
Citation: Bukhari, S.N.H.; Ogudo,

K.A. Ensemble Machine Learning

Approach for Parkinson’s Disease

Detection Using Speech Signals.

Mathematics 2024, 12, 1575. https://

doi.org/10.3390/math12101575

Academic Editor: Andrea Scozzari

Received: 25 April 2024

Revised: 13 May 2024

Accepted: 15 May 2024

Published: 18 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Ensemble Machine Learning Approach for Parkinson’s Disease
Detection Using Speech Signals
Syed Nisar Hussain Bukhari 1,* and Kingsley A. Ogudo 2

1 National Institute of Electronics and Information Technology (NIELIT), Srinagar 191132, India
2 Department of Electrical & Electronics Engineering, Faculty of Engineering and the Built Environment,

University of Johannesburg, Johannesburg 0524, South Africa; kingsleyo@uj.ac.za
* Correspondence: nisar@nielit.gov.in

Abstract: The detection of Parkinson’s disease (PD) is vital as it affects the population worldwide and
decreases the quality of life. The disability and death rate due to PD is increasing at an unprecedented
rate, more than any other neurological disorder. To this date, no diagnostic procedures exist for this
disease. However, several computational approaches have proven successful in detecting PD at early
stages, overcoming the disadvantages of traditional methods of diagnosis. In this study, a machine
learning (ML) detection system based on the voice signals of PD patients is proposed. The AdaBoost
classifier has been utilized to construct the model and trained on a dataset obtained from the machine
learning repository of the University of California, Irvine (UCI). This dataset includes voice attributes
such as time-frequency features, Mel frequency cepstral coefficients, wavelet transform features, vocal
fold features, and tremor waveform quality time. The model demonstrated promising performance,
achieving high accuracy, precision, recall, F1 score, and AUC score of 0.96, 0.98, 0.93, 0.95, and 0.99,
respectively. Furthermore, the robustness of the proposed model is rigorously assessed through
cross-validation, revealing consistent performance across all iterations. The overarching objective of
this study is to contribute to the scientific community by furnishing a robust system for the detection
of PD.

Keywords: machine learning; Parkinson’s disease; speech signals; boosting; ensemble learning
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1. Introduction

Parkinson’s disease (PD) is a degenerative disease that affects the nervous system and
other parts of the body controlled by the nervous system [1]. Second only to Alzheimer’s
disease in prevalence among neurodegenerative conditions, PD imposes a substantial global
burden, with over 10 million individuals estimated to be grappling with its ramifications
worldwide [2]. The financial burden corresponding to the direct and indirect treatment of
the disease is high. According to estimates, more than USD 2000 is spent annually on the
diagnosis and treatment of PD per person in India alone. Timely and accurate detection
and therapy can help delay the progress of this disorder in affected patients. The cause
and diagnosis of PD remain unknown to this date [3]. However, clinical observations
and symptomatology serve as cornerstones for disease identification and characterization.
The advancement of symptoms varies in different patients. Patients affected by PD show
mainly two types of symptoms: motor symptoms and non-motor symptoms [4]. Motor
symptoms can range from tremors in the hand, slowed movement, rigid muscles, and
changes in writing to impaired posture and balance and loss of involuntary movements [5].
However, motor symptoms appear at later stages of the disease, resulting in late detection
of the disease. Non-motor problems, including speech disorders, sleep behavior disorders,
depression, and loss of olfactory sense, can detect PD at its early stage.
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PD causes the loss of neurons in the part of the brain called Substantia Nigra, which
is responsible for the production of dopamine [6]. Dopamine facilitates the coordination
between the nervous system and other parts of the body. The loss of dopaminergic neurons
can lead to speech disorder in patients with PD, as the generation of speech is a result of
various coordination activities. The analysis of speech characteristics is essential in the
early detection of PD, as its effect on speech and phonation are clear indicators of PD [7].
The deviation in speech signals indicates PD. For instance, the voice signal of a person with
PD has a lack of intensity and monotony in pitch and loudness. Speech disorder in patients
with PD is characterized by a slowed speech rate, voice tremor, sunken tone, and unclear
speech caused by impaired pharyngeal, oral, and jaw muscles.

The convergence of burgeoning research in neurodegenerative disease, advances in
machine learning (ML), and the wealth of diagnostic information embedded within speech
signals holds immense promise for the detection and characterization of Parkinson’s disease.
By using ML, the relevant voice features can be extracted, combined, and employed for the
assessment of this disease [8]. Depending on the features that can be extracted from speech
recordings of the affected patients, voice signals can be of various types, including temporal,
spectral, articulatory, prosodic, statistical, and vocal [9]. Among these, temporal, spectral,
statistical, and vocal signals are mostly used in the speech analysis of patients with PD [10].
The aim and focus of this study is to develop an effective ML model for the detection of
PD utilizing a diverse array of attributes and their corresponding statistical summaries
extracted from speech signals. By leveraging ML algorithms, we seek to identify subtle
patterns and biomarkers present in speech recordings that can serve as early indicators of
PD onset. The proposed model shall act as a non-invasive and cost-effective diagnostic tool
that can aid healthcare professionals in detecting PD at its initial stages, enabling timely
intervention and improved patient outcomes.

The existing literature on PD detection often highlights the limitations of current
diagnostic methods, which primarily rely on the assessment of motor symptoms and may
not detect the disease until its later stages. There is a clear gap in the literature regarding the
development of sensitive and reliable diagnostic tools for PD detection, particularly those
utilizing non-motor symptoms such as speech impairments. Our study addresses this gap
by exploring the potential of ML algorithms to analyze speech signals and extract relevant
features for PD diagnosis, thus contributing to the advancement of detection techniques.

Previous studies in the field of PD detection have faced several challenges, including
limitations related to dataset quality, model performance, and the lack of robust diagnostic
tools. Many existing approaches rely on small or imbalanced datasets, which may lead to
biased or unreliable results. Additionally, the performance of some ML models in distin-
guishing between PD patients and healthy individuals may be suboptimal, highlighting the
need for more advanced techniques. This study addresses these challenges by employing
state-of-the-art pre-processing methods, leveraging a comprehensive dataset, and utilizing
ensemble-learning techniques to improve model accuracy and reliability.

