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Abstract: Patient-specific 3D models of the human mandible are finding increasing utility in medical
fields such as oral and maxillofacial surgery, orthodontics, dentistry, and forensic sciences. The
efficient creation of personalized 3D bone models poses a key challenge in these applications. Ex-
isting solutions often rely on 3D statistical models of human bone, offering advantages in rapid
bone geometry adaptation and flexibility by capturing a range of anatomical variations, but also
a disadvantage in terms of reduced precision in representing specific shapes. Considering this,
the proposed parametric model allows for precise manipulation using morphometric parameters
acquired from medical images. This paper highlights the significance of employing the parametric
model in the creation of a personalized bone model, exemplified through a case study targeting
mandibular prognathism reconstruction. A personalized model is described as 3D point cloud
determined through the utilization of series of parametric functions, determined by the application
of geometrical morphometrics, morphology properties, and artificial neural networks in the input
dataset of human mandible samples. With 95.05% of the personalized model’s surface area displaying
deviations within −1.00–1.00 mm relative to the input polygonal model, and a maximum deviation
of 2.52 mm, this research accentuates the benefits of the parametric approach, particularly in the
preoperative planning of mandibular deformity surgeries.

Keywords: human mandible; parametric model; artificial neural network; reconstruction; mandibular
prognathism

MSC: 68T07

1. Introduction

The mandible, as a crucial component of the craniofacial complex, plays a pivotal
role in functions such as mastication, speech, and facial aesthetics. Trauma, congenital
anomalies, or pathological conditions often necessitate mandibular reconstruction to restore
form and function. The presence of these pathological conditions presents a challenge in
acquiring complete data about the scanned bone, rendering the task of reconstructing a
complete 3D model of the bone or specific segments of the bone problematic. In instances
where volumetric scanning is not possible, reliance on two-dimensional imaging techniques,
such as X-rays, becomes necessary for the reconstruction process. However, this approach
introduces limitations in terms of accuracy, reproducibility, and the ability to analyze com-
plex maxillofacial structures, often resulting in unsatisfactory outcomes. The integration
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of three-dimensional (3D) predictive models is a transformative approach, providing a
more comprehensive understanding of mandibular anatomy and pathology. The pivotal
role of 3D predictive models in the reconstruction of complex anatomical structures of the
maxillofacial region is reflected in their potential to improve surgical precision and health
outcomes, and ultimately contribute to better quality of life for patients [1–4].

The foundation of a 3D predictive models lies in advanced imaging modalities such as
Computed Tomography (CT), Cone-Beam Computed Tomography (CBCT), and Magnetic
Resonance Imaging (MRI) [5,6]. These radiological methods enable the acquisition of high-
resolution, volumetric data essential for the formation of accurate 3D predictive models.
Generally, methods that utilize a standard (template) model often involve statistical and
parametric approaches, allowing for the prediction of the geometric characteristics of a
human bone. Input data from medical imaging methods form the basis for creating both
types of models (e.g., CT or MRI), applying two distinct approaches used in the modeling
of human bones, each with its own set of characteristics and applications.

Statistical Shape Models (SSMs) provide a valuable mathematical framework for cap-
turing the variability within a specific population. They not only define an average shape
but also encapsulate its variations [7]. The construction of an SSM involves identifying land-
marks across elements of the initial sample set and establishing a correspondence among
them. Subsequently, statistical analyses are employed to model shape variations [8,9].
These models describe the natural variation present within a population, making them
valuable tools in research focused on virtual surgical planning, understanding the range
of anatomical variations, creating statistical atlases, and population-based studies [10–13].
Statistical models exhibit constraints in the creation of geometric models of human bones
stemming from various factors. Primarily, these models rely on population data aver-
ages, potentially failing to precisely represent individual variations in bone morphology.
Moreover, the comparability of shape models with other datasets and research is con-
strained due to the uniqueness of each Statistical Shape Model (SSM), which is tailored
to a specific set of images. This limitation could be overcome by applying a collection
of predefined shape models [14]. Additionally, they confront difficulties in accurately
predicting intricate anatomical details and complex geometric features. This could result in
oversimplified representations of bone geometry, overlooking the subtle nuances in real
anatomical structures.

