sequential neighboring points.

RULt =
1
2
(

√√√√ k

∑
j=1

(Vj − V(t+1)j
)2 +

√√√√ k

∑
j=1

(Vj − V(t−1)j
)2) (4)

where k represents the kth principal component.

6. Feature Extraction

In this paper, we incorporate a comprehensive approach to feature extraction by
considering three essential categories: time domain, frequency domain, and time–frequency
domain features. Time domain features provide insights into the overall behavior of
vibration signals, capturing characteristics such as amplitude, mean, variance, and statistical
measures directly in the time dimension. These features enable the detection of changes
in signal morphology and amplitude, which are crucial for identifying early signs of
machinery degradation. On the other hand, frequency domain features offer valuable
information about the frequency content of the signals, aiding in the identification of fault-
related frequencies and patterns. Additionally, time–frequency domain features, which
combine both time and frequency information, provide a comprehensive understanding of
signal dynamics over time. By considering features from all three domains, our approach
enhances the signal-to-noise ratio and underscores relevant patterns in vibration data,
facilitating effective RUL prediction.

6.1. Time-Domain Features

Eleven popular time-domain features, including root mean square, variance, kurtosis,
etc., are used and reported in Table 2. These features have proved useful in detecting
machinery faults. They are simple and can be quickly calculated. However, it is difficult to
detect the change in frequencies based on these features.
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Table 2. Time-domain features.

No. Formula Features

1 RMS =
√

1
n ∑n

i=1 x2
i Root Mean Square

2 Var = 1
n ∑n

i=1(xi − x̄)2 Variance

3 PvT = max(|xi|) Peak value

4 c f = PvT
RMS Crest factor

5 Kur = ∑n
i=1

(xi−x̄)
n·var2 Kurtosis

6 Cl f = PvT
1
n ∑n

i=1 |xi | Clearance factor

7 SF = RMS
1
n ∑n

i=1 |xi | Shape factor

8 LI = ∑n
i=0 |xi+1 − xi| Line integral

9 PP = max(xi)− min(xi) Peak to peak value

10 Sk =
1
n ∑n

i=1(xi−x̄)3

(
√

1
n ∑n

i=1(xi−x̄)2)3
Skewness

11 IF = PvT
1
n ∑n

i=1 |xi | Impulse factor

6.2. Frequency-Domain Features

In reality, many types of bearing defects, such as outer race, inner race, or ball de-
fects, can be efficiently detected in the frequency domain with the Fast Fourier Transform
(FFT) [41]. We first used the FFT to convert the original signals to frequency-domain data.

Xk =
n−1

∑
j=0

xj · e−i2πkj/n (5)

where xj and Xk are the raw and frequency data, respectively.
The FFT transformation results are used to compute three frequency-domain features:

FFT peak-to-peak values, energy, and power spectral density. These features are listed in
Table 3. The features are a useful tool for stationary periodic signals but less effective for
non-stationary signals that arise from time-dependent events, such as motor startup or
changes in operating conditions.

Table 3. Frequency-domain features.

No. Formula Features

1 rk = ∑∞
i=−∞ x(t)e−iwt Peak-to-peak value of FFT

PvF = max(rk)

2 En = ∑N
k=1 rk Energy of FFT

3 PSD = ∑∞
k=−∞ rke−iwk Power spectral density of FFT

6.3. Time–Frequency Domain Features

To capture the changes in frequencies over time due to the dynamic operation of rotat-
ing machines, the time–frequency features are extracted by using the Wavelet Continuous
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Transform (CWT) [42]. The CWT uses a series of wavelets (small waves). The wavelet
transform of a continuous signal x(t) is defined as

CWT(a, b) =
1√

cψ|a|

∫ ∞

−∞
x(t)ψ

( t − b
a

)
dt (6)

where a in R and b in R+ are the location parameter and the scaling (dilation) parameter of
the wavelet, respectively. ψ(t) is the mother wavelet function, which is defined according to
the signal inputs. In the paper, the Morlet wavelet [43] was chosen. This mother wavelet is
similar to human perception (both hearing and vision). The formula for the Morlet wavelet
is as follows:

ψ(t) = e−
βt2
2 ejω0t (7)

where β = ω2
0 and cψ =

√
π/β.

It is important to mention that while feature extraction can help in predicting the
RUL by highlighting key patterns in the data, it can also result in the loss or distortion of
information. Therefore, in addition to the 1D and 2D features, we also incorporate denoised
data as the third input for our DL model.