1.1. Contributions

The novel contributions of this paper are summarized as follows:

• In this study, we employ a comprehensive dataset comprising voice recordings from
PD patients and healthy individuals, allowing for a detailed analysis of speech charac-
teristics and the extraction of relevant features. This dataset encompasses a wide range
of clinically significant attributes, including time-frequency fading (TFF) features,
Mel frequency cepstral coefficients (MFCCs), vocal fold features (VFF), and tremor
waveform quality time (TWQT), among others. By using these diverse features, the
proposed model can capture subtle variations in speech patterns associated with PD
pathology, thereby enhancing diagnostic accuracy.

• Our study utilizes advanced pre-processing techniques, including synthetic minority
oversampling technique (SMOTE) and principal component analysis (PCA), to address
imbalanced datasets and reduce dimensionality while preserving essential information.
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These techniques enhance the robustness and efficiency of our model, allowing for
more accurate PD detection.

• The study adopts an ensemble learning approach, specifically AdaBoost, to construct
a predictive model for PD detection. By combining multiple weak learners, AdaBoost
improves the model’s performance and generalization ability, making it well suited for
handling complex relationships in speech datasets. This novel application of ensemble
learning techniques to PD detection represents a significant advancement in the field,
offering a more effective and reliable diagnostic tool.

• In contrast to conventional diagnostic approaches that often overlook non-motor symp-
toms, this study explores the diagnostic potential of such symptoms. By incorporating
non-motor manifestations, the model aims to enrich the diagnostic process for PD.

• By facilitating the detection of PD, this proposed study strives to mitigate the sub-
stantial economic burden associated with delayed diagnosis. Timely identification of
the disease can potentially reduce both direct healthcare costs and indirect economic
burdens on individuals and healthcare systems.

1.2. Motivations

Parkinson’s disease (PD) presents a significant global health challenge, affecting
individuals’ quality of life and posing a growing burden on healthcare systems. With
escalating disability and mortality rates surpassing those of many other neurological
disorders, the imperative for early PD detection is undeniable. Yet, conventional diagnostic
methods lack the efficacy to meet this demand. Fortunately, computational approaches
offer promising avenues for PD detection, circumventing the limitations of traditional
diagnostic modalities.

This study is motivated by the pressing need to advance PD diagnosis through the ap-
plication of ML techniques, specifically focusing on speech signals as a diagnostic modality.
Speech analysis holds potential as a non-invasive, cost-effective means of detecting PD,
offering insights into the subtle vocal impairments characteristic of the disease. Leveraging
the extensive dataset from the University of California Irvine (UCI) Machine Learning
Repository, encompassing diverse voice attributes such as time-frequency features, Mel
frequency cepstral coefficients, and vocal fold features, this research endeavors to develop a
robust ML detection system. The utilization of the AdaBoost classifier represents a deliber-
ate choice, guided by its proven efficacy in handling complex classification tasks. Through
meticulous model development and rigorous evaluation, this study aims to achieve su-
perior diagnostic performance, as evidenced by the attained accuracy, precision, recall,
F1 score, and AUC score metrics. Additionally, the robustness of the proposed model is
systematically validated through cross-validation, ensuring consistent performance across
diverse datasets. By providing the scientific community with a reliable, validated ML-based
detection system, this research seeks to catalyze advancements in PD diagnosis. Ultimately,
the overarching goal is to equip clinicians and researchers with a potent tool for PD detec-
tion, thereby enhancing patient outcomes and alleviating the societal burden imposed by
this debilitating disease.

The rest of the paper is structured in the following manner. Section 2 contains an
illustration of related works in this field. Section 3 provides a detailed description of data
collection, pre-processing, feature selection, and model building. Section 4 summarizes the
results obtained by the use of various metrics. Section 5 concludes the study with possible
future improvements in this field.

2. Related Work

Several statistical methods and data-driven techniques have been developed to detect
PD. Due to its data-driven techniques, machine learning (ML), which is an emerging tech-
nique in the field of medical research, has contributed sufficiently to the diagnostic process
of this disease. A detection model was introduced based on the waves collected from
the smartwatches of patients with PD [11]. The model effectively detected the symptoms



Mathematics 2024, 12, 1575 4 of 18

of PD with high classification accuracy. The model effectively detected the symptoms of
PD with high classification accuracy. A study conducted by [12] employed a pre-trained
CNN (Inception V3) with transfer learning to analyze spectrograms of voice recordings
of patients with PD. Their deep learning model demonstrated superior performance in
classifying patients with PD, with an AUC of 0.97 for colored spectrograms and 0.96 for
grayscale spectrograms. In an attempt to diagnose PD at its early stage, a study by [13]
utilized several ML algorithms and a three-layer deep neural network (DNN2), which
outperformed all, reaching an accuracy of 95.41%. The study suggested that DNNs ex-
hibit superior performance compared to traditional ML methods in categorizing patients
with PD based on speech signals. With the aim of developing a soft diagnosis tool for
identifying PD through voice signal characteristics, a research investigation carried out
by [14] evaluated various ML models. The study demonstrated that the SVM-based model
surpassed other ML models in classifying patients with PD with a notable accuracy of 96%.
To promote the integration of ML in telemedicine, a study by [15] trained four ML models
(SVM, random forest, KNN, and logistic regression) utilizing MDVP (multi-dimensional
voice program) audio data from 30 individuals with PD and healthy subjects. The results
declared the random forest classifier as the optimal technique, with a detection accuracy of
91.83% and a sensitivity of 0.95. In another study, conducted by [16], feature elimination
methods were combined with ML classifiers to diagnose PD using voice disorders. The
findings from their research illustrated that the combination of Random Forest with t-SNE
(t-distributed stochastic neighbor embedding) and MLP (multi-level perceptron) with the
PCA (principal component analysis) exhibited superior performance with an accuracy of
97% and 98%, respectively. Aiming to highlight the importance of using acoustic features
in the detection of PD at its early and mid-advance stages, ref. [17] integrated feature
selection methods with ML classifiers. In addition to detecting early and mid-advanced
stages of PD with an accuracy of 95.4%, their hybrid model also detected stage 3 and
stage 4 of PD with an accuracy of 89.48% and 86.62%, respectively. Following a similar
approach, ref. [18] experimented with multiple combinations of feature selection methods
and classifiers to detect PD with the help of speech signal features. The results concluded
that random forest combined with the genetic algorithm outperformed the rest of the
combinations with an accuracy of 95.58%. Owing to its capacity to handle large datasets,
deep learning techniques have also been applied to the effective diagnosis of PD [19]. By
utilizing voice signal characteristics and data balancing techniques, a hybrid LSTM-GRU
model proposed by [20] achieved a noteworthy accuracy of 100%. Research conducted
by [21] proposed a hybrid CNN-LSTM model that works in various stages, including noise
removal, feature extraction, and the final classification stage. The proposed hybrid model
demonstrated an enhanced accuracy of 93.51% compared to neural network, CART, SVM,
and XGBoost models with accuracies of 72.69%, 84.21%, 73.51%, and 90.81%, respectively.
A hybrid method suggested by [22] combined resonance based sparse signal decomposition
(RSSD) and a time-frequency (TF) algorithm to extract features from voice signals in order
to diagnose PD. The proposed hybrid model also integrated CNN for classification and
achieved a validation accuracy of 99.37%. An attempt towards building a non-invasive
detection model based on customized CNN was made by [23] using spirals drawn by
patients. Using the DL approach to assess the severity of PD, ref. [24] attained the highest
accuracy of 99.5% with a hybrid model consisting of CNN and weighted RF. Another hybrid
approach recommended by [25] combined the MIRFE feature selection method with an
XGBoost classifier. Subsequently, the model achieved a substantial feature reduction ratio
of 94.69%, an accuracy of 93.88%, and an AUC of 0.978. Further research was conducted
by [26] to explore the diagnosis of PD using a dual-branch deep learning model and gait
signals. Their approach involved combining CNN and Bi-LSTM architectures for each
foot’s gait signal and extracting features from each gait cycle. A study by [27] utilizes
CNN to assist in diagnosing PD by analyzing abnormal motor patterns in patient-drawn
spiral exercises. The convolutional classifier achieved 91.67% accuracy in distinguishing
PD patients from controls based on spiral drawings. Another study by [28] presents a