In contrast, the parametric model represents a mathematical framework wherein
geometry is defined by parametric functions, whose parameters are determined by values
found in patient data obtained through medical imaging modalities. By changing input
parameters (dimensions, angles, and other geometric features that characterize the bone’s
morphology) acquired from specific patients’ medical images, the parametric model has the
ability to be converted into the point cloud model [15]. Parametric models are commonly
used when there is a need for precise and standardized representations of bones. They
are suitable for applications such as designing patient-specific implants [15–17] or creating
anatomical models for educational purposes. In summary, the choice between statistical
and parametric models depends on the specific goals of the modeling task, the level of
precision required, and the nature of the anatomical variations within the population of
interest. Statistical models offer more flexibility by capturing a range of variations, while
parametric models prioritize precision in representing specific shapes.

The parametric model was initially developed for the Human Mandible Coronoid
Process employing multiple linear regression [18]. Encouragingly, the predictive effect
yielded satisfactory results. Moreover, the model encompassing the entire mandible was
established through multi-regression analysis, and achieved significantly lower prediction
accuracy compared to the relevant value (the error should not exceed two mm per measure-
ment point) suggested by the maxillofacial surgeon who participated in this study. Notably,
the observation data revealed indications of non-linear relationships between variables.
Finally, the main idea and motivation behind the application of ANNs to the problem
considered in this study relates to their inherent ability to effectively mimic non-linear
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associations between variables. The utilization of artificial neural networks (ANNs) in this
study is supported by their advantageous features for predictive tasks. These include their
ability to approximate universal functions, resilience to data noise, accommodation of non-
linear variable relationships, robust generalization capabilities, and inherent upgradeability.
The algorithm used to create the parametric model of the human mandible through the
application of artificial intelligence was presented in the study by Mitić et al. 2022 [17]. The
authors demonstrated several benefits of employing the Levenberg–Marquardt (LM) [19]
algorithm in training artificial neural networks (ANNs) for predicting the coordinates
of anatomical points (X, Y, and Z). Nine morphometric parameters that are essential for
fully defining mandible geometry were utilized as inputs for the artificial neural network
(ANN). The determination of the number of layers and the number of neurons in the
hidden layer was achieved through a trial-and-error approach, according to the literature
recommendations [20,21]. Nine ANN models were developed and trained. Utilizing a
dataset comprising 22 mandible samples devoid of pathological or traumatic damage,
partitioned into 16 samples for training and 6 samples for testing, the study revealed that
the 9-50-3 ANN model yielded the most accurate predictions. The conclusion was derived
from a comprehensive performance analysis conducted on the designed ANN models with
different structural parameters. The results obtained were more than promising.

Within this study, the procedure for reconstruction of the geometric model of the
mandible of a patient with mandibular prognathism using a parametric model will be
presented. Mandibular prognathism is a congenital malocclusion, classified as anterior
occlusion. Manifesting as an intensified development of the mandible in the anterior
direction, this condition precipitates the formation of anomalous anatomical structures
within the occlusion, culminating in the superimposition of the lower dentition upon the
upper dentition [22]. Orthodontic assessment and cephalometric analysis are instrumental
in diagnosing and characterizing the skeletal discrepancy, guiding treatment planning,
and assessing the need for surgical intervention. Treatment modalities for mandibular
prognathism are contingent upon the severity of the malocclusion, patient age, skeletal
maturity, and treatment objectives. In most cases, patients with mandibular prognathism
require surgery, involving the surgical repositioning of the maxilla and mandible, in order
to achieve optimal facial aesthetics, occlusal function, and stability [23].

The ultimate objective of the methodology outlined in this study was to create a
parametric model of the human mandible tailored to the unique anatomical features of
patients diagnosed with mandibular prognathism. The development of a personalized
model necessitated the creation of a mathematical framework tailored to the morphometric
parameters obtained from medical imaging. The preliminary results are presented within
this work, demonstrating that the resulting model may be particularly useful during the
preoperative planning of surgical procedures of mandibular deformities.

2. Materials and Methods

The methodology detailed in this research constitutes a fundamental component of
the Method of Anatomical Features (MAF), which introduces an approach to elucidate
the geometric properties of human bones. All principles within the method of anatomical
features maintain significant validity when applied to bone reconstruction processes [15].
This method facilitates the creation of two model types—3D geometrical models and
predictive (parametric) models—both derived from data obtained through medical imaging
modalities such as CT or MRI. This process entails a series of steps:

• Generation of the polygonal model: This process involves a sequence of procedures to
create a polygonal model that represents a specific human bone;

• Anatomical analysis: This establishes correlations between geometric components
within the polygonal bone model and predetermined anatomical and morphological
terms documented in the medical literature.

