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Abstract: A very important class of models widely used nowadays to describe and predict, at
least in stochastic terms, the behavior of many-particle systems (where the word “particle” is not
meant in the purely mechanical sense: particles can be cells of a living tissue, or cars in a traffic
flow, or even members of an animal or human population) is the Kinetic Theory for Active Particles,
i.e., a scheme of possible generalizations and re-interpretations of the Boltzmann equation. Now,
though in the literature on the subject this point is systematically disregarded, this scheme is based
on Markov Chains, which are special stochastic processes with important properties they share
with many natural processes. This circumstance is here carefully discussed not only to suggest the
different ways in which Markov Chains can intervene in equations describing the stochastic behavior
of any many-particle system, but also, as a preliminary methodological step, to point out the way in
which the notion of a Markov Chain can be suitably generalized to this aim. As a final result of the
discussion, we find how to develop new very plausible and likely ways to take into account possible
effects of the external world on a non-isolated many-particle system, with particular attention paid to
socio-economic problems.

Keywords: stochastic processes; Markov chains; probability; kinetic theory; mathematical models;
complex systems

MSC: 60J10; 60G07; 82C40; 70-10

1. Introduction

In the past forty years, kinetic–theoretic models [1] (see Section 5 for more details)
seem to be increasingly studied and applied in the research about the evolution of many-
particle systems. They seem to have delivered a particularly versatile, expressive, and
effective tool to formulate suitable equations describing such evolution in stochastic terms
(see [2–11], but these are only a few examples of the papers devoted to this kind of study:
in each of them, the reader can find much more complete bibliographic references that
are nevertheless far from being exhaustive), though other interesting and more effective
models are available, e.g., the one based on Bayesian networks (see [12–14]). As pointed
out in formal terms in [15], these equations are firmly based on the use of Markov Chains:
in fact, transition matrices, which characterize these important stochastic processes, play
a fundamental role in them, as they describe in stochastic terms the results of mutual
interactions between the particles in the system. Nevertheless, in the literature about the
kinetic–theoretic models Markov Chains are never explicitly mentioned (at least to our
knowledge). So, the question spontaneously arises whether exploiting their role could
improve our understanding of the terms of the equations and suggest new ways to achieve
a better and more effective description of the behavior of systems interacting with the
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external world (in this connection, see [16,17], where any implicit use of the Principle of
Inertia is renounced, and [18,19], where suitable «forcing» terms are introduced in the
equations). For this connection, we want to show that the interpretation of the evolution of
a many-particle system as an n-tuple of joined stochastic processes, one of which is a vector
Markov Chain [15], allows us to describe interactions with the external world by assuming
that the interaction rates and the transition matrices undergo stochastic variations at each
step [15].

One of the most interesting applications of this possible extension of Kinetic Theory is
in addressing socio-economic problems, which are already among the most widely studied
topics in the framework of the stochastic description of the behavior of the widest possible
class of many-particle systems. Before the birth of kinetic–theoretic models addressing
human collectivities, the intervention of mathematics in social and economic sciences
was reduced to statistics to assess the relative frequencies of different conditions of life,
economic levels, and psychological attitudes connected to belonging to different social
classes. However, purely statistical estimates are not sufficient for prediction; an accurate
prediction, in purely stochastic terms, requires evolution equations; the management of
any human community requires accurate predictions. This has led to flourishing research
devoted to treating socio-economic problems in the framework of the Kinetic Theory (see,
e.g., [20–24]). However, as far as we are aware, with the only exception of [18,19], where
socio-economic problems are proposed as possible interpretations of a more general scheme,
the influence of environmental conditions has not been considered, and also in the above
quoted papers such influence is described by introducing an “external force” acting directly
on the distribution of states: till now, no studies have been conducted about external
influences only indirectly modifying the distribution of the states, by producing direct
variations only in transition probabilities and in interaction rates (see the references above
and Section 7). The aim of the present paper is just to fill this gap, by showing how the
evolution of a many-particle system can always be described as a vector time-continuous
random process {(Xt, χt, Et)}t∈[0,T), where {Xt} is a vector Markov Chain, {χt} is a suitably
defined vector Bernoulli process, and {Et} is a vector (or scalar) random process expressing
the variation in time of the environment. For the sake of simplicity, Xt is assumed to be
a two-dimensional vector (for any t ∈ [0, T]), but in Section 7, albeit very briefly, we will
consider the case of an n-dimensional vector with n > 2 with {Et}, a constant random
process (notice that a constant random process on [0, T] is a particular random process
such that E = c for any t ∈ [0, T], so that the associated probability distribution on R is
defined by P(Et = c) = 1 and P(Et = x) = 0 for any x ̸= c (here and in the the following,
any probability measure, when explicitly applied to events, will be denoted by a bold-face
capital letter)) to recover classical kinetic–theoretical equations.