Mathematics 2024, 12, 1575 5 of 18

method for automating PD diagnosis using EEG signals decomposed into sub-bands and
analyzed with machine learning models. The VKF method, introduced for the first time in
this context, coupled with SVM, achieves nearly perfect classification accuracy, marking
a significant advancement in PD diagnostic systems. These findings suggest promising
potential for accurate and early PD detection compared to recent research efforts. The study
by C. Tran et al. addresses the critical need for improved PD diagnostics and treatment by
exploring retinal fundus imaging as a potential screening tool [29]. Through systematic
evaluation of machine learning and deep learning techniques, it achieves 68% accuracy in
distinguishing PD individuals from healthy subjects, offering promising advancements in
early detection and intervention.

3. Materials and Methods

This study follows a series of steps, which include acquiring a suitable dataset, pre-
processing the data, visualization, model building, and evaluating the model. The collected
data have been pre-processed first and then utilized for classification by the model. Figure 1
displays the experimental framework that has been followed in this study.
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3.1. Retrieval of Dataset

The selection of an appropriate dataset holds paramount importance in the develop-
ment of predictive models, as their efficacy is contingent upon the quality and relevance
of the data used for training [30]. It underscores the necessity of meticulously choosing
a dataset that ensures accuracy and reliability in predictions. In this study, the dataset is
sourced from the UCI ML repository, comprising data collected from 188 patients diagnosed
with PD, of whom 107 are male and 81 are female, spanning ages from 33 to 87 [31]. The
dataset encompasses a total of 756 instances, each characterized by 754 clinically significant
attributes crucial for PD detection. The dataset primarily consists of various voice signal
attributes obtained from voice recordings of participants, including 188 PD patients and
64 healthy individuals who were instructed to sustain the phonation of the vowel /a/.
Data collection involved configuring the microphone to a sampling rate of 44.1 KHz, with
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each subject contributing three repetitions of the sustained /a/ vowel sound. To facilitate
the training of a model for PD detection, the dataset incorporates a comprehensive array of
the following features and associated metrics. These features serve as vital inputs for the
model, enabling it to discern subtle patterns indicative of PD pathology.

• Time frequency fading (TFF) features: These features combine time and frequency
components of voice signals.

• Mel frequency cepstral coefficients (MFCCs): MFCCs capture vital information about
the spectral data of speech signals and are obtained using a series of steps like framing,
windowing, and Fourier transform.

• Wavelet transform-based features (WTF): These features include pitch, formants, en-
ergy, and spectral density of speech signals obtained from wavelet transform functions.

• Vocal fold features (VFF): VFFs characterize the human vocal cord using certain
parameters like jitter, shimmer, and fundamental frequency.

• Tremor waveform quality time (TWQT): It measures the quality of the oscillatory
movement of voice signals.

The dataset also includes these additional noise-related features aimed at enhancing
the model’s robustness and ensuring optimal performance [32], even in the presence of
noise in the speech signals:

• Entropy: Entropy provides information about the disorder in the signal and can help
the model identify and adapt to noisy conditions, as in the presence of noise, the
signal’s entropy may change [33].

• Detrended fluctuation analysis (DFA) features: To enhance the model’s resilience to
short-term noise, DFA features, which are effective for evaluating long-term correla-
tions in the signal, have been leveraged. This approach enables the model to prioritize
the underlying structure of the speech signal.

• Quantile, skewness, and kurtosis features: Quantile, skewness, and kurtosis features
capture deviations in the voice signals caused by noise, aiding the model in identifying
and handling noisy segments.

• Signal-to-noise and noise-to-signal ratios: Integrating these features during model
training allows the model to understand the proportion of noise in the signal and
distinguish between the actual signal and surrounding noise, promoting robustness in
the presence of varying noise levels [34].

3.2. Data Pre-Processing

In ML, data pre-processing holds significant importance because the quality of the
data and the valuable insights that can be extracted from it using data pre-processing
techniques have a direct impact on the learning ability of our model. Hence, it is crucial to
preprocess the data before inputting it into our model. The subsequent divisions include
the pre-processing techniques implemented in this study to address imbalanced and raw
data, converting it into a structure appropriate for training the model.

3.2.1. Feature Weighting

Imbalancing refers to a situation where the distribution of target class labels in a dataset
is not equal. For binary classification problems, one class label has significantly more or
less observations than the other class label in an imbalanced situation. To ensure accurate
predictions, it is essential to address imbalancing, as it can result in misclassification. In
this study, the synthetic minority oversampling technique (SMOTE) is employed as a
method to tackle the issue of the imbalanced dataset [35]. The SMOTE technique involves
generating synthetic samples for the minority class specifically designed for that class
through oversampling. This is accomplished by linear interpolation and creating new
instances of the minority class rather than simply duplicating existing instances. The
workings of SMOTE can be summarized in the following steps:
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• For the given minority class set X, the k-nearest neighbors of each sample a in X are
determined by computing the Euclidean distance between a and all other samples in
set X.