7. Multi-Branch Deep Learning Network

Each type of feature recently mentioned has its own characteristics and, thus, requires
a specific learning mechanism. Therefore, the proposed MBDL model comprises three
individual learning branches that are designed to be compatible with each type of feature.

7.1. 1D Data Branch

This section is specifically tailored to explore the 1D data. To address this, we empiri-
cally developed a CNN-based architecture, illustrated in Figure 3.

4 conv, 28, same

4 conv, 56, same

2 avg pooling, valid

BN

ReLU

Dropout

2 avg pooling, valid

Input layer
(None, 2, 14)

Output layer
(None, 2, 56)

1D data branch
Figure 3. The architecture of the 1D data branch.
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The main elements of this branch consist of convolutional layers, pooling layers,
batch normalization (BN), dropout layers, and the Rectified Linear Unit (ReLU) activation
function layers. The convolutional layers perform operations that involve the dot product or
element-wise product between an input region, defined by a sliding window, and a trainable
kernel to extract pertinent information from the input data. This process generates a feature
map that encapsulates essential features from the entire input dataset. The ReLU activation
function, represented as ReLU(x) = max(0, x), introduces non-linear characteristics into
the network. Moreover, a batch normalization block is incorporated to optimize the
training process by reducing internal covariance shift and normalizing the inputs between
batches [44]. The pooling layers are integrated to decrease the dimensionality of the feature
map by reducing redundant information. Similar to the convolutional layers, a sliding
window traverses the feature map, and the average value (AVG pooling) within this
window is computed. This reduction in dimensionality aims to retain essential information
while improving computational efficiency.

It is important to note that the output dimension is larger than the input dimension.
The purpose of this extension is to provide a more detailed and comprehensive depiction
of the input information. By expanding the available space, the model becomes capable
of capturing more intricate and meaningful relationships between the features, which
ultimately improves its ability to learn from the data.

7.2. 2D Data Branch

This branch, as shown in Figure 4, is designed to process the 2D feature (time–
frequency domain features) obtained from the wavelet transform. The underlying structure
of this branch relies on ResNet-34 [30]. The ResNet-34 is a lightweight yet effective deep
learning architecture with 34 layers that utilizes residual blocks. It integrates shortcuts
and skip connections, facilitating the training of remarkably deep networks and mitigating
the complexities associated with identifying intricate features within data. In addition,
recognizing the limitations of traditional residual blocks in handling complex vibration data
with sudden changes, we propose replacing them with the convolutional building block
(CBB), proposed by Shaofeng Cai et al. in 2019 [31]. For more details, our 2D feature branch
consists of four groups of CBBs. Each group contains three, three, five, and two CBBs,
respectively. Finally, in each CBB, we employ batch normalization (BN), ReLU activation,
and a dropout layer with a dropout rate of 0.2.

7.3. Denoised Data Branch

The purpose of this branch is to analyze the vibration data that are directly obtained
from the denoising LSTM-Autoencoder. The direct explosion of the denoised vibration data
is important since the information may be lost or deformed during the extraction of 1D and
2D data. The architecture of this branch (see Figure 5) was designed as an extension of the
2D feature branch, specifically tailored to better explore the vibration features. In particular,
this branch consists of the same number of CBBs as that of our 2D feature branch; however,
1D convolutional layers were used instead of 2D convolutional layers. In addition, an
average pooling layer with a window size of 4 was added after each CBB to capture all
relevant features by considering their relationship, while the overall shape is smaller.



Mathematics 2024, 12, 1569 11 of 25

Input layer
(None, 128, 128, 2)
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BN
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(None, 4, 4, 512)

c=512, s=1

Output layer
(None, 4, 4, 512)

x3

x3

x5

x2

BN
ReLU

Dropout
3x3 conv, c, s
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Figure 4. The architecture of the 2D data branch.
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Input layer
(None, None, 2)

7 conv, 64, /2, same
BN

4 avg pooling, valid

1D CBB 
c=64, s=1

4 avg pooling, valid

1D CBB 
c=128, s=1

4 avg pooling, valid

1D CBB 
c=256, s=1

4 avg pooling, valid

1D CBB 
c=512, s=1

Output layer
(None, None, 512)

x3

x4

x6

x3

BN
ReLU

Dropout
3 conv, c, s

BN
ReLU

Dropout
3 conv, c

1D CBB 

ReLU

Figure 5. The architecture of the denoised data branch.