The contents of this paper are distributed as follows. Section 2 is devoted to re-
calling some basic definitions and notions about Markov Chains as stochastic processes,
with particular regard to discrete time-discrete Markov Chains. In Section 3, we introduce
(two-dimensional) vector Markov Chains and describe some of their basic properties in
the discrete time-discrete case; Section 4 is devoted to introducing what we have called
the “continuous semi-Markov coupled random processes”, with particular concern for
time-continuous processes; in Section 5, thanks to the result obtained in Section 4, we show
how the equations in the Kinetic Theory, as applied to general many-particle systems, can
be seen as a special form of the basic vector equation connecting the absolute probability
distributions at different steps of a Markov Chain with each other and with the transition
probabilities. Sections 6 and 7 are devoted to showing how this circumstance opens at
once the door to the interpretation of the interaction of a system with the external world as
the non-stationarity of transition matrices (Section 6) or as the stochastic variation in the
transition matrix at each step (Section 7). Finally, in Section 8, we discuss some possible
research perspectives.
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2. Some Background about Markov Chains

In this section, we begin the discussion we aim to develop in this paper by recalling
some basic notions about stochastic processes and in particular about Markov Chains.

As is well known, a random process [25] is a sequence {Xη}η∈H of random variables
(readers not acquainted with the notion of a “random variable” can usefully consult [26],
p. 37) with a common range S of possible values (the states), called the state space of the
process. Both the set H of indexes and the state space S can be either a discrete or a
continuous set. If H is discrete (H = N = {0, 1, 2, . . . , n, . . . }), then the process is said to be
time-discrete; if H is continuous (H = [0,+∞)), then the process is said to be time-continuous.
Analogously, if S is discrete (S = {zh}h∈I ⊆ R, with I ⊆ Z), then the process is said to
be discrete, while, if S is continuous (i.e., any real interval), then the process is said to be
continuous. From now to the end of this section, we shall first consider discrete (either
time-discrete or time-continous) processes. In both cases, for the sake of simplicity and
without loss of generality (as regards Markov Chains (but also in connection with any
other stochastic process)), we simply avoid writing matrices with infinitely many rows and
columns)l; the state space S is assumed to be finite.

To start with, consider a discrete and time-discrete random process {Xh}h∈N with
S = {z1, z2, . . . , zn}. As usual, we denote by a vector ph (the state vector of the process at
time h) the (absolute) probability distribution on S according to the random variable Xh.
In other words, ph ≡ (ph,1, ph,2, . . . , ph,n) with ph,k = P(Xh = zk).

Now, a discrete time-discrete Markov Chain [25–28] {Xh}h∈N, with R(Xh) = S ⊂ Z, is
a random process such that the Markov condition, ∀h ∈ N \ {0},

P(Xh = zh | X1 = z1, X2 = z2, . . . , Xh−1 = zh−1)=P(Xh = zh | Xh−1 = zh−1) (1)

holds. (As usual, we use the symbol P(A | B) to denote the conditional probability of
an event A under the assumption that an event B has taken place.) This means that,
for any h ∈ N, the value of the h-th random variable of the process depends only on
the value of the (h − 1)-th, not on the value of any previous variable. Now, setting
Pij(h) = P(Xh = zj |Xh−1 = zi) (with (i, j) ∈ {1, 2, . . . , n}2), Pij(h) is the transition probability
from state zi to state zj at the h-th step, and the matrix

Ph ≡ (Pij(h))1≤i,j≤n ≡


P11(h) P12(h) . . . P1n(h)
P21(h) P22(h) . . . P2n(h)

...
...

. . .
...

Pn1(h) Pn2(h) . . . Pnn(h)

 , ∀ h ∈ N\{0} . (2)

is called the transition matrix at the h-th step. It is obvious and well known that

n

∑
j=1

Pij(h) = 1 , ∀ h ∈ N\{0} (3)

and that, by virtue of the law of alternatives,

ph = ph−1Ph , ∀ h ∈ N\{0} . (4)

For the sake of completeness, we also recall that, for any couple (r, s) of non-negative
integers,

pr+s = prPr+1Pr+2 . . . Pr+s , (5)

and, in particular, when the Markov Chain is stationary, i.e., a transition matrix P exists
such that Ph = P for any h ∈ N\{0},

pr+s = prP s , (6)
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where the power on the right-hand side must be interpreted in the sense of the row-by-
column product of matrices (for further details, see, e.g., [25,28]).

3. Joint and Marginal Transition Probabilities

Our next step will now be to consider a special kind of Markov Chain that has never
been explicitly considered before in the literature about random processes (at least to our
knowledge (as far as we are aware, only in [29] a state space endowed with a structure
is considered)), namely, vector Markov Chains (see [15]). More precisely, we want to
examine the case in which S = Ω2 (where Ω = {x1, x2, . . . , xm}, so that |Ω2| = m2; as
usual, in the literature about discrete Markov Chains, the states in S are assumed to be
ordered, so that we can set S = {z1, z2, . . . , zm2} (notice that the actual order is quite
immaterial) and, since zi is a couple of elements of Ω, we write zi ≡ (xi1 , xi2) for any
i ∈ {1, 2, . . . , m2}, with (i1, i2) ∈ {1, 2, . . . , m}2) and the process we want to consider
is a sequence {(Xh,1, Xh,2)}h∈N, which will be written in vector notation as {Xh}h∈N. So,
the transition probabilities are