• Definition and/or selection of Referential Geometrical Entities (RGEs): These are
essential geometric components (points, lines, planes, axes, etc.) formed on the
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polygonal model of human bones. They form the foundation for the construction of
all additional geometric elements, including surfaces.

• Creation of Constitutive Geometrical Entities (CGEs): Derived from RGEs, CGEs are
integral components utilized in the creation surface and solid models for human bones,
in accordance with bone morphology.

• Creation of geometric models of human bones: This encompasses the process of
generating surface and solid models of human bones.

• Creation of the parametric model: This entails supplementary procedures within MAF
aimed at generating a bone-specific parametric model, incorporating the following:

1. Definition of Parameters—involves defining morphometric parameters (indi-
vidually specified for each human bone), which are discernible and measurable
features in medical images.

2. Definition of Anatomical Points—established on CGEs or other notable anatom-
ical points (biologically meaningful points defined by experts to ensure their
consistency within the same species), mathematical points (points situated on an
object as a representation of a mathematical or geometric property), or pseudo-
landmarks (points situated between anatomical or mathematical landmarks) on
the polygonal model. This collection of anatomical points must be defined for
each bone within a given dataset.

3. Definition of the parametric model—entails the measurement of points and
morphometric parameters for a polygonal model created within a set. These
measured values are subsequently utilized in statistical analysis to formulate
parametric functions, with morphometric parameters serving as arguments.
These functions establish values for coordinates of anatomical points relative to
morphometric parameters.

2.1. Creation of Parametric Model of the Human Mandible

The parametric model of the human mandible, employing the Method of Anatomical
Features, is characterized by a set of parametric functions derived from the application
of a mathematical model. In the context of the established model, the identification of
input–output data becomes imperative. The input data utilized by the ANN model com-
prise morphometric parameters, which are defined on the mandible’s polygonal model
with respect to the anatomical and morphological features present on the bone. These
parameters are used to characterize the shape of the mandible. In our previously pub-
lished study, a parametric model of the human mandible was developed, with a strictly
defined number of morphometric parameters [17]. For the purposes of this study, a new
ANN model was created with morphometric parameters that were lower than a precisely
specified number due to the impossibility of reading their values from the medical images.

The coordinate values of the points were selected as ANN outputs, which were ex-
plicitly identified as anatomical points, appropriate geometric elements, or well-defined
anatomical landmarks on the bone itself. The anatomical points in this collection were
individually defined for bone samples. The foundational step in this involves establish-
ing a coordinate system on each bone specimen to facilitate the accurate measurement
of point coordinates. For instance, in the case of the mandible, an absolute coordinate
system (World Coordinate System (WCS)) is established precisely at the midpoint of two
anatomical landmarks—the Mental Foramen, located bilaterally on the anterior surface
of the mandibular body. The coordinate system planes are the Medio-Sagittal plane (MS),
Horizontal (Mandibular) plane and Coronal plane. The Medio-Sagittal plane is normal
to the distance between two characteristic points, the Mental Foramen, and contains the
most inferior midline point on the mandible (Gnathion). The horizontal plane is normal
to the MS plane, and it contains a point along the rounded poster–inferior corner of the
mandible between the ramus and the body (Gonion). The coronal plane perpendicular
to the mandibular plane and divides the mandible into front (anterior) and back (poste-
rior) sections.
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2.2. Develop an Artificial Neural Network Model

The development of an Artificial Neural Network (ANN) model involved utilizing
data derived from measurements taken on a series of human mandible samples acquired
using the Toshiba MSCT scanner Aquillion 64 (Toshiba, Tokyo, Japan), with the following
scan parameters: tube voltage 120 kV, tube current 150 mA and slice thickness 1 mm.
The in-plane resolution is 0.781 × 0.781 mm (pixel size), with an acquisition matrix of
512 × 512 and field of view (FOV) measuring 400 × 400 mm. An ANN is a mathematical
representation of the human brain which comprises many interconnected simple functional
units known as neurons, functioning as parallel information processors that approximately
correlate to inputs and outputs [24]. The ANN consists of eight input neurons, which corre-
spond to eight morphometric parameters obtained from twenty-two mandibular samples of
men without pathological conditions and deformities, aged from 24 to 82 years. MATLAB
software version 2015a was used for the mathematical modeling of the ANN model.