7.4. AB-LSTM and GAP

The AB-LSTM blocks are designed based on the Bi-LSTM architecture to optimize the
RUL prediction task. The Bi-LSTM integrates both forward and backward hidden layers.
This design allows the model to assimilate information from both past and future sequences,
proving superior in tasks like RUL prediction compared to traditional LSTM networks [45].
Furthermore, self-attention mechanisms are also used to assist the Bi-LSTM in identifying
significant input segments, leading to quicker convergence and improving the model
performance [46]. For more details, Vaswani et al. [47] describe attention mechanisms as
“mapping a query and a set of key-value pairs to an output, where the query, keys, values,
and output are all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function of the query
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with the corresponding key”. Let Q, K, and V denote the query, key, and value vectors,
respectively. The attention mechanism is described mathematically as follows:

Attention(Q, K, V) = So f tmax[
QK⊤
√

dk
]V (8)

and each head
Hi = Attention(QWQ

i , KWK
i , VWV

i ) (9)

where WQ
i , WK

i ∈ Rdh×dv , and WV
i ∈ Rdh×dv are weight matrices, and dv, dk denote the

projection subspaces’ hidden dimensions. 1√
dk

is the scale factor that helps dot-product

attention be faster when using a feed-forward network. Each Hi is concatenated into a
matrix WO ∈ Rhdv×dh that integrates with projections to compile the data gathered from
various positions on particular subspaces.

Attention(Q, K, V) = Concat(H1, ..., Hh)WO (10)

In this paper, the number of heads (parallel attention layers) was fixed at h = 16
according to our tests. Hence, dv

h = dk
h = 32. The overall computing cost is comparable to

that of single-head attention with full dimensionality because of the lower dimension of
each head. The three AB-LSTM blocks’ outputs are concatenated and passed to a linear
layer with a Sigmoid activation function, ensuring a final output range of (0,1) [48].

The GAP layers are designed to automatically identify the machine’s OC. The GAP
layers are designed to automatically identify the machine’s operating characteristics. The
idea behind using GAP is to calculate the average of each feature map and feed it into a soft-
max layer, rather than using a fully connected layer. Compared to a fully connected layer,
GAP is more suited to convolutional structures as it enforces correspondences between
feature maps and categories and is more tolerant of spatial translations of the input. Addi-
tionally, there are no parameters to optimize [49]. Finally, three GAP layers’ outputs are
concatenated and fed to a linear layer with softmax activation to compute OC probabilities.

8. Experimental Settings
8.1. Datasets

In this paper, our proposed model was evaluated using the two benchmark datasets:
XJTU-SY [9] and PRONOSTIA [10].

The XJTU-SY dataset was created by the Institute of Design Science and Basic Compo-
nent at Xi’an Jiaotong University. It consists of 15 trials under three different operational
conditions, referred to as from Bearing1−1 to Bearing3−5 in Table 4. The vibration data
were collected from two PCB 352C33 accelerometers, each of which was installed at a 90◦

angle, with one on the horizontal axis and the other on the vertical axis. Each data segment
contains 32,768 data points and was collected in one minute.

The PRONOSTIA dataset was published by the FEMTO-ST Institute in France and
used in the 2012 IEEE Prognostic Challenge [10]. It consists of 17 accelerated run-to-failures
on a small-bearing test rig, referred to as from Bearing1−1 to Bearing3−3 (Table 5). The
bearing was operated under three operating conditions with different levels of rotation
speed and load. The vibration signals include vertical and horizontal data, which were
gathered by two miniature accelerometers positioned at 90◦. Each data segment contains
2560 data points and was collected in 0.1 s.
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Table 4. The XJTU-SY bearing dataset [9].

OC Bearing Dataset Bearing
Lifetime (tN)

Estimated FPT Real FPT

Bearing1−1 2 h 3 m 1 h 16 m -
Bearing1−2 2 h 3 m 44 m -

Condition 1
(2100 rpm; 12,000 N) Bearing1−3 2 h 38 m 1 h -

Bearing1−4 2 h 38 m 1 h 20 m -
Bearing1−5 52 m 39 m -

Bearing2−1 8 h 11 m 7 h 35 m -
Bearing2−2 2 h 41 m 48 m -

Condition 2
(2250 rpm; 11,000 N) Bearing2−3 8 h 53 m 5 h 27 m -

Bearing2−4 42 m 32 m -
Bearing2−5 5 h 39 m 2 h 21 m -

Bearing3−1 42 h 18 min 39 h 4 min -
Bearing3−2 41 h 36 m 20 h 30 m -

Condition 3
(2400 rpm; 10,000 N) Bearing3−3 6 h 11 m 5 h 40 m -

Bearing3−4 25 h 15 m 23 h 38 m -
Bearing3−5 1 h 54 m 9 m -

Table 5. The PRONOSTIA bearing dataset [10].