P(Xh = zh |Xh−1 = zh−1)=

=P(Xh,1 = xh,1, Xh,2 = xh,2 |Xh−1,1 = xh−1,1, Xh−1,2 = xh−1,2)
(7)

and we have four indexes, i.e., we can set

P(Xh,1 = xj1 , Xh,2 = xj2 |Xh−1,1 = xi1 , Xh−1,2 = xi2) ≡ Pi1,i2;j1,j2(h) . (8)

For any h ∈ N, the four-dimensional transition matrix Ph ≡ (Pi1,i2;j1,j2(h)) will be called
the joint transition matrix. Each of its elements expresses the probability that the chain
passes from a state (xi1 , xi2) to a state (xj1 , xj2) at h-th time. These are the joint transition
probabilities. Together with these joint probabilities, we now have to also consider a
number of different marginal probabilities. More precisely, for any h ∈ N, we can choose
one of the random variables Xh,1, Xh,2 (say Xh,k to fix ideas), and consider the probabilities
P(Xh,k = xjk | Xh−1,1 = xi1 , Xh−1,2 = xi2). For any choice, we have a three-dimensional
matrix, with m3 entries. We shall denote by Pi1,i2;jk (h) (k = 1, 2) the entries of each matrix.
Now, we have

Pi1,i2;j1(h) =
m

∑
j2=1

Pi1,i2;j1,j2(h) ,

Pi1,i2;j2(h) =
m

∑
j1=1

Pi1,i2;j1,j2(h) ,
(9)

Now, for the sake of simplicity, we agree to set S = {zij}1≤i,j≤m ≡ Ω2 ≡ {(xi, yj)}1≤i,j≤m.
(From now on, the symbols zij and (xi, yj) will be treated as interchangeable. Moreover,
the indexes of the components of any state vector will be written as apices for the sake of
readability.) Then, we can write relation (9) in the form

Pzhk ,xi (h) =
m

∑
j=1

Pzhk ,zij(h) =
m

∑
j=1

Pzhk ,(xi ,yj)
(h) , (10)

and introduce the joint state vector ph ≡ (pij
h ), with pij

h ≡ ph(zij) ≡ ph(xi, yj), and the
marginal state vector px,h ≡ (px,h(xi))1≤i≤m, where

px,h(xi) =
m

∑
j=1

ph(zij) =
m

∑
j=1

ph(xi, yj) (11)
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and, by virtue of the law of alternatives,

ph(zij) =
m

∑
k=1

m

∑
l=1

ph−1(zkl)Pzkl ,zij(h) .

Hence, replacing this last relation in relation (5), and taking into account relation (4),
we obtain

px,h(xi) =
m

∑
j=1

m

∑
k=1

m

∑
l=1

ph−1(xk, yl)Pzkl ,(xi ,yj)
(h)

=
m

∑
k=1

m

∑
l=1

ph−1(xk, yl)

(
m

∑
j=1

Pzkl ,(xi ,yj)
(h)

)

=
m

∑
k=1

m

∑
l=1

ph−1(xk, yl)Pzkl ,xi (h) .

Now, for reasons that will be clear in the following, we write this last equation in
the form

px,h(xi)− px,h−1(xi) =
m

∑
k=1

m

∑
l=1

ph−1(zkl)Pzkl ,xi (h)− px,h−1(xi) . (12)

Moreover, for any l ∈ {1, 2, . . . , q},

m

∑
i′=1

m

∑
l′=1

P(xi ,yl),(xi′ ,yl′ )
(h) = 1 ,

so that we can rewrite Equation (12) in the final form

px,h(xi)− px,h−1(xi) =
m

∑
l=1

{
1...m

∑
k ̸=i

ph−1(zkl)Pzkl ,xi (h)− ph−1(zil)
1...m

∑
i′ ̸=i

P(xi ,yl),xi′
(h)

}
. (13)

Finally, if for any h ∈ N, the random variables Xh,1 and Xh,2 are independent, and the
chain is stationary, then we find

px,h(xi)− px,h−1(xi) =
m

∑
l=1

{
1...m

∑
k ̸=i

px,h−1(xk)py,h−1(yl)Pzkl ,xi (h)+

− px,h−1(xi)
1...m

∑
k ̸=i

py,h−1(yl)Pzil ,xk (h)

}
.

(14)

The first term on the right-hand side is called the gain term of the subset of states
Si = {zil}1≤l≤m, since it accounts for all the possible transitions from other states to a state
of Si, while the last term is called the loss term of Si, since it accounts for all the possible
transitions from a state of Si to any state outside Si.