• The sampling rate N is determined based on the degree of class imbalance. For every
sample in the minority class set X, N instances (a1, a2,. . ., an) are chosen randomly
from their k-nearest neighbors to form the set X1.

• A new example is generated for each instance ak in X1 (where k = 1, 2, 3,. . ., N) using
Equation (1).

a′ = a + rand(0, 1) ∗ |a− ak| (1)

In its original form, the UCI dataset consisted of 564 instances classified as positive and
192 instances classified as negative. The graphs in Figures 2 and 3 depict the distribution
of two classes in the dataset before and after balancing the minority class. With SMOTE,
the number of instances in the minority class has been increased to 564, resulting in a
balanced dataset.
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3.2.2. Feature Scaling

Feature scaling (FS) [36] refers to the process of transforming the values in a dataset to
a specific scale (range), preventing features with larger scales from dominating the learning
process. This is typically performed by converting the values to a range that is easier to
handle, such as scaling all values to a range between 0 and 1 or standardizing them to
have a mean of 0 and a standard deviation of 1. In this study, standard scaling has been
employed as a scaling technique, bringing the raw data onto a scale ranging from 0 to 1.
For any variable X in a dataset, the standard value can be calculated using Equation (2).

Xstand =
X−mean(X)

Standard deviation(X)
(2)

By scaling the features, the issues that arise with features having vast ranges can be
avoided, ultimately improving the performance of ML algorithms.

3.3. Feature Extraction

Feature extraction (FE) is a technique for detecting and extracting significant and
meaningful attributes from the original data [37]. These attributes depict the dataset
relationships effectively and are useful in constructing a predictive model. Typically, the
feature set obtained after extraction is more concise than the original data, which facilitates
more precise and effective analysis and modeling. FE involves a wide variety of methods,
such as statistical analysis, signal processing, and dimensionality reduction. In the current
study, dimensionality reduction has been utilized as a technique for extracting features
through principal component analysis (PCA).

Principal Component Analysis

PCA [38] is an unsupervised ML algorithm mainly used for FE. It is a linear transfor-
mation method that aims at discovering the directions in high-dimensional data exhibiting
maximum variance and then mapping the data onto a fresh subspace with the same or
fewer dimensions than the initial space. By identifying significant correlations in the data,
PCA alters the data, evaluates the relevance of these correlations, and retains the most
essential ones while discarding the rest. This way, it allows us to extract and retain the
most critical information from the data. The working method of PCA can be divided into
4 distinct steps:

• Standardizing the data: To ensure that each variable has the same influence in the
analysis, it is important to standardize the data. This involves adjusting the data
so that each variable has a mean of zero (0) and a variance of one (1). Without
standardization, variables with larger values can have a disproportionate impact on
the analysis, leading to biased results.

• Constructing the covariance matrix: The covariance matrix is an N×N matrix that
displays the covariance between each pair of variables in the dataset. Two features
can have positive covariance, i.e., they tend to vary in the same direction, or negative
covariance, i.e., with an increase in one feature, the other feature tends to decrease.

• Decompose the covariance matrix: The covariance matrix is decomposed into Eigen
vectors and Eigen values that represent the principal components and their magni-
tudes, respectively.

• Projecting the data onto a new sub-space: In the last step, the most important k
eigenvectors are selected based on their respective eigenvalues (ones with the largest
Eigen values are chosen), and those are used to transform the data and project it onto
the new subspace.

The obtained data have fewer dimensions, with the new attributes being linear com-
binations of the original ones. A total of 6 principal components were retained from the
original dataset to capture the fundamental correlations in the data while reducing its
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dimensionality, providing a more concise view of the features, and facilitating the smooth
training of the model.

3.4. Model Selection and Training

The objective of this study is to create a predictive model that can aid in the detection
of PD. The fundamental stages involved in constructing the proposed model are as follows:

• Choosing an appropriate ML model: The process of selecting an ML model involves
choosing one model from several potential candidates to learn the complexities in a
dataset. In this study, an ensemble modeling approach has been adopted to process the
speech dataset for its effectiveness in handling non-linear relationships often exhibited
by the speech datasets. Ensemble methods are also recognized for their ability to
mitigate the impact of irrelevant information (noise) in the training data, consequently
enhancing the proposed model’s robustness against speech data affected by noise.

• Fitting the ML model: Fitting an ML model entails evaluating how effectively the
model can extrapolate to comparable data to that for which it was trained. In this study,
the dataset was partitioned into training and testing subsets with an 80:20 ratio. Post
the train-test split, the ensemble model was fitted to the training subset, allowing it to
capture the underlying intricacies of the data. Subsequently, the model’s predictive
capability was assessed on the testing subset, which remained unseen during the
training phase. Generalizing the model to unseen data is essential for ensuring its
ability to make predictions.

Model Building

The proposed ensemble learning model [39] is designed to enhance prediction ac-
curacy and minimize errors by consolidating predictions from multiple models, with
boosting selected as the method of choice. Boosting, an iterative technique, aims to elevate
weak learners such as basic decision trees (DTs) into robust models by aggregating their
predictions using techniques like voting or averaging. Notably, boosting encompasses
four primary categories of algorithms in machine learning: AdaBoost, CatBoost, gradient
boosting, and light gradient boosting. In this study, AdaBoost is employed as the boosting
algorithm due to its robustness against overfitting and its efficacy in handling datasets
comprising speech signals with a large number of samples and features.

AdaBoost is a meta-estimator that works by initially fitting a classifier on the original
dataset, where each data instance has an equal weight [40]. Then, it fits more copies of
the classifier on the same dataset while increasing the weights of inaccurately classified
instances and decreasing the weights of correctly classified instances, thus enabling subse-
quent classifiers to concentrate more on complicated cases. This process continues for a
defined number of iterations or until the desired results are obtained. This can be under-
stood by Figure 2. By default, the estimator used by AdaBoost is a DT with one split-level,
also called a decision stump (DS) [41,42]. The pseudocode of AdaBoost is presented in
Algorithm 1. The detailed explanation of the AdaBoost algorithm is given through the
following points:

• Initialization: Initially, each sample in the training dataset is assigned an equal weight.
• Base learning algorithm: A base learning algorithm, typically a decision tree with a

single level (also known as a decision stump), is trained on the weighted dataset. The
decision stump aims to find the simplest rule that can classify the data.