In the implementation of the new ANN model, 22 mandible samples were used; 75%
of the randomly selected bone samples were used for training, while the remaining 25%
were used for testing. The input layer of the ANN model contains the same number of
neurons as input variables; namely, the number of neurons in the input layer is equal to the
number of morphometric parameters used in this study:

• Gnathion-interdental distance (Gn-IdD)—distance from the Gnathion to the alveolar
septum between two incisors;

• Bigonial width (Go-GoD)—direct distance between right and left Gonion;
• Length of the mandibular body (LMB)—distance between Gonion and Gnathion;
• Gnathion-condylar distance (Gn-ConD)—distance between the Gnation and condylion

(most prominent point on the mandibular condyle) anatomical points;
• Height of the mandibular body (HMB)—distance from the alveolar border to the

mandibular base at the level of the Mental Foramen;
• Minimum ramus breadth (Min RB)—minimum breadth of the mandibular ramus

measured perpendicular to the plane of the maximal height of the ramus;
• Maximum ramus height (Max RH)—distance between the highest point on the mandibu-

lar condyle and Gonion;
• Height of the condyle (Hcon)—distance between the condylion and the axis of the

most inferior point of mandibular notch perpendicular to Max RH.

The definition and position of the morphometric parameters are presented in detail
in the study by Arsić et al. (2010) [25]. The output layer consists of three neurons, each
corresponding to the read values of anatomical point coordinates X, Y, and Z. Prior to the
training phase, the normalization of input-output data was aligned with the activation
function utilized by the ANN model. To develop an ANN model with a good generalization
ability and robustness, in this study, the ANN architecture (i.e., the number of input data,
the selection of appropriate input data, the number of hidden layers, and the number of
neurons in the network layers) and ANN training parameters (i.e., momentum, number of
epochs, learning rate, and the termination conditions) was determined by the trial-and-error
method, guided by the existing literature [21,26], as well as the authors’ previous experience.
Namely, determining the network topology (i.e., the number of hidden layers and the
number of neurons in the network layers) is of great importance for the model’s prediction
performance because random selection might cause model overfitting or underfitting
problems [27]. The selection of training parameters has a significant effect on the ANN
training results, particularly regarding the network’s convergence rate and its ability to
avoid falling into a local minimum. Therefore, it is necessary to determine the optimal
values of the ANN parameters. Among the model parameters, the learning rate represents
one of the most impactful training parameters since it affects the training speed of the
ANN model. Namely, selecting a higher learning rate can expedite model convergence but
might introduce the risk of overlooking the global minimum; in contrast, selecting a lower
value can impede the learning process. Further, the momentum denotes a pivotal training
parameter aimed at accelerating and stabilizing the ANN training process. Setting a higher
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momentum value can prevent the model from falling into a local minimum; however, a
lower momentum value can elevate the risk of bypassing the optimal solution. The number
of epochs used during training denotes the frequency of data representations for the ANN.
In addition, using the backpropagation algorithm during the model training ensures a
desirable training error rate is achieved within the chosen number of training epochs; for
example, the use of many epochs might lead to model overfitting. The selection of a neural
network’s parameters when the backpropagation algorithm is used in the training process
requires careful consideration and typically involves the trial-and-error method to achieve
a balance between exploration and exploitation during the model training process.

In this study, several neural networks with different structures regarding the number
of layers, the number of neurons in the layers, and the activation functions of the layers
were designed and compared. The neural networks with different structures are presented
in Table 1.

Table 1. Topologies of neural networks.