4. Continuous Semi-Markov Coupled Random Processes

We now introduce what we shall call a continuous semi-Markov coupled random process,
that is a random process {(Xt, χt)}, where the continuous parameter t ∈ [0, T] ⊂ R,
with T > 0 either finite or infinite, is time. Here, {Xt} is a two-dimensional Markov Chain
like the one described above, and {χt} is an m2-dimensional vector Bernoullian process
(more precisely, χt ≡ (χij,t), with (i, j) ∈ {1, 2, . . . , m}2, and each χij,t is the classical
Bernoulli variable, with range R(χij,t) = {0, 1}, and for any pair of triples (i1, j1, t1) and
(i2, j2, t2) ̸= (i1, j1, t1) in {1, 2, . . . , m}2 × [0, T], the random variables χi1 j1,t1 and χi2,j2,t2
are independent). Now, the state vectors obviously depend on time, but the transition
probabilities and the probabilities associated with the Bernoulli variables χij,t may depend
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on time or not. It is well known that a positive probability distribution uij(t) on [0, T]
such that P(χij,t = 1) = uij(t) for any t cannot be assigned. All that can be done is to
assign a continuous “probability density” τij(t) such that, for any s ∈ [0, T] and any suf-
ficiently small ∆t, τij(s)∆t is (approximately) the probability of finding in any interval
[s, s + ∆t] some points such that χij,t = 1. Roughly speaking, and referring to the inter-
pretation of probability as relative frequency, we can state that τij(s)∆t is the length of
the set {t ∈ [s, s + ∆t] | χij,t = 1}, so that τij(s) is the ratio of that length to the length ∆t.
We preliminarily consider the case in which the density τij(s) is constant with respect to
time for any (i, j) ∈ {1, 2, . . . , m}2, and write τij(s) = τij. So, for any assigned couple (i, j),
the Bernoulli variables χij,t1 and χij,t2 are identically distributed for any (t1, t2) ∈ [0, T]2

and, for simplicity, we may write χij,t ≡ χij for any t.
The continuous Markov Chain {Xt, }t∈[0,T) and the Bernoulli random process {χt}t∈[0,T)

are coupled in the following sense:

1. A function
χ : zij ∈ Ω2 −→ χij = χ(zij) (15)

is given;
2. For any t ∈ [0, T], Xt, the transition matrix Pt is assumed to depend on χt (and only

on χt), in such a way that

Pzkl ,zij = Pzkl ,zij | χkl=1τkl∆t + Pzkl ,zij | χkl=0(1 − τkl∆t) , (16)

where Pzkl ,zij | χkl=1 (independent of time) is the transition probability from the state
zkl to the state zij under the assumption χkl = 1, and Pzkl ,zij | χkl=0 is at any time the
transition probability from the state zkl to the state zij under the assumption χkl = 0.
In particular, we assume that

Pzkl ,zij | χkl=0(t) = δi
kδ

j
l , ∀ t ∈ [0, T] , (17)

where δi
k and δ

j
l are the well-known Kronecker symbols, that is, δi

k = 0 when i ̸= k

and δi
k = 1 when i = k, and δ

j
l = 0 when j ̸= l and δ

j
l = 1 when j = l.

This means that the chain remains in each state zij when χij = 0 (notice that the
Markov Chain is stationary if and only if the matrix Pzij ,zkl | χij=1 is constant with
respect to t. This remark will prove meaningful in the last sections).

This stated, if for any t ∈ [0, T] the random variables X1,t and X2,t are assumed to be
independent, we shall write system (14) as follows:

px,t+∆t(xi)− px,t(xi)=

=∆t
m

∑
l=1

{
1...m

∑
k ̸=i

τkl px,t(xk)py,t(yl)Pzkl ,xi | χkl=1+

−τil px,t(xi)
1...m

∑
k ̸=i

py,t(yl)Pzil ,xk | χil=1

}
.

(i = 1, 2, . . . , p) , (18)

Next, by dividing both sides by ∆t and letting ∆t → 0, we obtain

d px,t

d t
(xi) =

m

∑
l=1

{
1...m

∑
k ̸=i

τkl px,t(xk)py,t(yl)Pzkl ,xi | χkl=1(t)+

−τil px,t(xi)
1...m

∑
k ̸=i

py,t(yl)Pzil ,xk | χil=1(t)

} (i = 1, 2, . . . , p) , (19)

if the transition matrix Pχ=1 ≡ (Pzkl ,zij | χkl=1) is stationary.
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It is important to stress the following:

1. As the above deduction procedure shows, system (19) is actually originated by coupling
a stationary vector Markov Chain with an additional vector random process;

2. This latter process modifies the final form of the transition matrix, but preserves its
stationarity (that is, its independence on time);

3. System (19) is just the system postulated in modern Kinetic Theory for Active Particles,
as a generalization of the Boltzmann equation, to describe the behavior of isolated
conservative many-particle systems.

The last point will be explained, illustrated, and briefly discussed in Section 5. How-
ever, in Sections 6 and 7, we present something more: we show that different choices of
the vector random process to be coupled with the starting Markov Chain can lead us to
describe the behavior of non-isolated conservative many-particle systems.

5. Markov Chains and the Stochastic Description of Many-Particle Systems

In this section, we describe the stochastic description of the evolution of isolated
many-particle systems, which has become increasingly more important in the last forty
years as it can be applied to a wide range of different phenomena, from the mechanics of
gases (which is its true historical origin, since Boltzmann proposed his celebrated Kinetic
Theory [1]) to the behavior of biological systems, with particular concern for the interaction
between healthy and tumor tissues (see [3] also for more complete bibliographic references);
from social sciences, with particular concern for the diffusion of competing opinions,
to economics [8], and to the behavior of swarms and crowds [2,5]. This interpretation has
in fact given rise to a general model for the description of the behavior of a large number of
many-particle systems, we would dare say of almost all possible types and in almost all
possible contexts.