• Weight update: The misclassified samples are assigned higher weights, while the
correctly classified samples are assigned lower weights, emphasizing the importance
of the former in subsequent iterations.

• Iterative process: AdaBoost repeats the process of training a new base learner on
the weighted dataset and updating the sample weights iteratively. Each subsequent
learner focuses more on the instances that were misclassified by the previous learners.
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• Weighted voting: After all iterations, the final model combines the predictions of
all base learners through a weighted voting mechanism, where the weight of each
learner’s prediction is determined by its accuracy on the training data.

• Output: The final prediction is made by aggregating the weighted predictions of all
base learners, resulting in a strong classifier capable of accurately classifying instances,
even in the presence of noise or complex patterns.

This approach enables AdaBoost to iteratively improve the model’s performance by
focusing on the instances that are challenging to classify, ultimately leading to a robust and
accurate predictive model for the detection of PD.

Algorithm 1: AdaBoost for the detection of Parkinson’s Disease

Input : A training dataset D =
{
(x1, y1), (x2, y2), . . . , (x n−1, yn−1

)
, (xn, yn)

}
;

Base algorithm = L; Number of iterations = m.
Process:

[1] for i ϵ{1, 2, . . . , n} do
[2] wi(i)← 1

n
[3] end for
[4] L← ∅
[5] for m = 1, 2, . . . , M do
[6] lm ← arg min

lϵL
Pi∼wi (l(xi) ̸= yi)

[7] set
[8] errm ←Pi∼wi (l(xi) ̸= yi)

[9] θm ← 1
2 ln

(
1−errm

errm

)
[10] L← L ∪ {(θm, lm)}
[11] for i ϵ{1, 2, . . . , n} do
[12] wm+1(i)←

wm(i)e−θmyi lm (xi )

∑n
j=1 wm(j)e−θm yj lm (xj )

[13] end for
[14] end for
[15] Return L;
[16] Output : L(x) = sign

(
∑M

m=1 θmlm(x)
)

The functioning of AdaBoost can be explained subsequently:

• Initializing weights: For each sample in the dataset, initially the weight is set to N,
where N is the total number of instances in the dataset. Sample the dataset using
weights.

• Calculating Gini impurity (GI) for each feature variable: GI for each node can be
calculated using Equation (3).

Gini Impurity = 1− (probability o f true)2 − (the probability o f f alse)2 (3)

• The GI for a feature can be computed by taking the weighted average of the impurities
at each node. The feature variable with the lowest GI is used to create the first DS.

• Determine the amount of say for the newly created DS: This is performed by calculating
the total error, which is equal to the sum of the weights of the misclassified samples,
as shown in Equation (4).

Amount o f say =
1
2

log
1− total error

total error
(4)

• Calculate sample weights for the next DS: In this step, the sample weight for misclassi-
fied data points is increased and that of correctly classified instances is decreased by
the use of Equations (5) and (6).
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Sample weight f or incorrectly classi f ied data points = old sample weight ∗ eamount o f say (5)

Sample weight f or correctly classi f ied data points = old sample weight ∗ e−amount o f say (6)

The DS focuses more on misclassified data points in the new dataset created from the
samples with new weights. The process is continued for a selected number of iterations
or until the desired results are acquired [43]. The training process included fitting the
AdaBoost model to the training dataset using a few selected hyperparameters, including
the number of decision trees (n_estimators), the maximum depth of the decision trees
(max_depth), and the learning rate (learning_rate). Initially, the model was trained on the
default values of these hyperparameters, which were later fine-tuned to achieve better
results. The best hyperparameter values were identified using grid search cross-validation,
in which various combinations of hyperparameter values are systematically explored to
finalize the optimum values.

4. Results and Discussion
4.1. Performance Analysis

The results obtained from the proposed model stem from the meticulous methods
employed during model creation and testing. Initially, the dataset used for testing encom-
passed a broad array of features crucial for Parkinson’s disease (PD) detection, as evidenced
by prior research [25]. Various state-of-the-art methodologies such as SMOTE and PCA
were applied during the pre-processing stages, drawing on their proven effectiveness in
the previous literature [14–16]. The experimental design incorporated a well-established
algorithm known for yielding favorable outcomes in earlier studies [44]. Through the
integration of these systematic approaches and the utilization of a carefully curated dataset,
this research ensures the statistical relevance of the achieved results. Furthermore, to offer
a comprehensive assessment of the proposed model, a detailed description of various
performance metrics is discussed in this section.

The AdaBoost classifier has been repeatedly trained on training data, and prediction
results have been summarized on the testing data using several confusion matrix based
metrics, namely accuracy, precision, recall, F1 score, and false negative rate (FNR) [16,45,46].
Mathematically, the metrics can be represented by Equations (7)–(11), respectively.

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
(7)

Precision (P) =
TP

TP + FP
(8)

Recall (R) =
TP

TP + FN
(9)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(10)

FNR =
FN

FN + TP
(11)

where TP, FP, TN, and FN are the number of true positives, the number of false positives,
the number of true negatives, and the number of false negatives, respectively. The measure
of accuracy assesses the percentage of accurately classified instances. Precision (or positive
prediction value) refers to the proportion of correct positive predictions out of all positive
predictions made by the model, while recall value (or true positive rate or sensitivity)
and FNR pertain to the ability of the trained model to accurately identify all the positive
instances. The F1 score combines recall and precision and gives the number of times a
correct prediction was made by the model [47,48].
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In addition to these four metrics, the model’s performance was also assessed using
the area under the curve of the receiver operating characteristic (AUROC) score. The AUC
score measures the area under the ROC curve and represents the ability of the model to
distinguish between two classes. Since the research is carried out on a biological dataset,
the consequences of FPs and FNs can be severe. Hence, the AUC score helps to assess the
performance of diagnostic models better than other metrics as it summarizes the ability to
classify positives and negatives correctly. Additionally, the AUC score is robust to class
imbalances commonly encountered in biological datasets.