OC Bearing Dataset Bearing
Lifetime (tN)

Estimated FPT Real FPT

Bearing1−1 28,030 s 5000 s -
Bearing1−2 8710 s 660 s -

Condition 1
(1800 rpm; 4000 N) Bearing1−3 18,020 s 5740 s 5730 s

Bearing1−4 11,390 s 340 s 339 s
Bearing1−5 23,020 s 1600 s 1610 s
Bearing1−6 23,020 s 1460 s 1460 s
Bearing1−7 15,020 s 7560 s 7570 s

Bearing2−1 9110 s 320 s -
Bearing2−2 7970 s 2490 s -
Bearing2−3 12,020 s 7530 s 7530 s

Condition 2
(1650 rpm; 4200 N) Bearing2−4 6120 s 1380 s 1390 s

Bearing2−5 20,020 s 3100 s 3090 s
Bearing2−6 5720 s 1280 s 1290 s
Bearing2−7 1720 s 580 s 580 s

Bearing3−1 5150 s 670 s -
Condition 3

(1500 rpm; 5000 N) Bearing3−2 16,370 s 1330 s -

Bearing3−3 3520 s 800 s 820 s

Tables 4 and 5 show detailed information on the two datasets. h, m, and s denote
hours, minutes, and seconds, respectively. The tables report the estimated and real FPT.
The estimated FPT is calculated using the FPT detection method in Section 5.1, and the real
FPT is taken from the dataset if available.

8.2. Data Splitting

Almost all the state-of-the-art systems proposed for RUL detection on the XJTU-SY and
PRONOSSTIA datasets used the data splitting methods from [27] and [24], respectively. We
obey the data-splitting methods from these papers to compare our experimental results to
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state-of-the-art systems. In particular, two splitting methods are proposed and referred to as
the operating-condition-dependent rule (OC-dependent rule) and the operating-condition-
independent rule (OC-independent rule).

• OC-independent method: This data-splitting method does not consider the operating
condition of bearings [27]. Each bearing is selected as the test data, while all other
bearings are utilized as training and validation data regardless of their operating
conditions.

• OC-dependent method: The data-splitting method takes into account the bearing’s
operating condition [24]. Within each OC, two bearings are assigned to be the training
and validation data, while the remaining bearings are reserved for model testing.

8.3. Validation Methods

To evaluate the performance of our model in RUL forecasting, we calculate the
root mean square error (RMSE) and the mean absolute error (MAE) using the follow-
ing equations:

RMSE =

√√√√ tN

∑
t=FPT

(RULt − R̂ULt)2

tN − FPT
(11)

MAE =
tN

∑
t=FPT

|RULt − R̂ULt|
tN − FPT

(12)

The accuracy of the model in OC identification is determined by the accuracy score
(Acc).

Acc =
M
P

× 100 (13)

where M denotes the number of well-classified segments among P classified segments.

8.4. Loss Functions

We used the mean squared logarithmic error (MSLE) [50] to calculate the difference
between the real RUL (RULt) and the RUL estimated by our Robust-MBDL model (R̂ULt)
during both the training and testing phases:

LRUL =
tN

∑
t=FPT

[log(RULt + 1)− log(R̂ULt + 1)]2

tN − FPT
(14)

It is noted that in the above equation, the RUL values are increased by 1 to prevent
taking the logarithm of zero when the RUL equals 0.

For the OC classification task, we employed categorical cross-entropy loss [51], a
widely used loss function for multiclass classification problems [52]. Let m denote the
total number of possible operational conditions: OC = (c1, c2, ..., cm) represents the real
operational condition; ÔC = (ĉ1, ĉ2, ..., ĉm) represents the operational condition classified
by our model. The cross-entropy loss can be calculated as

LOC = −
m

∑
i=1

ci · log(ĉi) (15)

Our model simultaneously addresses RUL prediction and OC classification. The two
above loss functions are then combined to form the following global loss function:

L = λLOC + (1 − λ)LRUL (16)

where λ is a real number that ranges between 0 and 1. By adjusting the value of λ, two
things can be achieved: (i) offset any imbalances between the two loss functions in the
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global one; (ii) give varying degrees of importance to each task depending on the particular
study case. In our paper, we determined through experimentation that λ is best set to 0.6.