As is well known, a many-particle system is a set S of a very large number N of objects,
usually called «particles» or «individuals» according to the context. In general, N = N(t),
i.e., the number of individuals of S changes with time: for instance, when S is a set of
living beings, in any unit time the number of its members is increased or decreased by the
difference between the people born and people who die in that unit time. The system is
said to be conservative if N is independent of time (no births nor deaths per unit time),
and nonconservative in the opposite case. The particles can interact pairwise (but the theory
is currently developing to cover the case of multiple interactions) with each other and
are identified (further than by some common «physical» properties they can possess to
different degrees (these properties do not appear explicitly in the mathematical description
of the behavior of S , but influence the values of parameters)) by their «states». A state is
any measure of a property which turns out to be relevant in the considered context: for
example, in a purely economic framework, the state is the amount of money (or of goods of
some specified type). According to the context, the set of possible states of all particles can
be finite, countably infinite, or continuous. For instance, the set of possible economic states
can be naturally split into income classes, identified by their middle value, so that the set of
states is naturally defined as discrete and finite. Accordingly, for simplicity, we shall now
refer only to the case in which the set of states is finite. Accordingly, it will be taken to be
the set

D ≡ {x1, x2, . . . , xm} . (20)

We cannot (and do not) claim to know exactly the state of each particle of the system
at any time, so that even the prescription of N precise initial conditions on the states
of particles would be quite unrealistic. What we assume to be allowed to state is that
all the particles of S can be thought of at each time t as divided into m different classes
C1, C2, . . . , Cm, each containing all and only the particles sharing the same state; if ni(t)
(with i ∈ {1, 2, . . . m} is the number of particles sharing the i-th state at time t, then
pi(t) = ni(t)/N is the probability (at time t) to pick at random in S a particle in the i-th
state and we can construct a state vector p(t) ≡ (p1(t), p2(t), . . . , pm(t)). In addition, each
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individual belonging to a class Ck (that is, occupying the state xk) can jump into another
class Ci (that is, in another state xi) if and only if it «interacts» with some other particle (for
instance, by buying or selling some goods, and consequently paying or collecting money):
the state yl (that is, the class Cl) of this latter case does not matter if not as it influences
the assessment of the different probabilities of jump Pki = P(xk, xi), which accordingly are
denoted Pkl;i = P(xk, xi; yl). These probabilities (called transition probabilities) should also
in general depend on time, but in this section we shall assume them to be stationary, i.e.,
independent of t. Moreover, if a particle has no interactions with other particles, then it
will not change its state (to be complete and precise, we must point out that this condition,
though apparently natural and intuitive, turns out to be rather restrictive in some cases.
For this connection, see [16,17]). This means that condition (17) holds.

In conclusion, any many-particle system is in fact a random process {(Xt, χt)}t∈[0,T) of
the above described type, where {Xt} is a Markov Chain, characterized by the state space
D2, and by a state (probability) vector px expressing the distribution of particles over all
possible different states in D as a percentage; {χt ≡ (χij,t)}t∈[0,T) is an m2-dimensional
vector Bernoulli process such that, for any (i, j) ∈ {1, 2, . . . m}2, χij,t = 1 expresses an
interaction between a particle in the state xi and a particle in the state yj at time t. For any
(i, j) ∈ {1, 2, . . . m}2, the variables χij,t (t ∈ [0, T)) are assumed to be identically distributed,
and their common interaction rate or encounter rate τij expresses the average number of
interactions between a particle of Ci and a particle of Cj occurring in any unit time interval,

i.e., the (time-independent) measure of the set I1(i, j) ≡ {t ∈ I | χ
ij
t = 1} in any interval

of unit length. Each probability of jump Pki;l = P(Ck, Ci; C∗
l ), conditional to the occurrence

of an interaction between a particle in the state xk and a particle in the state yl , is given
by P(xk ,yl),xi | χkl,t=1 = Pzkl ,xi | χkl,t=1. So, system (19) turns out to be exactly the system of
equations governing, in stochastic terms, the evolution of isolated many-particle systems.

As already pointed out, the literature about the Kinetic Theory for Active Particles
and other kinetic models offers a wide number of papers treating particular examples and
interesting applications of system (19). In particular, in the socio-economic framework,
the reader can find interesting applications in [21–24].

The next section is devoted to presenting a first generalization of the above scheme,
as well as of the definition of semi-Markov coupled random processes, to describe the case
of systems undergoing a sequence of deterministic external influences.

