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Abstract: The problem of stock price prediction has been a hot research issue. Stock price is influ‑
enced by various factors at the same time, and market sentiment is one of the most critical factors.
Financial texts such as news and investor comments reflect investor sentiment in the stock market
and influence market movements. Previous research models have struggled to accurately mine mul‑
tiple sources of market sentiment information originating from the Internet and traditional senti‑
ment analysis models are challenging to quantify and combine indicator data from market data and
multi‑source sentiment data. Therefore, we propose a BERT‑LLA stock price prediction model in‑
corporatingmulti‑sourcemarket sentiment and technical analysis. In the sentiment analysis module,
we propose a semantic similarity and sector heat‑based model to screen for related sectors and use
fine‑tuned BERT models to calculate the text sentiment index, transforming the text data into senti‑
ment index time series data. In the technical indicator calculation module, technical indicator time
series are calculated usingmarket data. Finally, in the predictionmodule, we combine the sentiment
index time series and technical indicator time series and employ a two‑layer LSTM network predic‑
tion model with an integrated attention mechanism to predict stock close price. Our experiment
results show that the BERT‑LLA model can accurately capture market sentiment and has a strong
practicality and forecasting ability in analyzing market sentiment and stock price prediction.

Keywords: BERT; sentiment analysis; long short‑termmemory; attentionmechanism; stockpriceprediction
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1. Introduction
According to the efficient market hypothesis [1], stock prices already incorporate all

available valuable information, which means that analyzing stock prices using historical
price data is not feasible, and this view suggests that using fundamental analysis or techni‑
cal indicators to predict stock prices may not be effective in an efficient market. However,
many pieces of evidence also suggest the opposite view. For example, Pedersen’s study
shows that those who are better at processing information have an edge in stock market
investment [2]. However, due to the random volatility of financial time series, it is difficult
for researchers to comprehensively analyze their characteristics tomake accurate forecasts,
and how to comprehensively analyze the market information to make more accurate fore‑
casts has become an ongoing issue in the field of stock price forecasting.

In the early stages of research, scholars predominantly employed conventional statistical
models, including autoregressive moving average (ARMA), autoregressive integrated mov‑
ing average model (ARIMA), autoregressive conditional heteroskedasticity model (GARCH),
etc. These classical statistical models maintain substantial relevance in contemporary pre‑
dictive research. For example, Rounaghi and Nassir Zadeh applied the ARMA model to
forecast monthly and yearly stock return time series in the S&P 500 and London Stock
Exchange [3]. Herwartz employed the GARCH model to predict stock returns and ob‑
tained useful information for signaling one‑step‑ahead directions of stock price changes
through independence testing [4].
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However, with the evolution and diversification of financial markets, the complex‑
ity of financial time series has increased, rendering traditional econometric models seem‑
ingly inadequate for contemporary research. In order to adapt to higher data precision and
complexity, machine learning models have been employed in the research of predicting fi‑
nancial time series. Traditional works often use models such as support vector machines
(SVM), artificial neural networks (ANN), random forest (RF), and extreme gradient boost‑
ing (XGBoost). For instance, Qiu et al. adapted an artificial neural network to predict the
return of the Japanese Nikkei 225 index and the result outperformed the traditional BP
training algorithm [5]. Zhou et al. proposed a novel approach that integrates complete en‑
semble empirical mode decomposition with adaptive noise and XGBoost to forecast crude
oil prices [6].

With the continuous breakthroughs in computing power and data capacity, an in‑
creasing number of studies are employing deep learningmodels for the prediction of finan‑
cial time series [7,8]. Many research indicates that deep neural networks can better handle
financial time series, especially the long short‑term memory (LSTM) network introduced
by Hochreiter and Schmidhuber in 1997 [9]. The application of the LSTM in stock price
prediction and financial forecasting research has further elevated the study of deep learn‑
ing in the financial domain. For example, Wu et al. applied LSTM and its variant models
to predict Bitcoin prices [10], and Kim andWon proposed a combined LSTMmodel to pre‑
dict the volatility of financial markets [11]. Up until the present moment, LSTM remains
one of the most extensively utilized technologies in the field of time series prediction, and
it continues to harbor significant untapped potential.

Applying deep learning to the field of financial time series prediction, the selection
of model input features is one of the most crucial issues. The choice of input features
is directly related to the model’s ability to better learn the inherent correlations between
time series. In previous works, the input features of the models typically included stock
volume and price data. For instance, Barua and Sharma introduced technical indicators
based on market data and used a CNN‑BiLSTM model to predict index close prices [12].
Wang, W.Y. et al. constructed multiple input features using price data and selected the op‑
timal combination of input features for prediction [13].

Recent studies aim to improve and diversify the selection of input features. Espe‑
cially with the development of natural language processing technologies, data collection
and processing methods are becoming increasingly diversified. Researchers are no longer
limited to analyzing stock fundamental information and technical indicators. The study
of market sentiment is receiving increasingly more attention. Researchers are beginning
to collect text information, especially finance market news, to analyze the stock market.
Many studies have shown the effectiveness of this approach for predicting stock trends
(e.g., [14,15]). Results of previous works (e.g., [15–18]) suggest that using both market data
and news‑based information is helpful for the market prediction problem.