Model Method Number of
Hidden Neurons

Number of
Hidden Layer

Trans. Fun. in
Hidden Layer

Trans. Fun. in
Output Layer

1 Levenberg–Marquardt 50 1 logsig logsig
2 Levenberg–Marquardt 70 1 logsig logsig
3 Levenberg–Marquardt 50 1 logsig purelin
4 Levenberg–Marquardt 20/30 2 logsig logsig
5 Levenberg–Marquardt 20/30 2 logsig purelin
6 Levenberg–Marquardt 50 1 tansig tansig
7 Levenberg–Marquardt 50 1 tansig purelin
8 Gradient descent 50 1 logsig logsig
9 Gradient descent 70 1 logsig logsig
10 Gradient descent 20/30 2 logsig logsig
11 Gradient descent 20/30 2 logsig purelin
12 Gradient descent 50 1 tansig tansig
13 Gradient descent 20/30 2 tansig tansig

The performance of the ANN is evaluated using Mean Squared Error (MSE) for
training and testing data through the following equation:

MSE =
1
N ∑N

i=1 (Fi − yi)
2 (1)

where N is the number of data samples, Fi represents measured values, and yi represents
predicted values.

To assess the prediction accuracy of ANN models, an additional statistical metric,
absolute error, was applied, which quantifies the variance between the predicted and
measured values for the X, Y, and Z coordinates of anatomical points. The absolute error
holds significant importance, with orthodontists and anatomists recommending that it
remain under 2 mm in the specified X, Y, and Z directions. The model’s performance is
detailed in Table 2.

The ANN model with the best performance is presented in Table 2 as Model 1, trained
using the Levenberg–Marquardt algorithm. The analyses of the results indicated that
the transfer functions in the hidden and output layers denote one of the most influential
factors in terms of the ANN models’ prediction performance. This analysis indicated the
performance of the ANN models in handling nonlinear relationships between the input
and output data. According to the analysis, the sigmoid transfer functions yielded the best
performance for the problem considered in this study. Also, the analyses showed that the
optimal ANN model, regarding the desired error, had 50 hidden neurons in the hidden
layer, and adding more neurons to the hidden layer had a negative effect on the ANN
model’s prediction performances. The results presented in Table 2 reveal that Models 4, 5,
10, 11, and 13, which all had two hidden layers, exhibited a worse performance compared
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to the top-performing model, that is, Model 1. Notably, the MSE values on the test dataset
were substantially elevated, which was particularly obvious for Model 5, whose MSE value
was 3.305, thereby directly impinging upon the predictive accuracy of the model. Optimal
prediction performance was achieved for the learning coefficient and momentum values of
0.045 and 0.625, respectively. Through an iterative application of the trial-and-error method,
the number of training epochs required for obtaining an ANN model with good robustness
and generalization ability was determined.

Table 2. ANN performance.

ANN
Number of

Training
Epochs

Mean Squared Error Mean Value of Absolute Error (mm)

Training
Data Set

Test Data
Set X Y Z

Model 1 1502 0.045 0.002 0.239 0.771 0.224
Model 2 749 0.053 0.059 0.360 0.931 0.341
Model 3 594 0.254 0.307 1.461 3.184 1.915
Model 4 980 0.070 2.212 1.161 1.066 0.490
Model 5 437 0.655 3.305 3.306 11.096 8.532
Model 6 1049 0.062 0.214 1.613 2.149 1.458
Model 7 795 0.062 0.177 1.566 2.178 1.446
Model 8 7035 0.054 0.098 0.555 0.726 0.555
Model 9 46,892 0.048 0.077 0.329 0.586 0.492

Model 10 50,000 0.554 0.077 1.258 4.907 1.867
Model 11 37,730 0.570 0.077 2.856 4.565 2.561
Model 12 3034 0.062 0.077 1.583 2.158 1.465
Modlel 13 2786 0.062 0.077 1.628 2.139 1.497

3. Reconstruction of a Geometric Bone Model of a Patient with Mandibular
Prognathism Using a Parametric Model

For the specific case under consideration, it was imperative to form a human mandible
parametric model adapted to the individual anatomy of the patient with mandibular
prognathism. The development of a personalized model necessitated the creation of a
mathematical framework tailored to the morphometric parameters obtained from medi-
cal imaging.

3.1. Input Data

The patient with mandibular prognathism, an 18-year-old male, underwent scanning
using both an X-ray scanner and the Sirona SL Orthophos 3D device (Dentsply Sirona,
Charlotte, NC, USA). To ensure the accurate scaling of measured values, X-ray scanning
was carried out using a reference standard in the form of an etalon. The combined use of
X-ray and Sirona SL Orthophos 3D device was necessary due to the Sirona SL’s Field of
View size being insufficient for generating a whole 3D model of the mandible. The scanning
FOV for Sirona SL was 11 × 10 cm, resulting in the absence of both condylar processes in
the 3D medical image of the patient.