8.5. Deep Neural Network Implementation

In this study, we implemented all proposed deep neural networks using the Tensorflow
framework and utilized the Root Mean Squared Propagation (RMSProp) method for model
optimization [53]. We conducted all experiments on an Nvidia A100 GPU.

Table 6 details the specific settings applied during the training processes for both the
denoised LSTM-Autoencoder and the MBDL parts. Moreover, it is crucial to optimize
the number of attention heads as it greatly impacts the model’s performance [54]. Table 7
shows results for different numbers of heads tested. Sixteen attention heads were selected
to enhance RUL predictions by allowing the model to focus on critical input aspects. It
should be noted that during the training process, we applied the K-fold cross-validation
method for time series with K = 3 [55] to ensure the model’s robustness.

Table 6. Parameters of training process.

Model Optimizer Learning Rate Batch Size Epochs

MBDL RMSProp 1 × 10−4 16 1000
LSTM-Autoencoder RMSProp 1 × 10−4 16 300

Table 7. Model’s performance with respect to the different head sizes.

Number of Heads OC Acc MAE RMSE

32 20.9446 0.2104 0.2653
24 27.6873 0.2319 0.286
16 37.8936 0.206 0.2566
8 30.4622 0.2203 0.2857

9. Experimental Results and Discussions

We evaluated the performance of our proposed Robust-MBDL model for various
scenarios, including RUL prediction and OC identification, using the PRONOSTIA and
XJTU-SY datasets, with both OC-dependent and OC-independent rules, with and without
the denoised LSTM-Autoencoder. The model’s performance was also compared to various
state-of-the-art ones, including BLSTM [26], MLP and DCNN–MLP [27], SACGNet [24],
and MSCNN [20]. The obtained results are reported in Tables 8–11.
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Table 8. Results of the performance analysis for the XJTU-SY dataset with OC-independent rule.

Test Bearing MLP [27] BLSTM [26] MSCNN [20] DCNN–MLP [27] MBDL Robust-MBDL
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE Acc (%) RMS MAE Acc (%)

Bearing1−1 0.274 0.240 0.228 0.191 0.242 0.213 0.206 0.176 0.0944 0.0745 100.0 0.0922 0.0739 100.0
Bearing1−2 0.313 0.270 0.305 0.231 0.262 0.229 0.240 0.207 0.0453 0.037 100.0 0.033 0.021 100.0
Bearing1−3 0.261 0.221 0.130 0.106 0.184 0.155 0.178 0.151 0.0552 0.049 100.0 0.057 0.52 100.0
Bearing1−5 0.318 0.265 0.362 0.314 0.215 0.181 0.184 0.155 0.0592 0.0531 100.0 0.0491 0.0376 100.0
Bearing2−1 0.203 0.172 0.152 0.129 0.148 0.126 0.117 0.099 0.0867 0.0806 100.0 0.0877 0.0803 100.0
Bearing2−2 0.266 0.214 0.134 0.094 0.232 0.194 0.122 0.102 0.0555 0.0453 100.0 0.0365 0.0321 100.0
Bearing2−3 0.230 0.204 0.216 0.170 0.199 0.164 0.158 0.126 0.0588 0.0525 100.0 0.0576 0.0512 100.0
Bearing2−4 0.251 0.213 0.311 0.267 0.231 0.195 0.177 0.141 0.0771 0.0657 100.0 0.0775 0.0639 100.0
Bearing2−5 0.234 0.202 0.308 0.278 0.108 0.090 0.0918 0.075 0.0596 0.0505 100.0 0.0429 0.0398 100.0
Bearing3−1 0.305 0.262 0.351 0.297 0.247 0.214 0.244 0.204 0.0575 0.0489 100.0 0.0509 0.0418 100.0
Bearing3−3 0.318 0.276 0.188 0.162 0.191 0.156 0.158 0.129 0.0575 0.0459 100.0 0.0365 0.0214 100.0
Bearing3−4 0.252 0.220 0.175 0.135 0.165 0.139 0.132 0.107 0.0837 0.0709 100.0 0.0792 0.0708 100.0
Bearing3−5 0.376 0.310 0.305 0.251 0.267 0.225 0.266 0.219 0.0733 0.0598 100.0 0.0685 0.0517 100.0

Average performance 0.282 0.233 0.232 0.188 0.204 0.170 0.170 0.137 0.0673 0.0561 100.0 0.0564 0.0471 100.0

Table 9. Results of the performance analysis for the PRONOSTIA dataset with OC-independent rule.