From Figure 3, it can be observed that the accuracy score has significantly increased
with the increase in the number of DTs employed in the training of AdaBoost. The increasing
trend in accuracy implies that the model can benefit from a larger ensemble of DTs, as a
result of which the final model was trained on an ensemble of 500 DTs. Figure 4 depicts that
the proposed model is robust to learning rate (LR). The accuracy of the classifier is 80% on an
LR of 0.1, with a minor difference of 1% when trained on an LR of 1.0. Consequently, an LR
of 1.0 was chosen for the final model to achieve faster convergence while ensuring that each
DT in the ensemble contributes fully to the final predictions. Figure 5 shows the increasing
trend in performance metrics with respect to the maximum depth of DT chosen for training
the model. This upward trend in accuracy aligns seamlessly with the feature-rich nature
of the speech dataset. Including deeper DTs in the training of AdaBoost substantiates the
demands of the employed dataset. Tables 1–3 display the numerical values of accuracy
and various other performance metrics that guided this research towards selecting the
optimal values for various hyperparameters. Table 1 demonstrates that other performance
metrics except FNR exhibit a positive correlation with respect to the number of DTs in
AdaBoost. As these metrics increase with the increasing number of DTs, it is important to
highlight that FNR gradually decreases, which is an additional indication of the model’s
ability to predict positive instances accurately. An analogous trend of increasing accuracy,
precision, recall, and F1 score and decreasing FNR can be observed in Table 2, listing the
mathematical value of these metrics against different depths of DTs in AdaBoost. However,
like the accuracy of AdaBoost with respect to different values of LR, other metrics also
remain more or less constant, indicating the model is not sensitive to LR as depicted in
Table 3. The results achieved by the tuned model in terms of the various metrics employed
in this study are depicted in Table 4. The AUROC curve of the tuned model is shown in
Figure 6. The tuned model performed well with an accuracy of 96%, precision of 98%, recall
of 93%, F1 score of 95%, FNR of 0.07%, and an AUC score of 0.99.
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Table 1. Accuracy metrics with respect to different numbers of DTs.

No. of DT Acc Precision Recall F1 Score FNR

10 0.81 0.83 0.78 0.80 0.22
50 0.88 0.90 0.85 0.97 0.15

100 0.92 0.94 0.89 0.91 0.11
500 0.96 0.98 0.93 0.95 0.07

Table 2. Accuracy metrics with respect to different tree depths.

Tree Depth Acc Precision Recall F1 Score FNR

3 0.93 0.95 0.90 0.92 0.10
5 0.94 0.96 0.91 0.93 0.09
7 0.96 0.98 0.93 0.95 0.07
9 0.96 0.98 0.93 0.95 0.07

Table 3. Accuracy metrics with respect to different values of LR.

LR Acc Precision Recall F1 Score FNR

0.1 0.80 0.82 0.77 0.79 0.23
0.5 0.81 0.83 0.78 0.80 0.22
1.0 0.81 0.83 0.78 0.80 0.22

Table 4. Accuracy metrics of the tuned model.

Performance Metrics Values

Acc 0.96
Precision 0.98

Recall 0.93
F1 score 0.95

FNR 0.07
AUC score 0.99
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4.2. Comparative Analysis

Numerous prior research endeavors have utilized speech-derived characteristics to
build a PD detection model. To claim the novelty of the proposed model, a comprehensive
comparative analysis has been conducted, and the results are summarized in Table 5. A
notable strength of the proposed work lies in the fact that superior results, compared to
previous works utilizing deep learning (DL) techniques, have been achieved using an ML
model. Using a pre-trained CNN, Inception V3 [12] evaluated their model on AUC, which
did not exceed the value of 0.97. Another deep learning based model, DNN2, was proposed
by [13], achieving an accuracy of 95.41% and an AUC score of 0.96. Furthermore, the
proposed model outperformed existing ML models, as displayed in Table 5. In addition to
benchmarking the proposed model with existing ML and DL approaches, it has also been
rigorously compared with hybrid approaches in the existing literature. A DL hybrid model
that combines CNN and LSTM, as suggested by [21], attained an accuracy of 93.51%. With
the aim of combining feature extraction methods with ML classifiers, two hybrid models
introduced by [17,18] achieved an accuracy of 95.48% and 95.58%, respectively. With a
superior accuracy of 96% and an AUC score of 0.99, the proposed model thrives across
well-known performance metrics, qualifying as an effective and innovative solution for the
detection of PD using speech signals. These accomplishments have been made possible
through the implementation of state-of-the-art pre-processing techniques and leveraging a
feature-rich dataset.

In our comprehensive evaluation of the proposed algorithm for PD detection, we have
meticulously examined its effectiveness and performance. Based upon the results presented
and discussed previously, next we provide a closer examination of the algorithm’s strengths
and weaknesses, shedding light on both its merits and demerits to offer a comprehensive
understanding of its performance and potential limitations.

The proposed algorithm exhibits several noteworthy strengths in the realm of PD
detection. Firstly, it demonstrates a commendable level of accuracy, showcasing its effi-
ciency in identifying the PD with high precision. Through the integration of pre-processing
techniques such as synthetic minority oversampling technique (SMOTE) and principal
component analysis (PCA), the algorithm displays robustness to noise commonly present
in clinical data, ensuring reliable performance even in imperfect conditions. Furthermore,
its capability to handle large datasets, characterized by a multitude of features, underscores
its scalability and potential for application in diverse clinical settings. One of its most
significant advantages lies in its non-invasive nature, leveraging speech signals for disease
detection. This approach not only simplifies the diagnostic process but also enhances
patient comfort and compliance, compared to invasive and time-consuming traditional
diagnostic methods.
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Table 5. Comparison of the proposed model with recent works.

Study Feature Set Pre-Processing Method Classification
Algorithm Accuracy AUC Score

Iyer et al., 2023 [12] Acoustic signals,
Spectrogram

Resultant wav files were
filtered with floor and

ceiling values of
75 decibels (dB) and

300 dB, respectively, for
males and 100 dB and

600 dB for females, along
with a scaling range of

[−1, 1].

Inception v3
NA (Only
AUC has

been used)
0.97

Rahman et al., 2023
[13]

MDVP, NHR, HNR,
RPDE, DFA, PPE, etc.