6. Equations for Many-Particle Systems with Time-Dependent Transition Matrices

The above reconstruction of the equations of Kinetic Theory in terms of a random
process {(Xt, χt)}t∈[0,T) coupling a stationary Markov Chain and a Bernoullian process is
very useful to extend our model for many-particle systems to cover the case of systems
interacting with the external world. In fact, as we stressed in Sections 4 and 5, Equation (19)
holds for isolated many-particle systems. These equations are based on the assumption that
the instantaneous variation in the distribution of particles over the state space is uniquely
due to mutual interactions between particles, and that these interactions always modify the
states of the involved particles in the same way, independently of the time at which they
occur. (This assumption can be seen as equivalent to assuming a form of the Principle of
Inertia for many-particle systems [17].) However, when the system perceives the influence
of the external world, we are allowed to assume that both the interaction rate and the
results of any interaction are more or less strongly modified from time to time by events
that happen outside the system.

To be precise, our stochastic process {(Xt, χt)}t∈[0,T) must be replaced by another
process {(Xt, χt, Et)}t∈[0,T), where, for any t ∈ [0, T), Et is another vector random variable
whose dimension will be assigned by the kind of external phenomena we want to take into
account as influencing the behavior of system S . More precisely, the external events are
described by a set of d measures and/or h numerical labels. The measures are assumed
to vary continuously in R, while the numerical labels typically express in quantitative
terms some qualitative features (e.g., different degrees of a psychological disease, of the
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effectiveness of an educational system or a public service, etc.). Accordingly, in the most
general case, the range of Et will be contained in W ≡ Rd ×Kh (where K is a finite subset
of Z).

To start with, in this section we treat the case in which, for any t ∈ [0, T), there ex-
ists an e(t) = (u(t), v(t)) ≡ (u1(t), u2(t), . . . , ud(t), v1(t), v2(t), . . . , vh(t)) ∈ W [u(t) ≡
(u1(t), u2(t), . . . , ud(t)), v(t) ≡ (v1(t), v2(t), . . . , vh(t))] for which the probability den-
sity function of Et is expressed, for any ε ≡ (ξ, η) ≡ (ξ1, . . . , ξd, η1, . . . , ηh), with ξ ≡
(ξ1, . . . , ξd, ) and , η ≡ (η1, . . . , ηh), by the relation

ρEt(ε) = δ(ξ1 − u1(t))δ(ξ2 − u2(t)) . . . δ(ξd − ud(t))×
×δ(η1 − v1(t))δ(η2 − u2(t)) . . . δ(ηh − vh(t)) ∀ t ∈ [0, T)

=δ(ξ − u(t))δ(η− v(t)) ,

(21)

where δ is the well-known Dirac distribution, expressing the circumstance that {Et} is a
deterministic process (we recall that, for any random variable X, the probability density
function associated with X is a function ρX : x ∈ R −→ ρX ∈ [0,+∞) such that, for any
interval (a, b) ⊆ R (a ≤ b),

P(a < X < b) =
∫ b

a
ρx(x)d x ).

In the socio-economic framework, a typical example of a practical situation described
by the addition of the process {Et} to the internal process based on mutual interactions
can be found in the dependence of buying and selling interactions between the individuals
of S on the seasonal variation in the availability of some particular food F. A precise
and detailed description of this example requires a further generalization of the scheme
outlined in the previous sections, since the state of each “particle” in S can no longer be
identified by only a number, but it needs at least a triple set of numbers, say “(amount of
money available, amount of food F to eat, amount of food F to sell)”. This, however, does
not change anything substantial in the previous scheme: we only need to consider a state
space D ⊆ R3 and to denote its elements by using vector notation. We then set

D = {x1, x2, . . . , xm} ,

assuming that the three amounts, of money, of food F to eat, and of food F to sell, can
be identified by integers (that is, multiple integers of suitable measurement units). Now,
only considering interactions consisting of the purchase and sale of some amounts of F,
we can expect that, in the seasons when F is largely available, these interactions will be
more frequent, so that the interaction rates τij will have rather large values, while in the
seasons when F can be produced only in small amounts these interaction rates will be small.
Analogously, when F is easily produced in large amounts, we can reasonably expect that
each transition probability P(xk ,yl), xi | χkl=1(t) (with xk ≡ (x1

k , x2
k , x3

k) and xi ≡ (x1
i , x2

i , x3
i ))

will be decreasing when |x1
i − x1

k | increases and increasing when either |x2
i − x2

k | or |x3
i − x3

k |
increase; vice versa, when F is hardly available, we expect that P(xk ,yl), xi | χkl=1(t) will be in-
creasing when |x1

i − x1
k | increases and decreasing when either |x2

i − x2
k | or |x3

i − x3
k | increases.

So, both the interaction rates and the transition probabilities are functions of time, and
system (17) must be simply written in the form

d px,t

d t
(xi) =

m

∑
l=1

{
1...m

∑
k ̸=i

τkl(t)px,t(xk)py,t(yl)Pzkl ,xi | χkl
t =1(t)+

− px,t(xi)
1...m

∑
k ̸=i

τil(t)py,t(yl)Pzil ,xk | χil
t =1(t)

}
, (i = 1, 2, . . . , ls).

(22)
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Notice that the above described conditions on interaction rates and transition proba-
bilities are a stochastic version of the well-known economic principle known as the law of
supply and demand, stated in pure deterministic terms in the framework of economics. In
fact, assuming that when the good F is scarcely available then exchanges of large amounts
of money and small quantities of F are more likely than exchanges of small amounts of
money and large quantities of F, means to exactly assume the law of supply and demand.