Test Bearing MLP [27] BLSTM [26] MSCNN [20] DCNN–MLP [27] MBDL Robust-MBDL
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Bearing1−1 0.332 0.277 0.268 0.245 0.152 0.122 0.194 0.161 0.158 0.121 0.0864 0.0699
Bearing1−2 0.256 0.213 0.281 0.242 0.484 0.386 0.254 0.219 0.167 0.146 0.0964 0.0854
Bearing1−3 0.235 0.186 0.331 0.270 0.251 0.208 0.199 0.164 0.135 0.112 0.1467 0.0691
Bearing1−4 0.515 0.439 0.513 0.443 0.397 0.329 0.132 0.107 0.101 0.081 0.1038 0.0768
Bearing1−5 0.107 0.320 0.208 0.174 0.326 0.276 0.187 0.158 0.165 0.136 0.1027 0.0779
Bearing1−6 0.480 0.480 0.329 0.278 0.340 0.273 0.328 0.270 0.088 0.071 0.0746 0.0593
Bearing1−7 0.170 0.153 0.165 0.141 0.357 0.299 0.205 0.172 0.088 0.071 0.0997 0.0822

Average performance 0.272 0.272 0.267 0.229 0.296 0.251 0.231 0.194 0.145 0.120 0.0927 0.0768
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The results presented in Tables 8 and 9 demonstrate the superior performance of
our proposed Robust-MBDL model under the OC-independent rule for data splitting.
Whether the denoised LSTM-Autoencoder is applied or not, it outperforms the state-of-
the-art models for RUL prediction in terms of RMSE and MAE scores across all bearing
types. Figure 6 shows an example of the RUL prediction for Bearing1−3 and Bearing1−4.
We consistently observe minimal disparity between actual and predicted RUL, providing
strong evidence of our approach’s reliability and effectiveness.

(a) (b)
Figure 6. Illustration of the RUL prediction by the Robust-MBDL model. (a) Bearing1−4, PRONOSTIA
dataset; (b) Bearing1−3, XJTU-SY dataset.

Regarding the OC identification task, the network shows exceptional performance,
achieving 100% accuracy for all bearing types. The OC-independent data splitting approach
allows for a substantial volume of training data relative to testing data—testing on a
signal bearing while using the others for training. This methodology makes the OC
classification task relatively straightforward. In contrast, using the OC-dependent method,
when the amount of training data is less than the testing data, accuracy is likely to decrease
substantially.

It is important to highlight that by training with two tasks (RUL prediction and
OC classification) simultaneously, the proposed models are able to learn the complex
relationships between the operating conditions of the bearings and their degradation
patterns, leading to the high performance of these models. Finally, utilizing the denoised
LSTM-Autoencoder, the Robust-MBDL shows outstanding performance in most bearings,
proving the efficacy and necessity of the data denoising.

Tables 10 and 11 show the performance analysis of our model using the OC-dependent
splitting rule. It is worth noting that only SACGNet was considered for the analysis because
the other models did not utilize the OC-dependent rule. Our proposed models showed
significant superiority over the SACGNet model for all bearings of the XJTU-SY dataset. In
the PRONOSTIA dataset, our models performed notably better than SACGNet in almost
all bearings, except for Bearing1−5 and Bearing1−7 in terms of RMSE. Our proposed
model demonstrated competitive performance compared to the SACGNet model regarding
MAE scores in the PRONOSTIA dataset. It is worth noting that the OC classification of
Bearing1−4 in Table 10 was relatively poor. The poor performance of this bearing can be
attributed to its unique features, which significantly differ from other bearings operating
under the same conditions. This observation has been reported in related works [27].
Finally, the obtained results again underscore the significant improvements in RMSE and
MAE scores across almost all bearing types when the denoised LSTM-Autoencoder is used.
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Table 10. Results of the performance analysis for the XJTU-SY dataset with the OC-dependent rule.