Researchers are not only confined to the sentiment of news, the analysis of retail in‑
vestors’ sentiment derived from social media has also become a focal point. For example,
Poongodi et al. developed a tweet node algorithm to construct a network of tweet nodes,
aiming to extract potential associations in Twitter data for stock market prediction [16].
Poongodi et al. analyzed the typical trends in the online communities and social media
platforms to understand and extract insights that could be used to predict the crypto‑
currency price movement trends [17]. However, there is still room for improvement in
enriching the data sources for sentiment analysis and refining and standardizing market
sentiment analysis methods.

Regarding technical applications, previous sentiment analysis in financial markets relied
more on manually annotated dictionaries to analyze the sentiment of financial texts [18,19].
With the development of deep learning, many deep learning models have been applied to
text analysis and achieved significant results. For example, Daudert introduced an adap‑
tive feedforward neural network that utilizes recorded text and contextual information
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for fine‑grained sentiment analysis [20]. Jing et al. used a CNN‑based sentiment analysis
model for sentiment analysis of financial texts [21].

The transformer model in particular, due to its capability in capturing long‑range de‑
pendencies and thus analyzing semantics more effectively, has significantly propelled the
development of natural language processing technologies. In recent research, transformer‑
based natural language processing methods have shown promising results in financial
text data analysis. Particularly Google’s BERT model [22], as a transformer‑based pre‑
trained model, made remarkable progress in natural language processing and was ap‑
plied to sentiment analysis of financial texts in many studies (e.g., [23,24]). For instance,
Hiew et al.’s study shows that a BERT‑based sentiment analysis approach is superior to
models such as FastText or a multichannel Convolutional Neural Network (CNN) [25].
However, there is still significant room for research and exploration of BERT’s application
in the financial market.

Regarding analysis methods, previous works on market sentiment mainly focused
on sentiment classification. Based on existing techniques for sentiment polarity analysis,
text sentiment is classified into positive, neutral, or negative categories, and the number
of texts with different sentiment tendencies is used to calculate sentiment scores as model
inputs for stock price prediction [26].

Although there have been many attempts to apply sentiment analysis to price pre‑
diction, current research still has several shortcomings. Previous works on market senti‑
ment mainly focused on sentiment polarity (positive/negative/neutral expression), much
research has expanded on this foundation. For example, Chou split news headlines into
words and then analyzed the sentiment polarity of eachword to calculate sentiment scores
for stock price prediction [27]. Cristescu et al. analyzed the sentiment polarity of news
headlines and used a regression model to predict prices [28]. These methods resulted
in an inevitable loss of data accuracy and have a significant limitation. Moreover, most
existing research focused more on the market sentiment of the target stock and ignored
the sentiment impact of its related sectors. For example, Fazlija and Harder only used
news related to an underlying asset to construct sentiment indicators for stock price trend
prediction [29]. Deng et al. only used investor sentiment related to an underlying asset
for prediction [30]. In addition, previous research mainly used single news or post data
sources, which are relatively limited (e.g., [26,31]). Furthermore, retail investors account
for a large percentage of the stock market, and existing research has largely ignored the
impact of this group on market sentiment. How to extract market sentiment information
more accurately and comprehensively and make more accurate stock price predictions
based on sentiment information is an essential issue in current research.

To address these issues, we propose the BERT‑LLAmodel, which combines sentiment
analysis with technical indicators. Following Li, Q. et al. [32], Nassirtoussi et al. [33], and
Wang, H. et al. [34], we combine news and investor reviews for market sentiment analy‑
sis, while using financial texts from upstream and downstream industries to form multi‑
channel data. We also propose a comprehensive sentiment index calculation method for
combining news and investor comments. We leverage the BERTmodel for sentiment anal‑
ysis and calculate the sentiment index series and the technical indicator time series for
model prediction. The main contributions of this research are:
• We propose a prediction model called BERT‑LLA that leverages a pre‑trained model

for financial sentiment analysis and outperforms the baselines in test sets.
• Wepropose a comprehensive sentiment index calculationmethod for combining news

and investor comments to standardize the use of these two types of text information.
• We consider the impact of market sentiment in the company’s upstream and down‑

stream sectors andpropose combining the sentiment of the upstreamanddownstream
sectors for stock price prediction, which can solve the problem of a relatively limited
source of text data.
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• We propose a related sector selection method based on semantic similarity and sector
heat, which can help us screen related sectors for stock price prediction more intelli‑
gently and effectively.

• We analyze the impact of the weight of investor comments and news on prediction
accuracy and confirmour experience that news has amore substantial effect onmarket
sentiment. We also obtain the relatively optimized values of the weight, which have
enlightening significance for subsequent research on the synergistic effect of investor
sentiment and news on market sentiment.
The rest of the paper is organized as follows: Section 2 describes our proposed model

and corresponding details. Section 3 describes the experimental design and presents the
experimental results and discussions. Section 4 summarizes our work and points out fu‑
ture directions for research.

2. Methodology
Our work primarily focuses on leveraging market sentiment and price data for finan‑

cial time series prediction. As such, we first define the concept of sentiment index time
series and the technical indicator time series as follows.

Definition 1. We define the sentiment index time series {St} as a 2N‑dimensional vector, (S1,t|pos,
S1,t|neg, . . . SN,t|pos, SN,t|neg)

′. The sentiment index time series St is constructed based on the senti‑
ment scores of news and investor comment texts, which will be explained in Section 3.1. The value
of N depends on the number of upstream and downstream sectors we select.