Random over sampler,
PCA DNN2 95.41% 0.96

Lihore et al., 2023
[21]

MDVP, NHR, HNR,
RPDE, DFA, PPE, etc.

dynamic feature
breakdown using CNN

and LSTM
CNN, LSTM 93.51% 1.0

Mondol et al., 2023
[17]

Frequency, jitter shimmer,
HNR, MFCC, etc. SMOTE MLP 95.48% 0.98

Lamba et al., 2023
[18]

MDVP, NHR, HNR,
RPDE, DFA, PPE, etc. Genetic algorithm RF 95.58% 0.98

Proposed model MFCC, TFF, NHR, HNR,
DFA, WTF, VFF, etc. SMOTE, PCA AdaBoost 96% 0.98

Despite its promising performance, the proposed algorithm is not without limitations.
Prominent among them is its computational complexity, particularly during training phases
involving large datasets or intricate pre-processing techniques. This computational de-
mand could pose challenges in resource-constrained environments, limiting the algorithm’s
practical applicability. Additionally, the algorithm may exhibit sensitivity to certain hyper-
parameters, necessitating careful tuning to achieve optimal performance. Without proper
regularization techniques, there is also a risk of overfitting, where the model learns noise
or irrelevant patterns from the training data, potentially compromising its generalization
performance on unseen data. Accordingly, these limitations highlight areas for further
research and improvement to enhance the algorithm’s effectiveness and practical utility in
clinical settings.

5. Conclusions

With the advance of ML in neuroscience, it is possible to not only address the complex
challenges of the medical domain but also to solve them. The integration of ML and
neuroscience, especially in the context of PD detection, is a significant leap forward towards
unraveling the complexities associated with medical data and diagnosis. Identification of
PD is not only crucial for gaining deeper insights into the underlying causes of the disease
but can also serve as a foundation for initiating timely therapeutic measures and creating
suitable remedies. Subsequently, through targeted and personalized treatment, the course
of the disease progression can potentially be altered, improving the quality of life for those
affected by this disease. However, the conventional assessment of PD through various
medical tests is time-consuming and costly for patients. Although there exists no definitive
test for the identification of PD, health professionals opt for a combination of tests like MRI,
CT, PET, SPECT, DaT scan, blood tests, and clinical evaluation to diagnose this disease. Most
of these advanced diagnostic procedures, especially the imaging studies, are expensive
and may not always be accessible to all patients. Additionally, the traditional diagnostic
practices are reliant on the assessment of motor symptoms like tremors, bradykinesia, and
rigidity, causing a delay in the detection process as these appear at later stages of PD. On
the other hand, non-motor symptoms that precede the emergence of motor symptoms and
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manifest in various forms, including speech impairment, sleep disturbances, autonomic
dysfunction, and mood disorders, are often overlooked [22]. The expense of care for PD
is high and increases gradually as the disease progresses [49]. In light of the challenges
posed by the time-consuming and expensive nature of traditional diagnostic practices,
there arises a compelling need for the development of an ML model that leverages non-
motor symptoms to enable the detection of PD. The proposed disease detection system
not only addresses the challenge of detecting the disease but also serves as a potential
avenue to enhance the accessibility and affordability of PD diagnosis. It can also cut the cost
of building and maintaining sophisticated laboratories and installing the heavy imaging
machinery required in traditional diagnosis. With the availability of large speech-related
datasets in future, the model can be further evolved to reduce error as larger datasets
with a greater number of features effectively enhance the prediction capacity of ML-based
detection systems. Inclusion of other biomarkers, such as genetic information relevant
to this disease, into the model can lead to a more precise diagnosis. By incorporating
features such as user-friendly interfaces and ensuring compatibility with various healthcare
settings, this non-invasive detection system holds the potential to revolutionize the field of
clinical diagnostics.

Author Contributions: Conceptualization, S.N.H.B.; methodology, S.N.H.B.; software, S.N.H.B.;
validation, K.A.O., S.N.H.B.; formal analysis, S.N.H.B.; investigation, K.A.O.; resources, K.A.O.;
data curation, S.N.H.B.; writing—original draft preparation, S.N.H.B.; writing—review and edit-
ing, K.A.O.; visualization, K.A.O.; supervision, K.A.O.; project administration, K.A.O.; funding
acquisition, K.A.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University of Johannesburg’s University Research Com-
mittee (URC) grant for K.A.O_2019, and the Department of Electrical and Electronic Engineering
Technology KA_Ogudo Research cost center. and The APC was funded by a grant from the University
of Johannesburg Library Research Funds (UJ).

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, S.N.H.B., upon reasonable request.

Acknowledgments: The authors acknowledge the support and express gratitude to the Department
of Electrical and Electronic Engineering Technology, University of Johannesburg.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Parkinson, J. An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci. 2002, 14, 223–236. [CrossRef] [PubMed]
2. Lombardo, J.M.; Lopez, M.A.; Miron, F.; López, M.; León, M.; Arambarri, J.; Álvarez, D. MOBEEZE. Natural interaction

technologies, virtual reality and artificial intelligence for gait disorders analysis. Int. J. Interact. Multimed. Artif. Intell. 2019, 5, 54.
3. Adam, H.; Gopinath, S.C.; Md Arshad, M.K.; Adam, T.; Parmin, N.A.; Husein, I.; Hashim, U. An update on pathogenesis and

clinical scenario for Parkinson’s disease: Diagnosis and treatment. 3 Biotech 2023, 13, 142. [CrossRef]
4. Church, F.C. Treatment options for motor and non-motor symptoms of parkinson’s disease. Biomolecules 2021, 11, 612. [CrossRef]

[PubMed]
5. Park, Y.H.; Suh, J.H.; Kim, Y.W.; Kang, D.R.; Shin, J.; Yang, S.N.; Yoon, S.Y. Machine learning based risk prediction for Parkinson’s

disease with nationwide health screening data. Sci. Rep. 2022, 12, 19499. [CrossRef] [PubMed]
6. Saeed, F.; Al-Sarem, M.; Al-Mohaimeed, M.; Emara, A.; Boulila, W.; Alasli, M.; Ghabban, F. Enhancing Parkinson’s disease

prediction using machine learning and feature selection methods. Comput. Mater. Contin. 2022, 71, 5639–5658. [CrossRef]
7. Pramanik, A.; Sarker, A. Parkinson’s disease detection from voice and speech data using machine learning. In International Joint

Conference on Advances in Computational Intelligence; Springer: Singapore, 2021.
8. Cherubini, A.; Nistico, R.; Novellino, F.; Salsone, M.; Nigro, S.; Donzuso, G.; Quattrone, A. Magnetic resonance support vector

machine discriminates essential tremor with rest tremor from tremor-dominant Parkinson disease. Mov. Disord. 2014, 29,
1216–1219. [CrossRef] [PubMed]