The input data for this analysis consisted of the measured values of morphometric
parameters obtained from the 2D X-ray image and the 3D model of the patient. Due
to the lack of both condylar processes, eight morphometric parameters (bigonial width,
maximum ramus height, height of the condyle, length of the mandibular body, minimum
ramus breadth, Gnathion–condylar distance, height of the mandibular body, and Gnathion–
interdental distance) are used and presented in Figure 1. The measured morphometric
parameters from the 2D image (length of the mandibular body, height of the mandibular
body, height of the condyle, minimum ramus breadth, maximum ramus height, Gnathion–
condylar distance, and Gnathion–interdental distance) were scaled according to the etalon
size. The morphometric parameter bigonial width was measured from a 3D model of
the patient using CATIA V5 R21, 3D CAD software. The measurements of the eight
morphometric parameters are presented in Table 3. As a consequence of the excessive
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development of the mandible in the anterior direction, abnormal anatomical structures
occur within the occlusion and the values of the morphometric parameters regarding the
length of the mandibular body and Gnathion–condylar distance are high.
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Table 3. Measured values of morphometric parameters.

Sample Gn-IdD Go-GoD LMB Min RB HCon Gn-ConD Max RH HMB

1 27.00 97.40 93.90 27.00 20.50 143.00 66.00 13.10

3.2. The Reconstruction of Surface Model

To determine the values of X, Y, and Z anatomical points’ coordinates on the sample
that was not included in the initial training dataset, it is necessary to form mathematical
equations on based on the selected network type, the activation function, the number
of hidden layers in the network, and the number of neurons in the hidden layers. The
network type determines how the output is generated from a given input. By applying
Feedforward Neural Networks, the input signal flows through the network with eth
appropriate parameters and the final output is generated on the last (output) layer. The
activation function, integral to the formulation of the mathematical equation, dictates the
specific function applied to input signal X, considering relevant weights and biases. The
number of hidden layers influences the elements in the ultimate mesh equation, whereas the
number of neurons in the hidden layers directly influences the dimensions of the matrices
representing the input, complete with pertinent weight factors and biases. Derived from
the architecture of the best-performance ANN Model 1, the input–output relationship can
be defined as follows:

Y = [
1

1 + e−(X·Wji+bj)
]·Wkj + bok (2)

where X represents the input vector, Wji,bj represents the coefficient in the hidden layer,
Wkj, bok represents the coefficient in the output, and Y represents the output vector.

By applying a mathematical relation to input values not included in the initial training
set, the output value was derived by incorporating the relevant weights and biases into the
mathematical relations (3).

Y = b2 + W2 · logsig(b1 + W1 · X) (3)

where X represents the input vector, Y represents the output vector, W1 represents the
weight factor in the hidden layer, W2 represents the weight factor in the output layer, b1
represents the biases in the hidden layer, and b2 represents the biases in the output layer.
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Using mathematical equations, a point cloud adapted to a specific patient based on
the values of parameters measured from the 2D X-ray image and 3D model was created.
The surface was formed using the 3D CAD software CATIA.

A crucial point to emphasize in this research is that it was not necessary to create a
complete surface model of a patient with congenital malocclusion. For this reason, in collab-
oration with the maxillofacial surgeon engaged in this research, an appropriate anatomical
section was defined, which can be utilized to generate a personalized surface model of a
patient. The colored area of the anatomical section includes most of the anatomical region
of the body of the mandible up to the last teeth (Figure 2). The tooth region was excluded
from the analysis due to the differences in topology and number of teeth from patient
to patient.
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4. Results