Definition 2. We define the technical indicator time series {Qt} as a M‑dimensional vector, Qt =
(Q1,t, Q2,t, Q3,t, . . . , QM,t)

′, QM ∈ Q, where Q represents the important technical indicators cal‑
culated from the original market data.

The framework of our model is shown in Figure 1. Our model consists of three parts,
and the details of each part are explained in the following subsections.Mathematics 2024, 12, x FOR PEER REVIEW 5 of 26 
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2.1. Sentiment Analysis Module
2.1.1. Sentiment Analysis Based on BERT

The BERT (Bidirectional Encoder Representation from Transformers) model was pro‑
posed by Google AI Research in October 2018 [22]. It is a pre‑training model that has
achieved significant milestones in natural language processing (NLP). Compared to tradi‑
tional context‑free embeddingmodels, the BERTmodel is based on contextual embedding,
allowing it to understand text data in the context better and extract key contextual relationships.

As shown in Figure 2, the sentiment analysis model based on BERT consists of mul‑
tiple transformer blocks, which are used to extract features from the input vectors. For
the BERT model, the model input was obtained by combining three parts: token embed‑
dings, segment embeddings, and position embeddings. After receiving the word vectors
of the input text and feeding them into BERT, the model performed two pre‑training tasks:
masked languagemodeling (MLM) and next sentence prediction (NSP). After pre‑training,
the BERTmodel can be fine‑tuned for downstream tasks based on the specific requirements
of the task.
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The downstream task of this paper was to calculate sentiment scores based on un‑
structured financial text data. Based on this, we propose a method to fit the feature vectors
output by BERT into the interval [0,1] using the softmax function to represent sentiment
polarity. This sentiment polarity represents the probability of the text being positive or
negative, and these probabilities were used as sentiment scores for news and investor com‑
ments to calculate the sentiment index further. In order to achieve better results, we used
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three BERT models: original BERT, RoBERTa, and FinBERT, and selected the best model
based on prediction performance.

The core mechanism of the BERT model is the multi‑headed self‑attention mecha‑
nism, which serves to select the information that is more critical to the current task goal
from a large amount of information. The multi‑headed attention mechanism is calculated
as follows:
• The input text is transformed into an embedding vector, and the embedding vector

is multiplied by three matrices: WQ, WK, and WV to obtain the word‑embedding
representations of query, key, and value, denoted as Q, K, and V.

• To calculate the attention value, the formula is as follows:

Attention(Q, K, V) = So f tmax
(

QKT
√

dk

)
V, (1)

where dk denotes the vector dimension and 1/
√

dk is a scaling factor to prevent the point
multiplication result from being too large to affect the back propagation of the gradient.

2.1.2. Sentiment Index Calculation
The calculation of the sentiment index in this paper involves the calculation of the

sentiment index for both the company itself and its upstream and downstream sectors.
The sentiment of the upstream and downstream sectors also impacts the company’s stock
price. Therefore, we introduced the sentiment index of the upstream and downstream
sectors as parameters into the model to participate in stock price prediction.

The sentiment index was calculated based on the sentiment scores of news and in‑
vestor comments. From experience, the sentiment expressed in news and the sentiment
expressed in investor comments have different strengths of impact on the stock market.
Therefore, we assigned different weights, w1 and w2, to the sentiment scores of news and
investor comments, respectively.

In the experimental section, we discuss the impact of the values of w1 and w2 on the
final prediction results. The initial values were set as w1 = w2 = 0.5 for ease of calculation.

The formula for calculating the sentiment index is as follows:

St = w1 × News_scoret + w2 × Review_scoret (2)

The sentiment score of news is as follows:

News_scoret = ∑n
i=1 news_scorei,t, (3)

where n is the number of news articles on the t‑th trading day.
The sentiment score of comments is as follows:

Review_scoret = ∑m
i=1 review_scorei,t, (4)

where m is the number of comments on the t‑th trading day.

2.1.3. Selection Method of Related Sectors
Since we use NIO and Tesla as our experimental dataset, we drew a schematic dia‑

gram of the industry chain of the new energy automobile industry, as shown in Figure 3,
considering thatwe introduce the sentiment of the associated industries into the prediction
model. It can be seen that the new energy vehicle industry chain can be divided into four
parts: upstream, midstream, downstream, and post‑market, and our experimental dataset
belongs to the downstream industry of new car‑making forces.
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At the same time, it is evident that there aremany upstream‑ and downstream‑related
sectors. To select the most related industry sectors to assist us in extracting market sen‑
timent more accurately for stock price prediction, we propose a correlation calculation
method based on semantic similarity and sector heat factor, as shown in Figure 4 below.
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The process is as follows:
Input: Themodel’s inputs are the texts of thefinancial sectors involved in the industry chain.
Embedding Generation: The embedding generation procedure used a BERT‑based

semantic vector generation approach, where we used a Sentence‑BERT model that had
already been trained on a large semantically similar dataset for vector generation, ensuring
that the loss of semantic information in the generated vectors was minimized.

Max‑pooling Layer: A max‑pooling layer addresses the most essential features by
pooling over every featuremap bearing a close resemblance to the feature selection process.