Type SACGNet [24] MBDL Robust-MBDL
RMSE MAE RMSE MAE Acc RMSE MAE Acc

Bearing1−3 0.147 0.117 0.126 0.076 100.0 0.139 0.072 100.0
Bearing1−4 0.166 0.088 0.08 0.043 4.91 0.087 0.035 0.0
Bearing1−5 0.360 0.206 0.199 0.093 98.07 0.177 0.091 100.0

Bearing2−3 0.320 0.307 0.133 0.087 85.17 0.218 0.164 85.74
Bearing2−4 0.511 0.428 0.105 0.056 88.09 0.223 0.103 90.47
Bearing2−5 0.341 0.249 0.189 0.123 66.07 0.201 0.169 77.87

Bearing3−3 0.369 0.256 0.035 0.018 99.73 0.177 0.054 97.8437
Bearing3−4 0.193 0.069 0.038 0.021 29.17 0.159 0.129 87.78
Bearing3−5 0.500 0.447 0.263 0.231 96.49 0.312 0.24 96.49

Table 11. Results of the performance analysis for the PRONOSTIA dataset with the OC-dependent
rule.

Type SACGNet [24] MBDL Robust-MBDL
RMSE MAE RMSE MAE Acc RMSE MAE Acc

Bearing1−3 0.101 0.041 0.0624 0.0241 99.3341 0.0594 0.0281 99.4451
Bearing1−4 0.230 0.157 0.045 0.0222 99.4732 0.0394 0.0213 97.2783
Bearing1−5 0.197 0.077 0.2407 0.1953 99.3918 0.2259 0.1777 99.2615
Bearing1−6 0.205 0.079 0.1376 0.0879 99.5656 0.1304 0.079 99.305
Bearing1−7 0.108 0.022 0.224 0.1854 100.0 0.2038 0.1635 99.8668

Bearing2−3 0.131 0.033 0.1306 0.1012 98.3361 0.1288 0.0993 98.9185
Bearing2−4 0.204 0.081 0.1579 0.1295 96.732 0.1669 0.1374 97.7124
Bearing2−5 0.202 0.071 0.1319 0.116 88.2617 0.1523 0.1311 94.955
Bearing2−6 0.205 0.083 0.2167 0.1566 100.0 0.2275 0.1739 100.0
Bearing2−7 0.397 0.220 0.1398 0.1113 100.0 0.1391 0.1082 100.0

Bearing3−3 0.280 0.161 0.2142 0.1097 100.0 0.2163 0.1125 93.75

Table 12 shows the comparative results of our proposed methods and other state-
of-the-art methods, as well as traditional ML methods. To ensure a fair comparison, we
conducted our experiments to produce the scores in this table based on the configuration
described in Zheng et al. (2024) [23]. The validation metric employed in this experiment is
the RMSE. The experiments utilized condition 2 of the XJTU-SY dataset. According to the
study [23], we adopted a data splitting method analogous to our OC-independent method,
where four bearings were selected for the training set, and the remaining one served as
the test set for each iteration of training. The results demonstrate that our Robust-MBDL
with the denoising strategy (the proposed LSTM-Autoencoder) outperforms models like
LSTM, CNN, and GCN-SA by achieving lower RMSE scores in several cases, such as
Bearing2-1 and Bearing2-4. It also presents the lowest average RMSE score among all
evaluated state-of-the-art methods at 0.15386. This indicates a significant advancement
in prediction accuracy and showcases the effectiveness of the denoising component in
enhancing RUL prediction performance. Conversely, while the Robust-MBDL without the
denoising method yielded improvements over several older models, it did not surpass the
denoising version, underscoring the value added by this step in our methodology.



Mathematics 2024, 12, 1569 20 of 25

Table 12. Performance comparison of different models with OC-independent rule on XJTU-SY
dataset.

Model Bearing2−1 Bearing2−2 Bearing2−3 Bearing2−4 Bearing2−5 Average

LSTM [23] 0.364 0.351 0.334 0.386 0.355 0.358
CNN [23] 0.253 0.336 0.258 0.259 0.121 0.245

GCN-SA [22] 0.190 0.184 0.217 0.333 0.166 0.218
MSCNN [20] 0.148 0.232 0.199 0.231 0.108 0.184

GCU-Transformer [21] 0.356 0.141 0.197 0.161 0.149 0.201
DMWBT [56] 0.195 0.120 0.176 0.101 0.233 0.165