To create a parametric model of the specific human bone, an input set of bone samples
was analyzed, the parameters and point cloud model were defined, and Artificial Neural
Networks were applied. The trial–error method was employed to determine the optimal
values of ANN training and architectural parameters. Through the realization and testing of
several neural networks of different structures, the optimal values of the ANN parameters
were determined. Specified values were set for the learning coefficient (0.1), momentum
(0.2), and the maximum number of epochs during training (1502), which yielded the
best prediction performance for the backpropagation algorithm. Optimal values of the
architecture parameters were obtained, including one hidden layer, fifty neurons in the
hidden layer, and sigmoid transfer functions in both the hidden and output layers. The
output of the applied process consists of a set of mathematical functions that define the
correlation between the bone morphometric parameters and coordinates of anatomical
points. Based on the structure of the ANN Model 1, the input–output relationship is
defined. By applying a mathematical relation to the input values not included in the initial
training set (measured values of eight morphometric parameters presented in Table 3), the
value of the output signals (values of the points’ coordinates) was obtained by entering
the appropriate weights and biases in the mathematical relations. Utilizing the obtained
predictive values of the points’ coordinates, a cloud of points is formed, thus creating a
surface model of the mandible in the 3D CAD software CATIA.

The results were verified by analyzing the deviation in the coordinates of the anatom-
ical points. The results of the maximum absolute error for the X, Y, and Z coordinates
(maximum deviation between measured and predicted values) are presented in Table 4.

Table 4. Maximum absolute error between measured and predicted values.

Maximum Absolute Error Values (mm)

Model X Y Z

1 2.25 1.58 2.48



Mathematics 2024, 12, 1577 10 of 13

The results from Table 3 indicate an increase in the absolute error values for all three
coordinates. The obtained values are expected because, in the implementation of the new
ANN model, eight input parameters were used, obtained from medical images of patients
without mandible bone illness, fracture, or some other trauma. The optimal reference for
the input data set is provided by data obtained from samples of human mandible patients
without congenital and acquired anomalies.

The model analysis involved comparing the initial polygonal model of the mandible
(acquired from the Sirona SL Orthophos 3D device, Dentsply Sirona, Charlotte, NC, USA)
with the resultant surface model and measuring the deviation. The deviation values,
referenced in relation to the input sample’s polygonal model, indicate that the created
surface model possesses satisfactory overall accuracy. The overall accuracy of the model is
around −0.608–0.841 mm. The maximal negative deviation was −1.82 mm and the maximal
positive deviation was 2.52 mm (Figure 3), expressed in the area around the mandibular
chin. The majority (95.05%) of the model surface displayed deviations within the range of
−1.00 to 1.00 mm. It is noteworthy that the initial surface model of the human mandible,
utilizing an artificial neural network with a strictly defined set of morphometric parameters
in predictive functions, displayed maximum deviations of 0.53 mm [17]. The elevated
deviation value of 2.53 mm can be attributed to the high values of the morphometric
parameters integrated into the ANN model. To reduce deviations, it is essential to add
additional points based on relevant medical literature information regarding inadequate
areas in terms of bone shape. In further research, it will be necessary to optimize and
correct the created surface model.
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Figure 3. Analysis of deviations between the input sample polygonal model of the patient and the
generated surface model.

The maxillofacial surgeon involved in this study affirmed that these deviations are
deemed acceptable. According to the requirements outlined by the surgeon, the Region of
Interest (ROI) is positioned in front of the seventh tooth on both the left and the right side
of the mandibular body, which serves as the contact surface between the bone and fixation
plate. In the designated region for plate placement, the maximum negative deviation
measured −1.84 mm, while the maximum positive deviation reached 1.1 mm (Figure 4).
Additionally, 57.42% of the model surface exhibited deviations ranging from −1.00 to
1.00 mm. To improve plate geometry and position based on the surgeon’s recommendation,
it is crucial to add additional points to the existing spline curves in the areas of interest
(e.g., the mandibular body area).



Mathematics 2024, 12, 1577 11 of 13

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 3. Analysis of deviations between the input sample polygonal model of the patient and the 
generated surface model. 

The maxillofacial surgeon involved in this study affirmed that these deviations are 
deemed acceptable. According to the requirements outlined by the surgeon, the Region of 
Interest (ROI) is positioned in front of the seventh tooth on both the left and the right side 
of the mandibular body, which serves as the contact surface between the bone and fixation 
plate. In the designated region for plate placement, the maximum negative deviation 
measured −1.84 mm, while the maximum positive deviation reached 1.1 mm (Figure 4). 
Additionally, 57.42% of the model surface exhibited deviations ranging from −1.00 to 1.00 
mm. To improve plate geometry and position based on the surgeon’s recommendation, it 
is crucial to add additional points to the existing spline curves in the areas of interest (e.g., 
the mandibular body area). 