Cosine Similarity: We computed the cosine similarity based on the pooled semantic
feature vectors to obtain the semantic similarity vector. The cosine similarity between them
can be calculated using Equation (5).

cos(v1, v2) =
v1·v2

|v1| × v2
(5)

At the same time, we considered that superficial semantic similarity was not enough
to represent the correlation relationship in the stock market, and the market heat between
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different sectors in different periods affects the sector correlation relationship to a greater
extent, and sectors with higher heat tend to have a more significant impact on the sector
correlation. Based on this, we propose Sector Heat Factor (SHF) to quantify sector heat,
which is calculated using the number of news and investor comments collected during the
same period, using the following formula:

SHF = Gaussian
(

num(News + Review)−minNum
maxNum−minNum

)
, (6)

whereminNum is the minimum value of the total number of news and investor comments
in the same period board, and maxNum is the maximum value. Considering the discon‑
tinuities in the data, we fit data with a Gaussian function, which can make the data fall
within a reasonable graphical interval. The specific formula is as follows:

Gaussian = ae−(x−b)2/2c2
, (7)

where a, b, and c are constants and a > 0, the parameter a refers to the peak of the Gaussian
curve, b is its corresponding horizontal coordinate, and c is the standard deviation. In this
paper, we set a = 0.8, b = 1, c = 0.6.

2.2. Technical Indicators Calculation Module
2.2.1. Selection and Calculation of Technical Indicators

In stock trading, the most popular technical indicators include trend indicators, mo‑
mentum indicators, and volume indicators [35]. These technical indicators are transformed
into specific features through different parameter settings. We select a total of 12 technical
indicators from these three categories. These indicators, with varying configurations of
parameters such as time length, reflect the trends and fluctuations of stocks from differ‑
ent aspects, which can provide rich market signals for the prediction model. The specific
selection of technical features is shown in Table 1. Due to different time length configura‑
tions, different technical indicators start at different time points. Therefore, we retain the
time with all technical indicators while omitting the time with missing values to obtain the
technical indicator time series {Qt}.

Table 1. Technical indicators for stock prices.

Type Technical Indicators Abbreviation

Trend indicators

Moving average (10) MA (10)
Moving average (20) MA (20)

Exponential moving average (10) EMA (10)
Exponential moving average (20) EMA (20)

Moving Average
Convergence/Divergence (6,15,6) MACD (6,15,6)

Moving Average
Convergence/Divergence (12,26,9) MACD (12,26,9)

Momentum indicators

Relative strength index (6) RSI (6)
Relative strength index (12) RSI (12)

William’s %R (14) WILLR (14)
Momentum index (14) MOM (14)

Volume indicators
On Balance Volume OBV

Chaikin A/D Oscillator (3,10) ADOSC (3,10)

2.2.2. Data Processing
The data we use is complete and standardized. We only need to normalize the techni‑

cal indicators to balance the differences caused by different scales and units among the fea‑
tures. This ensures all features conform to the samedata distributionduringmodel training.
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We use the min–max normalization method [36] to map the feature data to the range
[0, 1], the specific formula is as follows:

Q∗ =
Q−Qmin

Qmax −Qmin
, (8)

where Q is the original data value, Q∗ is the normalized value, Qmin is the minimum value
of the original data, and Qmax is the maximum value of the original data.

De‑normalization:
P = P∗(Pmax − Pmin) + Pmin, (9)

where P is the de‑normalized predicted value of the model, P∗ is the model’s prediction
value, Pmin is the minimum value of the original data, and Pmax is the maximum value of
the original data.

2.3. Stock Price Prediction Module
2.3.1. Input Feature Preparation

InAlgorithm 1, we introduced the preparation process of input features for the predic‑
tion model. In the previous section, we have described the concept of technical indicator
time series {Qt} and sentiment index time series {St}. In this part, we describe the spe‑
cific calculation process of the input features. P

(
Nj

)
← so f tmax

(
W ∗ Nj + b

)
, P

(
Rj
)
←

so f tmax
(
W ∗ Rj + b

)
are the predicted probabilities of news text and investor comment

text under the positive and negative categories, respectively. W is the weight vector of the
BERT model, and b is the deviation value. We used a text dataset with sentiment labels
to fine‑tune the BERT model by minimizing the loss function. Finally, the two types of in‑
dicators were merged and combined into a composite matrix, and then we fed the matrix
into a prediction model for model training.

Algorithm 1 Feature Preparation in Our Prediction Model

Input: Nj is news sequence, and Rj is investors’ review sequence during h trading days.
Q(t−h,t) ∈ QM∗h is technical indicator data during h trading days fromM technical indicators of
space Q.
Output: Matrix X(t−h,t) from concatenation of technical indicator and sentiment index
time series.
1: for i ∈ [1, h] do:
2:  News_scoreti , Review_scoreti ← 0
3:  for j ∈ [0, N − 1] do:
4:   while ti < t(Nj), t(Rj) < ti+1 do
5:    P(Nj)← so f tmax(W ∗ Nj + b)
6:    P(Rj) ← so f tmax(W ∗ Rj + b)
7:    News_scorej,ti |pos,neg ← Newsscore j,ti |pos,neg + Ppos,neg(Nj)

8:    Review_scorej,ti |pos,neg ← Reviewscore j,ti |pos,neg + Ppos,neg(Rj)

9:    Sj,ti |pos ← w1News_scorej,ti |pos + w2Review_scorej,ti |pos
10:    Sj,ti |neg ← w1News_scorej,ti |neg + w2Review_scorej,ti |neg
11:     j← j + 1
12:   end while
13:  end for
14:  Xti ←

[
Qti , S1,ti |pos, S1,ti |neg, . . . SN,ti |pos, SN,ti |neg

]
15:   i← i + 1
16: end for
17: return  X(t−h,t) = {Xti |i = 1, . . . h}

2.3.2. Long Short‑Term Memory
RNNs are good at handling time series data but suffer from issues such as vanishing

or exploding gradients when dealing with long sequences. LSTM, a variant of RNN, is
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specifically designed to learn long‑term dependencies. Its gate structure allows for con‑
trolling the information flow, effectively avoiding the problems of vanishing or exploding
gradients in long sequences.