In conclusion, the introduction of a dependence on time of both interaction rates
and transition probabilities seems to be the most appropriate way to link the behavior of
a many-particle system to deterministic external influences, in particular ones that can
modify economic or social equilibria according to well-defined temporal rhythms: we
have considered here a case in which the external phenomena influencing the behavior
of the system are periodic, and in general, in a purely economic framework, the most
meaningful and frequent phenomena influencing economic transactions are such, with the
sole exception of the average increase in prices identified as “inflation”. In the social
framework, the changes in the external world can no longer be considered strictly periodic,
although they tend to reproduce over time, since the time intervals between subsequent
“reproductions” are usually very irregular. This is a hint towards the introduction of further
generalizations and the consideration of transition matrices and interaction rates subjected
to stochastic influences.

7. Equations for Many-Particle Systems with Stochastic Transition Matrices

The object of this section is the case in which the changes in the external world
influencing the behavior of the system are not assigned at each time, but are in turn
stochastic events. This situation will be described by considering again a stochastic process
{(Xt, χt, Et)}t∈[0,T), where now, for any t ∈ [0, T), Et is a random variable in the “strict”
sense of the word. More precisely, for any t ∈ [0, T), we assign the following:

1. The range W ≡ Rd ×Zh of all possible values of Et for any t ∈ [0, T) (with the same mean-
ing as in the previous section); we denote again by ε ≡ (ξ, η) ≡ (ξ1, . . . , ξd, η1, . . . , ηh)
any unspecified element of W;

2. For any t ∈ [0, T), a couple Et ≡ (Et,1, Et,2) of independent random variables, the former
continuous and the latter discrete, with ranges Rd and Zh, respectively;

3. Setting a ≡ (a1, a2, . . . , ad), b ≡ (b1, b2, . . . , bd), and I(a, b) ≡ [a1, b1]× [a2, b2]× . . . ×
[ad, bd], a probability density function ρt,1(ξ) ≡ ρ1(ξ, t) for E1 such that

P(Et,1 ∈ I(a, b)) =
∫

I(a,b)
ρ1(ξ, t)d ξ < 1

for any (a, b) ∈ Rd ×Rd such that Rd\ I(a, b) ̸= ∅;
4. A probability distribution function Pt,2 for E2 such that

P(Et,2 = η) = Pt,2(η) ≡ P2(η, t) ,

for any η ∈ Zh, P2(η, t) < 1.
5. The density τij(ε, t) (on the interval [0, T)) of the probability that χ

ij
t = 1 conditional

to the event Et = ε.

Obviously, for any ε ∈ W, the associated probability density of Et at ε is

ρEt(ε) = ρ1(ξ, t)P2(η, t) ,

so that, according to the law of alternatives, and under the conditions imposed in Section 4,
we see at once that each transition probability depends on time, and its expression is

Pzil ,xk | χil,t=1(t) = ∑η∈Z P2(η, t)
∫
Rd P(zil , xk | χil,t = 1, E1 = ξ, E2 = η)ρ1(ξ, t)τij(ε, t)d ξ. (23)
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As a consequence, the system of equations governing the evolution of the many-
particle system S takes the form

d px,t

d t
(xi) =

m

∑
l=1

1...m

∑
k ̸=i

∑
η∈Z

P2(η, t)×

×
{

px,t(xk)py,t(yl)
∫
Rd

Pzkl ,xi | χkl
t =1,Et=ε ρ1(ξ, t)τkl(ε, t)d ξ+

− px,t(xi)py,t(yl)
∫
Rd

Pzil ,xk | χil
t =1,Et=ε ρ1(ξ, t)τil(ε, t)d ξ

}
, (i = 1, 2, . . . , ls)

(24)

where Pzkl ,xi | χkl
t =1,Et=ε ≡ P(zkl , xi | χkl

t = 1, E1 = ξ, E2 = η) and Pzil ,xk | χil
t =1,Et=ε ≡

P(zil , xk | χil
t = 1, E1 = ξ, E2 = η), when D is discrete, as assumed in the previous sec-

tions. When D is instead a continuous set (typically, a real interval), then the sums in
relation (24) must be replaced by integrals and—with the obvious correspondences
xi → x, xk → x′, yl → y, zkl → (x′, y), zil → (x, y), τkl(ε, t) → τ(x′, y; ε, t), τil(ε, t) →
τ(x, y; ε, t), χkl

t → χ(x′, y, t) and χil
t → χ(x, y, t)—we obtain the equation

∂px

∂t
(x, t) = ∑

η∈Z
P2(η, t)×

×
∫

Ω

∫
Ω

{
px(x′, t)py(y, t)

∫
Rd

P(x′ ,y),x | χ(x′ ,y,t)=1,Et=ε ρ1(ξ, t)τ(x′, y; ε, t)d ξ+

− px(x, t)py(y, t)
∫
Rd

P(x,y),x′ | χ(x,y,t)=1,Et=ε ρ1(ξ, t)τ(x, y; ε, t)d ξ

}
d x′ d y

(25)

where we have also agreed to write

px,t(x) = px(x, t) , px,t(x′) = px(x′, t) , py,t(y) = py(y, t) .