 
Figure 4. Analysis of deviations between input sample polygonal model and curve based plate sur-
face model. 

ROIs play a pivotal role in the preoperative planning of surgical procedures and 
manufacturing customized plate implants and fixators for patients. Defining a Region of 
Interest allows practitioners to concentrate their efforts on specific areas of interest rather 
than analyzing the entire surface. In this case, ROI is defined as the contact surface be-
tween the bone and fixation plate. This defined surface serves the purpose of the pre-sur-
gical bending of reconstructive plates, allowing for their shape to be adapted to the 

Figure 4. Analysis of deviations between input sample polygonal model and curve based plate
surface model.

ROIs play a pivotal role in the preoperative planning of surgical procedures and
manufacturing customized plate implants and fixators for patients. Defining a Region of
Interest allows practitioners to concentrate their efforts on specific areas of interest rather
than analyzing the entire surface. In this case, ROI is defined as the contact surface between
the bone and fixation plate. This defined surface serves the purpose of the pre-surgical
bending of reconstructive plates, allowing for their shape to be adapted to the contours
of the bone in the affected area. This approach enhances the provision of personalized
healthcare to the patient [15].

In this example, the ANN model was tested on a specific case. The behavior of the
ANN model was assessed based on the results of the analysis. As expected, the prediction
accuracy of the model was lower, due to the inclusion of high values of morphometric
parameters (Gn-ConD and LMB parameters) in the ANN model. In order to ensure more
precise results are obtained in terms of the quality of the created model, the values of the
morphometric parameters must be within certain limits to ensure an adequate anatomical
section in patients with specific deformities.

5. Conclusions

A comprehensive tool was developed to predict 3D models of the human mandible,
aiming to advance patient-specific bone modeling. This advancement was made possible
by leveraging the correlation between the coordinates of anatomical points (defined using
constitutive geometrical entities or other important anatomical landmarks in the polygonal
model in relation to individual human bone) and specific morphometric parameters of the
human mandible used as the input to the ANN model. The advantages of this parametric
approach are manifold: it allows for the generation of a 3D geometrical model of a specific
patient, without relying on costly and sometimes unavailable 3D imaging techniques (such
as Computed Tomography or Magnetic Resonance Imaging); it can facilitate the forecasting
of bone morphology and shape for an individual patient with morphometric parameters
that are lower than a predetermined number involved in predictive functions; it is capable
of predicting mandible geometry by estimating the missing components [17].

Our study centered on utilizing a 3D parametric model of the human mandible to
reconstruct the geometric model of a particular patient with mandibular prognathism. The
results obtained here were promising: the resulting surface model has an overall accuracy
of around −0.608 to 0.841 mm, where the maximal negative deviation was −1.82 mm and
the maximal positive deviation was 2.52 mm in relation to the input sample. The initial
assertion regarding the geometric accuracy and anatomical correctness of the surface model
can be deemed reasonably satisfactory for the prototype model. The outcome yields a
3D model of somewhat diminished accuracy, but remains a personalized representation
of the human mandible. Moreover, this model holds great potential for pre-operative
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planning, treating skeletal disorders, and conducting clinical research focused on tailoring
treatments to each patient’s specific needs, the production of personalized plate implants,
or educational purposes.
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The following abbreviations are used in this manuscript:

3D Three-dimensional
CT Computed Tomography
CBCT Cone-Beam Computed Tomography
MRI Magnetic Resonance Imaging
SSMs Statistical Shape Models
ANNs Artificial Neural Networks
LM Levenberg–Marquardt
MAF Method of Anatomical Features
RGEs Referential Geometrical Entities
CGEs Constitutive Geometrical Entities
WCS World Coordinate System
MS Medio—Sagittal plane
FOV Field of view
Gn-IdD Gnathion–interdental distance
Go-Go Bigonial width
LMB Length of the mandibular body
Gn-ConD Gnathion–condylar distance
HMB Height of the mandibular body
Min RB Minimum ramus breadth
Max RH Maximum ramus height
Hcon Height of the condyle
MSE Mean Squared Error
ROI Region of Interest
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16. Manić, M.; Vitković, N.; Mitić, J. Design and Manufacturing of the Personalized Plate Implants. In Personalized Orthopedics;
Canciglieri, O., Jr., Trajanovic, M.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [CrossRef]
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