LSTM consists of an input, output, and hidden layer. The main features of LSTM are
contained in the hidden layer calledmemory cells. Each cell has a structure of three gates to
maintain and adjust its cell state (Ct). The structure of a memory cell is shown in Figure 5.
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The learning process of each LSTM unit can be represented by the following procedure.
In the first step, the forget gate decides which information will be discarded from

the previous cell state. The output vector is calculated based on the input vector xt at the
current moment, the output ht−1 of the memory cell at moment t− 1, and the bias vector b f .

ft = sigmoid
(

W f ,xxt + W f ,hht−1 + b f

)
(10)

In the second step, the LSTM decides which information should be stored in the cell
state Ct. This step consists of two operations:
• Calculating the candidate value c̃t, whichmay potentially be added to the cell state Ct.
• Calculating the activation value it of the input gate.

C̃t = tanh
(
Wc̃,xxt + Wc̃,hht−1 + bc̃

)
(11)

it = sigmoid(Wi,xxt + Wi,hht−1 + bi) (12)

In the third step, the new cell state Ct is calculated based on the results of the previous
two steps.

Ct = ft ∗ Ct−1 + it ∗ C̃t (13)

In the last step, the output of thememory cells is calculated according to the following
two formulas:

ot = sigmoid(Wo,xxt + Wo,hht−1 + bo) (14)

ht = ot ∗ tanh(Ct) (15)

where W f ,x, W f ,h, Wc̃,x, Wc̃,h, Wi,x, Wi,h, Wo,x and Wo,h are weight vectors, b f , bc̃ and bo are
bias vectors, ft, it and ot are the activation values of the respective gates.

2.3.3. Dropout
Overfitting is an essential issue in neural network training. In machine learning mod‑

els, if a model has a large number of parameters but a small amount of sample data, it is
prone to overfitting. This leads to themodel having a low loss function and high prediction
accuracy on the training dataset, while it is the opposite in validation or test phases.

Dropout can effectively alleviate the occurrence of overfitting for neural networks.
Dropout was first proposed by Hinton et al. to address the problem of overfitting [37]. Its
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core mechanism is to randomly deactivate neurons in the network with a probability of
p to reduce the local dependence of the neural network and thereby improve the model’s
generalization ability.

We add a dropout layer after each LSTM layer, as shown in Figure 1. Except for the
first layer of LSTM, the input to other LSTM layers at time t is calculated as follows:

Dropout(hl−1
t ) = Bernoullip ∗ hl−1

t (16)

where Dropout(·) represents the dropout operation that sets the output hidden state to
zero by a specified probability 1 − p. l is the layer number in the neural network, and
Bernoullip is a random variable’s discrete probability distribution which takes a value of
1 with the probability p and a value of 0 with the probability 1− p.

2.3.4. Attention
As share pricemovements are related to specific time points, such as new government

policies or significant R&D developments in the company, we introduced the attention
mechanism into the two‑layer LSTM model. The attention mechanism can give different
weights according to the state of the time series at different moments so that it can extract
the essential information of the trading day at the critical time.

ut = tanh(Wht) (17)

ut = tanh(Wht)αt,i =
exp

(
uT

t u
)

∑T
t=1 exp

(
uT

t u
) (18)

ŷ = ∑T
t=1 αtht (19)

In the equations above, u is a trainable parameter matrix used to represent context infor‑
mation and αt,i is the allocation coefficient of input states, both of which are randomly
initialized and optimized during the training procedure.

2.3.5. Prediction Model
In summary, the input data for our prediction model is a 3D feature tensor incorpo‑

rating multi‑source sentiment and technical indicators. Figure 6 shows the schema of how
data are represented in our model. From this we can extract the corresponding data for
model training.
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The architecture of our prediction model is shown in Figure 1 above. In order to fully
utilize temporal information and extract key time points of stock price trends, we adopted
a combination architecture of dual‑layer LSTM and attention for stock price prediction.
Dropout layers were added after each LSTM network to improve the model’s generaliza‑
tion ability. An attention mechanism was introduced to extract critical information and
enhance the accuracy of the model’s predictions.

It is important to note that bidirectional LSTM networks could not be used in this pa‑
per because stock market data follows a strict time series format, which means that future
data cannot be used to predict present stock prices.

3. Experiment
3.1. Datasets
3.1.1. Price Data

We used market data from two stocks, NIO (stock code: NIO) and Tesla (stock code:
TSLA), to examine the effectiveness of our model. The time spanwas from September 2020
to September 2022. We used the Python language (version 3.8.1) and the yfinance package
(version 0.1.45) to download the required stock price data. Based on the market’s price, we
calculated corresponding technical indicators to build the time series of technical indicators
for each stock. The normalized data for stock price indicators are shown in Table 2.

Table 2. Normalized indicator data.