9. Moro-Velazquez, L.; Garcia, J.A.G.; Arias-Londono, J.D.; Dehak, N.; Godino-Llorente, J.I. Advances in Parkinson’s disease
detection and assessment using voice and speech: A review of the articulatory and phonatory aspects. Biomed. Signal Process.
Control. 2021, 66, 102418. [CrossRef]

https://doi.org/10.1176/jnp.14.2.223
https://www.ncbi.nlm.nih.gov/pubmed/11983801
https://doi.org/10.1007/s13205-023-03553-8
https://doi.org/10.3390/biom11040612
https://www.ncbi.nlm.nih.gov/pubmed/33924103
https://doi.org/10.1038/s41598-022-24105-9
https://www.ncbi.nlm.nih.gov/pubmed/36376523
https://doi.org/10.32604/cmc.2022.023124
https://doi.org/10.1002/mds.25869
https://www.ncbi.nlm.nih.gov/pubmed/24729430
https://doi.org/10.1016/j.bspc.2021.102418


Mathematics 2024, 12, 1575 17 of 18

10. Narendra, N.P.; Schuller, B.; Alku, P. The detection of Parkinson’s disease from speech using voice source information. IEEE/ACM
Trans. Audio Speech Lang. Process. 2021, 29, 1925–1936. [CrossRef]

11. Almahadin, G.; Lotfi, A.; Carthy, M.M.; Breedon, P. Task-oriented intelligent solution to measure Parkinson’s disease tremor
severity. J. Healthc. Eng. 2021, 4, 9624386. [CrossRef]

12. Iyer, A.; Kemp, A.; Rahmatallah, Y.; Pillai, L.; Glover, A.; Prior, F.; Larson-Prior, L.; Virmani, T. A machine learning method to
process voice samples for identification of Parkinson’s disease. Sci. Rep. 2023, 13, 20615. [CrossRef]

13. Rahman, S.; Hasan, M.; Sarkar, A.K.; Khan, F. Classification of Parkinson’s disease using speech signal with machine learning and
deep learning approaches. Eur. J. Electr. Eng. Comput. Sci. 2023, 7, 20–27. [CrossRef]

14. Alshammri, R.; Alharbi, G.; Alharbi, E.; Almubark, I. Machine learning approaches to identify Parkinson’s disease using voice
signal features. Front. Artif. Intell. 2023, 6, 1084001. [CrossRef] [PubMed]

15. Govindu, A.; Palwe, S.A. Early detection of Parkinson’s disease using machine learning. Preced. Comput. Sci. 2023, 218, 249–261.
[CrossRef]

16. Alalayah, K.M.; Senan, E.M.; Altam, H.F.; Ahmed, I.A.; Shatnawi, H.S.A. Automatic and early detection of Parkinson’s disease by
analyzing acoustic signals using classification algorithms based on recursive feature elimination method. Diagnostics 2023, 13,
1924. [CrossRef] [PubMed]

17. Mondol, S.R.; Kim, R.; Lee, S. Hybrid machine learning framework for multistage Parkinson’s disease classification using acoustic
features of sustained korean vowels. Bioengineering 2023, 10, 984. [CrossRef]

18. Lamba, R.; Gulati, T.; Alharbi, H.; Jain, A. A hybrid system for Parkinson’s disease diagnosis using machine learning techniques.
Int. J. Speech Technol. 2022, 25, 583–593. [CrossRef]

19. Das, R. A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 2010, 37, 1568–1572.
[CrossRef]

20. Rehman, A.; Saba, T.; Mujahid, M.; Alamri, F.; ElHakim, N. Parkinson’s disease detection using hybrid LSTM-GRU deep learning
model. Electronics 2023, 12, 2856. [CrossRef]

21. Lihore, U.K.; Dalal, S.; Faujdar, N.; Margala, M. Hybrid CNN-LSTM model with efficient hyperparameter tuning for prediction of
Parkinson’s disease. Sci. Rep. 2023, 13, 14605. [CrossRef]

22. Goyal, J.; Khandnor, P.; Aseri, T.C. A Hybrid Approach for Parkinson’s Disease diagnosis with resonance and time-frequency
based features from speech signals. Expert Syst. Appl. 2021, 182, 115283. [CrossRef]

23. Chowdhary, C.L.; Srivatsan, R. Non-invasive detection of Parkinson’s disease using deep learning. Int. J. Image Graph. Signal
Process. 2022, 14, 38–46. [CrossRef]

24. Asuroglu, T.; Ogul, H. A deep learning approach for parkinson’s disease severity assessment. Health Technol. 2022, 12, 943–953.
[CrossRef]

25. Lamba, R.; Gulati, T.; Jain, A. An intelligent system for Parkinson’s diagnosis using hybrid feature selection approach. Int. J.
Softw. Innov. 2022, 10, 1–13. [CrossRef]

26. Liu, X.; Li, W.; Liu, Z.; Du, F.; Zou, Q. A dual-branch model for diagnosis of Parkinson’s disease based on the independent and
joint features of the left and right gait. Appl. Intell. 2021, 51, 7221–7232. [CrossRef]

27. Shabu, S.J.; Sivapriya, V.; Refonaa, J.; Dhamodaran, S.; Poornima. Parkinson’s Disease Detection using Machine Learning
Algorithm. In Proceedings of the 2023 8th International Conference on Communication and Electronics Systems (ICCES),
Coimbatore, India, 1–3 June 2023; pp. 990–997. [CrossRef]

28. Latifoğlu, F.; Penekli, S.; Orhanbulucu, F.; Chowdhury, M.E.H. A novel approach for Parkinson’s disease detection using
Vold-Kalman order filtering and machine learning algorithms. Neural Comput. Appl. 2024, 36, 9297–9311. [CrossRef]

29. Tran, C.; Shen, K.; Liu, K.; Ashok, A.; Ramirez-Zamora, A.; Chen, J.; Li, Y.; Fang, R. Deep learning predicts prevalent and incident
Parkinson’s disease from UK Biobank fundus imaging. Sci. Rep. 2024, 14, 3637. [CrossRef]

30. Fenza, G.; Gallo, M.; Loia, V.; Orciuoli, F.; Herrera-Viedma, E. Data set quality in machine learning: Consistency measure based
on Group Decision Making. Appl. Soft Comput. 2021, 106, 107366. [CrossRef]
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