DRL [23] 0.184 0.212 0.127 0.092 0.095 0.142
Ridge Regression [57] 0.2647 0.5161 0.6669 0.328 0.3422 0.4238

Random Forest Regression [58] 0.4458 0.3287 0.3576 0.2889 0.2658 0.3374
XGBoost Regression [59] 0.3464 0.2819 0.3101 0.3226 0.2878 0.30976

MBDL 0.1217 0.1383 0.2258 0.2221 0.1135 0.164
Robust-MBDL 0.1069 0.1262 0.1771 0.0862 0.2729 0.15386

Figure 7 depicts the adaptation of the proposed Robust-MBDL model for SHapley
Additive exPlanations (SHAP) [60] validation to understand the impact of input features
on the prediction output. In this adaptation, the model undergoes slight modifications to
include linear layers with one-dimensional output spaces and Sigmoid activation functions,
positioned after the AB-LSTM blocks. These additional layers generate outputs that rep-
resent the impact of input features (2D data, 1D data, and denoised data) on the model
output. Subsequently, these representation points are utilized in the SHAP validation
process. Notably, the final linear layer of the revised Robust-MBDL model, equipped with
one-dimensional output spaces and Sigmoid activation functions, serves as the prediction
model in this SHAP mechanism.
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Figure 7. The high-level architecture of our proposed Robust-MBDL model used for SHAP validation.

In Figure 8, the SHAP summary plots for the XJTU bearings under condition 2 trained
under the OC-independent rule demonstrate how feature values influence the predictive
model. For 1D data, higher values generally lead to a negative impact on the model’s
output, while lower values have a positive impact. In the case of 2D data, high values
slightly detract from the model’s predictions, whereas low values greatly enhance them.
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Denoised data appear to have a neutral effect regardless of the feature value. These patterns
suggest that while 1D and 2D data features significantly drive the model’s predictions,
denoised data do not alter the outcome, highlighting the importance of feature selection in
model performance.

(a) (b)

(c)

(d) (e)

Figure 8. SHAP plots for five test cases. (a) Bearing2−1; (b) Bearing2−2; (c) Bearing2−3;
(d) Bearing2−4; (e) Bearing2−5.

The figure in reference to Figure 9 illustrates the effect of noise on the predictions
made by our Robust-MBDL model with denoising. The testing environment setting aligns
with that of Table 12. In this instance, Bearing2_2 serves as the testing data, while all other
bearings in condition 2 are used for training. Gaussian random noise, as described by
Peebles (2001) [61], is artificially applied to simulate various noise levels encountered in
real-life manufacturing scenarios. Five different standard deviation values are utilized: 0.01,
0.2, 0.3, and 0.5. The graph reveals that while our model’s predictive accuracy is impacted
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by higher levels of noise, overall performance remains satisfactory. Notably, even with a
high noise level of 0.5 standard deviation, the model achieves a good RMSE score of 0.22.

Figure 9. Effect of noise on the prediction of our Robust-MBDL.

10. Conclusions

This paper presented the robust MDL model for the prediction of remaining useful life
(RUL) and the classification of the Operating Conditions (OC) of rotating machines. The
model comprises several key components: a denoising LSTM-autoencoder responsible for
data denoising, three parallel branches (1D data branch, 2D data branch based on Resnet-34
architecture, and a denoised data branch) for feature extraction, AB-LSTM blocks for RUL
prediction, and GAP blocks for OC classification. This parallel architecture empowers the
proposed model to capture intricate relationships between bearing operating conditions
and degradation patterns, resulting in superior performance in both RUL prediction and
OC classification tasks. Furthermore, in addition to the raw data, a comprehensive set of
features, including 11 time-domain, 3 frequency-domain, and 2D time–frequency domain
features, is computed and utilized as rich input for our model. To assess the model’s
performance, we compared it to state-of-the-art models on both the PRONOSTIA and
XJTU-SY datasets. The obtained results indicate that our model outperforms others on both
datasets. It serves as a reliable diagnostic tool, helping to identify, monitor, and prevent
mechanical failures. In addition, the paper’s broader concept proposes a model that can
leverage different data types, making it a suitable tool for any industrial fault detection and
prediction applications. In our upcoming endeavors, we intend to evaluate the effectiveness
and resilience of our models in practical scenarios. We also plan to enhance the models by
incorporating transfer learning and data augmentation techniques. Additionally, we aim to
explore more computationally efficient architectures like MobileNets or EfficientNets for
feature extraction.
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