Period MA(10) MA(20) EMA(10) EMA(20) …

29 September 2020 0.10087 0.07586 0.09679 0.07185 …
30 September 2020 0.10526 0.07816 0.10575 0.07711 …
1 October 2020 0.10964 0.08046 0.11528 0.08307 …
2 October 2020 0.11403 0.08275 0.12071 0.08717 …
5 October 2020 0.12061 0.08735 0.12683 0.09180 …
6 October 2020 0.12280 0.09195 0.12809 0.09393 …
7 October 2020 0.13157 0.09655 0.13274 0.09785 …
8 October 2020 0.13815 0.09885 0.13606 0.10112 …

… 0.14693 0.10344 0.13889 0.10415 …

As the new energy vehicle sector has been a rapidly growing emerging industry in
recent years, this paper selected these two stocks as they are leading companies in this
industry. The reason for choosing these two stocks as research objects is twofold. Firstly,
as leading companies in the new energy vehicle sector, these two stocks are representa‑
tive and have significant price fluctuations, thus having great potential for analysis and
research value. Secondly, these companies are well‑known and highly discussed with ac‑
tive stock trading. This generates a larger volume of high‑quality data from news reports
and investor discussions, which can be used for experimental model training.

3.1.2. Text Data
Corresponding to the price data, the text data used in this paper included news head‑

lines and investor comments from the same period for the two stocks. Additionally, we
picked the three most relevant sectors as text data sources for the model. Similarly, news
headlines and investor comments from the same periodwere selected for text data sources.

We used a Python‑basedweb crawler to collect investor comment text data from stock
forums on the Eastmoney website, while the news headline texts were collected from the
industry news section of the Choice financial terminal app.

After text data cleaning, we fed them into the sentiment analysis module, which had
been fine‑tuned. The sentiment scores of the three BERTmodels were calculated, as shown
in Table 3.
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Table 3. Text sentiment score samples.

News Text Translation BERT‑Positive BERT‑Negative RoBERTa‑Positive RoBERTa‑Negative FinBERT‑Positive FinBERT‑Negative

什么原因？“蔚小理”变成
“理小蔚”，理想汽车8月交付
量暴增，蔚来连续“败北”

What is the reason why “Xiaoli Wei”
became “Li Xiaowei”, and Li Auto’s
delivery volume skyrocketed in
August, while NIO has been
continuously “defeated”?

0.120 0.870 0.001 0.999 0.001 0.999

华为无人驾驶引发A股放量大涨
Huawei’s unmanned driving

technology triggers a significant
surge in A‑shares trading volume

0.880 0.120 0.999 0.001 0.999 0.001

Review Text Translation BERT‑Positive BERT‑Negative RoBERTa‑Positive RoBERTa‑Negative FinBERT‑Positive FinBERT‑Negative

你降价，我“画饼”蔚来不可期 “You lower the price, I paint a rosy
picture—NIO is unexpected.” 0.470 0.530 0.001 0.999 0.250 0.750

飞流直下三千尺
Flying waters descending straight

three thousand feet 0.395 0.605 0.001 0.999 0.001 0.999
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3.1.3. Generation of Training and Testing Sets
We divide data into a training set and a testing set. The training set consisted of 75%

of the data, which was used to train the model parameters. The remaining 25% of the
data served as the testing set to evaluate the model’s performance. Considering the short
timeliness and limited dataset in the emerging new energy vehicle industry, we employed
the sliding window method to train the model. Within each training set, it was further
divided into a training–testing set, referred to as a “study period”. In this paper, a “study
period”was set as 100 trading days, where the first 75 data points were used as the training
set, and the last 25 data points were used as the testing set. The generation process of the
training–testing settings is illustrated in Figure 7.
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3.2. Experiment Setup
3.2.1. Hyper‑Parameters Setting

In Bert, we set 2× e−5 as the learning rate and 100 as the number of epochs. We used
CrossEntropyLoss as the loss function, and fine‑tuned Bert by using financial text data
with sentiment labels. Figure 8 illustrates the training and validation accuracy for BERT.
Our model does not appear to be overfitting. Similar results are shown in Figures 9 and 10
for RoBERTa and FinBert but with some differences.
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In our prediction model, the first layer was a sequential LSTM with 64 units. The
inputwas the concatenation vector of themarket data and sentiment analysis features. The
second layer was a non‑sequential LSTM that further extracted critical information from
the sequence with 32 units.

We used the MSE loss function to minimize the loss values of all samples in the train‑
ing set. The batch size was set as 32, and the Adam optimizer with an initial learning rate
of 0.001 was used to train the model. Additionally, the number of epochs was set as 1000
to guarantee the convergence of the training process. We set the dropout rate as 0.1 to
avoid overfitting.

As shown in Figures 11 and 12, the loss functions based on different BERT models
exhibited significant downward trends and eventually converged within 1000 epochs.
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3.2.2. Baselines
In the experiment, we adopted six models as baselines: LSTM‑attention, LSTM, RNN,

CNN, RF, and SVM.
Furthermore, to verify the impact of incorporating multi‑channel data sources in text

sentiment analysis on prediction accuracy, different input datasets were used in the BERT‑
LLA model to evaluate the influence of input features on prediction accuracy. The exper‑
iment scheme is shown in Table 4, where a value of one represents that the data are used
for model input, and zero is the opposite.
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Table 4. Model input feature scheme.