System (25) is clearly the most general description of the behavior of any many-
particle system, be it isolated or interacting with the external world, provided only binary
interactions between the particles of the system are taken into account. On the one hand, we
can see at once that the equations governing the evolution of the state vectors for an isolated
system can be obtained from system (25) by taking P(Et = c) = 1 for any t (however, the
constant c is chosen), and those for a system undergoing a deterministic external influence
correspond to condition (21); on the other hand, we are able to depict the quite general
case of external actions modifying the rates and the effects of internal interactions. These
important influences can be considered together with other types of recently considered
external influences [18], acting directly on the state vectors and not on the interactions
between particles.

We will, however, leave aside direct external influences on state vectors. In connection
with the external actions considered and described in systems (22), (24), and (25), and with
particular concern to random events, we want to consider and discuss at least some possible
applications of the above model to economic and social problems.

8. Conclusions and Perspectives

The doubly stochastic model presented in Section 7 seems to fit the description of the
complex world of social and economic interactions in the whole human society, whose
very rapid and often sudden and disordered changes we witness every day. Of course,
there are also other very interesting applications, for instance in biochemistry, if we want to
study the effects of accidentally breathing carbon monoxide or carbon dioxide: in these
cases, the interactions between the hemoglobin contained in red blood cells and the cells of
muscle tissue are either prevented (zero interaction rates, for carbon monoxide) or see their
ability to deliver a sufficient quantity of oxygen to these latter, seriously diminished cells
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(transition probabilities extremely re-distributed toward low values, for carbon dioxide).
However, these, at this moment, are only proposals for future applications and models: till
now, there is no research about an equation of the Kinetic Theory for Active Particles in
which interaction rates and transition probabilities are stochastic, as influenced by random
external events. Furthermore, now, it is to economic and social scenarios that we want to
turn our attention.

A first, rather evident example is economic, and does not require that the system S
be split into a number N of different functional subsystems Sj (not to be confused with
the classes Ci of individuals sharing the same state (see, e.g., [3,7]). (In this paper, we
have not explicitly recalled the notion of “functional subsystems” just because this would
simply amount to introducing one more index to each term appearing in the equations and,
in the case of continuous state variables, to replacing a single equation with N different
equations, one for each subsystem. Readers not acquainted with the Kinetic Theory for
Active Particles can see this topic in the cited books, and also in [15], where subsystems
are recalled and briefly discussed.) If we consider any national population, and confine
ourselves to only consider internal commercial interactions (without taking into account
import and export), then we can correlate the frequency of such interactions, and also the
probability distribution of their effects, to the rather stochastic fluctuations in inflation,
depending on abrupt external events like sudden wars, interruptions in the import of raw
materials for the internal production of goods, and the political choices of central banks
about interest rates. In this case, the values of the random variables Et should be vectors,
whose components will be a dichotomous variable expressing the possible occurrence of
a war, the prices of raw materials, and the official interest rates. It should be a task of
economists to study the dependence of interaction rates and transition probabilities on
these variables by means of suitable statistical analyses.

Much more interesting are the social problems that can be managed by means of
the above model. The one we want to describe concerns the role of school in a society.
The interaction rates between students and teachers would not be affected by the diffu-
sion of telematic and IT tools, and—what is more—by the utilitarian way of seeing now
widespread in the government institutions of almost all Western nations, but certainly the
transition probabilities would. The results of teaching, described as increases in critical skills
in addition to technical skills, will depend on prescriptions by governments. Although the
common views about the most desirable outcomes of education are rather stable, they
nevertheless change with time in a rather unexpected way. Accordingly, the interactions
between students and teachers can be described by the above outlined model, where the
states of both students and teachers are vectors whose components express the possible
different skills of students as well as the skills of teachers, and the random variables Et are
a vector of scores assigned by common thought to different skills.

Coupling the direct effects of the environment on the state distribution of one or more
interacting populations considered as subsystems of a unique many-particle system with its
effects on interaction rates and transition probabilities seems now to be the most promising
and interesting way to enable the scheme of the Kinetic Theory to describe and predict the
evolution of both animal and human collectivities in the presence of random environmental
changes (for instance, systems of preys and predators when random and abrupt climate
changes take place, or systems of nations involved in an unexpected war).

The examples simply outlined above are the very challenges for the development of a
theory based on one of systems (24) and (25). They require the intervention of statisticians
and the help of scholars of many different disciplines, like economics, the science of educa-
tion, politics, and ethology, just to mention a few problems and themes possibly involved
in the applications of the theory. Possible applications will be the main objects of our future
research, at least by trying to outline possible case studies and to provide some numerical
simulations, and we expect and hope that other researchers will follow this path to apply
the scheme to an ever-wider class of concrete serious problems, with particular concern for
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the economy, which strongly needs detailed descriptions of situations that still nowadays
systematically escape the schematic and deterministic descriptions of classical economies.
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