Scheme Sentiment Index Time Series Related Sector Sentiment
Index Time Series Technical Indicator Time Series

(1) 1 1 1
(2) 1 0 1
(3) 0 0 1

3.2.3. Evaluation Metrics
We used three metrics to evaluate the performance of each model:
Mean Square Error (MSE):

MSE =
1
m ∑m

i=1(yi − ŷi)
2 (20)

Root Mean Square Error (RMSE):

RMSE =

√
∑m

i=1(yi − ŷi)
2

m
(21)

Mean Absolute Percentage Error (MAE):

MAE =
1
m ∑m

i=1|yi − ŷi| (22)

where m is the sample size, yi is the true value of the i‑th sample, ŷi is the predicted value
of the i‑th sample.

MSE and RMSE are effective metrics for measuring the errors between observed val‑
ues and predicted values. They provide a quantitative measure of how close the predic‑
tions are to the actual values. MAE is a metric that measures the accuracy of the prediction
method. It calculates the average absolute percentage difference between the predicted
and true values, indicating the overall accuracy of the model’s predictions. It is clear that
the smaller the MSE, RMSE, and MAE values, the smaller the model’s prediction error.

3.2.4. Quantitative Strategy Setting
To verifywhether themodel’s prediction results can assist trading to some extent, this

paper proposes a trading strategy that integrates prediction results. The strategy utilizes
fast‑ and slow‑moving averages, along with price prediction results to generate trading
signals. The fast‑moving average was set as a 5‑day simple moving average, while the
slow‑moving average was set as a 10‑day simple moving average. The strategy comprises
two buy signals and two sell signals:
• Buy Signal 1: The predictedprice exceeds the 5‑daymoving average price by a 5% threshold.
• Buy Signal 2: The 5‑day moving average crosses above the 10‑day moving average.
• Sell Signal 1: The predicted price falls below the 5‑daymoving average by a 5% threshold.
• Sell Signal 2: The 5‑day moving average crosses below the 10‑day moving average.

As a comparison, we used a strategy that excluded the Buy Signal 1 and Sell Signal 1,
referred to as DMA (double‑moving‑average strategy). The effectiveness of the price pre‑
diction results for trading applications was assessed by comparing the performance of
these two strategies in backtesting.

3.3. Experiment Results and Discussion
3.3.1. Related Stock Sector Selection

We screen 10 related financial sectors in the new energy vehicle industry chain on
the Eastmoney website, collected news and investor review data in the same period, and
calculated the sector heat factor, the cosine similarity, a correlation coefficient according
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to Section 3.1.3, and we ranked the correlation coefficients in descending order. The re‑
sults are shown in Table 5. We selected the three sectors with the most significant cor‑
relation coefficients, namely new energy, autonomous driving, and lithium battery, and
fed the sentiment data of these three sectors into the prediction model to assist in stock
price prediction.

Table 5. Related data of sector correlation calculations.

Sector News Number Review Number SHF Cosine Similarity Correlation
Coefficient

New Energy 23,957 30,492 1.67248 0.768 1.28446
Autonomous Driving 2830 4732 1.24432 0.637 0.79263

Lithium Battery 3693 7998 1.27698 0.612 0.78151
Automotive Parts 81,354 825 1.79971 0.452 0.75767
Charging Post 2338 1118 1.21416 0.549 0.66657

Complete Vehicles 5975 457 1.23578 0.496 0.61294
Fuel Cell 2704 1431 1.21898 0.427 0.52050

Automotive Chip 1305 353 1.20172 0.416 0.49991
Semiconductor 12,469 6686 1.20172 0.387 0.46506

Power Battery Recycling 1128 199 1.19948 0.370 0.44380

3.3.2. Prediction Performance and Comparison with the Baseline
After training the model and de‑normalizing the predicted results, we obtained the

fitted curves of the BERT‑LLA model, as shown in Figures 13 and 14. It was observed that
despite the significant volatility in the stock prices of NIO and Tesla, the model’s predicted
values were quite close to the actual values in both the training and prediction sets.
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We compared the best‑performing BERT model with six benchmark models: LSTM‑
attention, LSTM, RNN,CNN,RF, and SVM. Their prediction performance is shown in Table 6.

Table 6. The evaluation metrics in two datasets.

Company Model MSE RMSE MAE

NIO

BERT‑LLA 0.00046 0.02147 0.01771
LSTM‑attention 0.00053 0.02376 0.01841

LSTM 0.00054 0.02419 0.01882
RNN 0.00058 0.02578 0.01876
CNN 0.00078 0.02810 0.02140
RF 0.02471 0.15720 0.15446
SVM 0.02717 0.16486 0.16235

TSLA

BERT‑LLA 0.00095 0.03091 0.02560
LSTM‑attention 0.00103 0.03304 0.02647

LSTM 0.00108 0.03395 0.02694
RNN 0.00112 0.03484 0.02776
CNN 0.00126 0.03952 0.03144
RF 0.03542 0.18821 0.16501
SVM 0.03062 0.17498 0.15313

The results indicated that the SVM and RF models performed relatively poorly, high‑
lighting their limitations in handling time series problems. The CNN network showed
better predictive performance compared with the SVM and RF models. The RNN, LSTM,
and LSTM‑attention networks excelled in handling time series problems, exhibiting rela‑
tively good predictive performance. The proposed BERT‑LLAmodel had the smallest eval‑
uation metrics and the best predictive performance, presenting that the model accurately
captured critical information between the time series nodes through the dual‑layer LSTM
network and attentionmechanism, significantly enhancing the accuracy of the predictions.
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3.3.3. The Effect Comparison of Different Input Features
The prediction performance fromdifferent input feature schemes are shown in Table 7.

It is evident that the prediction performance of input feature scheme (1) is superior to the
other two schemes.

Table 7. Prediction performance of different input data schemes.

Company Input Feature Scheme MSE RMSE MAE

NIO
(1) 0.00046 0.02147 0.01771
(2) 0.00074 0.02724 0.02458
(3) 0.00101 0.03175 0.02653

TSLA
(1) 0.00095 0.03091 0.02560
(2) 0.00119 0.03451 0.03014
(3) 0.00128 0.03643 0.03085

The data indicate that the proposed stock price prediction method, which combines
sentiment analysis, significantly improves the accuracy of the model’s predictions. Ad‑
ditionally, the prediction method incorporating the sentiment data of related sectors is
superior to solely relying on technical analysis for prediction. This confirms the feasibility
of our sentiment analysis method in stock price prediction research.

We plot the de‑normalized prediction results of different input feature schemes in the
training and testing sets, as shown in Figures 15 and 16.
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3.3.4. Comparison of the Weights of News and Investor Reviews
In order to investigate the impact of time series sentiment indices corresponding to

investor comment text data and news text data on themodel’s prediction accuracy, we took
NIO as an example and calculated the sentiment index under different weights. Then, we
fed these sentiment indices into our model to obtain the MSE indicator. The heatmap was
plotted based on the MSE indicator data, as shown in Figure 17.
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From the heatmap, we can intuitively see that when w1 = 0.4, w2 = 0.1, the color
of the heatmap is the lightest, indicating relatively optimal prediction accuracy. This is
consistent with common sense, as stock investors tend to exhibit a certain degree of bias in
expressing negative sentiment on online platforms. On the other hand, market sentiment
represented by news information is more objective and has a more significant impact on
market trends. At the same time, when w1 = 0, which means not using the news senti‑
ment index for prediction, the model’s prediction accuracy is relatively biased. This indi‑
cates that solely relying on investor sentiment is difficult to represent the overall market
sentiment. These results demonstrate the importance of the proposed market sentiment
analysis method and the weight analysis of investor comment and news text in stock price
prediction research.

3.3.5. Application of Prediction Results in Trading Strategy
Based on the quantitative strategy proposed above, we chose Backtrader, an open‑

source quantitative framework based on Python, with the initial capital set at 1 million.
The backtesting period spanned from 1 January 2022 to 30 August 2022. The underlying
asset for the strategy was NIO, and the transaction commission rate was set to 0.1% for a
single trade of 10,000 shares. The backtesting results for the two strategies are shown in
Table 8. We also plot the net worth curves for both strategies, as shown in Figure 18.

Table 8. Backtesting results for both strategies.

DMA + Prediction DMA

Sharpe ratio 0.955 −1.045
Maximum drawdown (%) 2.158 9.246

Total return rate (%) 8.958 −8.778
Total assets 1,089,586.92 912,221.70
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It is evident that DMA + Prediction strategy, which incorporates the price prediction
results, is able to achieve a more stable return with less volatility and exhibits superior per‑
formance during the backtesting period compared to the simple double‑moving‑average
strategy. This reflects the practical application value of our model in financial trading.
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4. Conclusions
We propose a stock price prediction model that combines market sentiment and price

data from multiple sources. Based on BERT model, market sentiment is captured from
textual data, and sentiment index time series is constructed using the sentiment analysis
method proposed above. At the same time, we combine the technical indicator time series
to construct the prediction model through LSTM with the attention mechanism. Experi‑
mental results show that the integration ofmarket sentiment improves prediction accuracy
to a large extent. Our model demonstrates robustness and generalization in experiment
datasets. Our work provides a reference for utilizing unstructured textual data in stock
price prediction, particularly in the context of the hot sector of new energy vehicles, vali‑
dating the practical application value of the proposed approach in predicting stock prices
of popular sectors. We also propose a method that can quickly and efficiently screen for
related industry sectors promptly and efficiently. Furthermore, our study explores the im‑
pact of the weights of two types of textual data on the model’s prediction results, which
expands the construction approach of sentiment indexes based on financial texts.

There are also some limitations in the paper:
• Lack of analysis on long texts such as industry research reports and lengthy stock

reviews that significantly impact stock price trends.
• No specific research on sudden market hot topics or scenarios. Based on experience,

sudden major news events have a significant impact on stock price trends.
• A large amount of financial text data are used in this paper, but we have not analyzed

the validity of this financial text data, which may lead to some of the data being inef‑
fective and thus affecting the results of the experiment.
In future research in related fields, there are directions that can continue to be explored:

• We know that K‑line patterns contain a wealth of market information, and how to
introduce K‑line pattern features into a model is an attractive research topic.

• Additionally, research in related fields should not be limited to daily data. Exploring
how to capture market sentiment changes in short periods using text data to assist
high‑frequency trading is also an important area for future in‑depth research.

• With the development of multimodal technology, exploring the intrinsic mechanism
of stock prices should not be limited to price and text data, but also analyzing and
applying multimodal data information such as video, audio, and image information
in the financial field will be an important development direction.
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