
Citation: Lăzureanu, C.; Cho, J. On a

Family of Hamilton–Poisson Jerk

Systems. Mathematics 2024, 12, 1260.

https://doi.org/10.3390/

math12081260

Academic Editors: Mihaela Neamt,u,

Eva Kaslik and Anca Rădulescu
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Abstract: In this paper, we construct a family of Hamilton–Poisson jerk systems. We show that such a
system has infinitely many Hamilton–Poisson realizations. In addition, we discuss the stability and
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1. Introduction

Jerk is the rate of change of acceleration, the third derivative of position with respect
to time [1]. A jerk equation

...
x = j(x, ẋ, ẍ) and the corresponding jerk system, which is a

three-dimensional system given by 
ẋ = y
ẏ = z
ż = j(x, y, z)

, (1)

can model processes characterized by changes in acceleration. Despite their simple form,
jerk systems provide examples of chaotic behavior (see, e.g., [2–4]). Bifurcations in the
dynamics of jerk systems are also analyzed (see, e.g., [5–8]).

In this paper, we study how Hamilton–Poisson jerk systems can be constructed.
Roughly speaking, a three-dimensional system is a Hamilton–Poisson system if it has two
independent constants of motion (for details on Hamilton–Poisson mechanics, see e.g., [9]).
Using such functions, we obtain a family of Hamilton–Poisson jerk systems, given by
...
x + f ′(x)ẋ = 0, which are in fact jerk versions of the system with one degree of freedom
ẍ + f (x) = 0 [10]. For instance, the equations of the harmonic oscillator, the mathematical
pendulum, the Duffing oscillator, and other anharmonic oscillators are of this form.

Oscillatory systems, characterized by repetitive patterns or cycles, are found in var-
ious biological phenomena such as circadian rhythms (see, e.g., [11]), neuronal activity
(see, e.g., [12]), and even in cellular processes like metabolic oscillations (see, e.g., [13]).
Population dynamics in predator–prey relationships often display cyclic behavior, where
changes in predator and prey populations exhibit periodic patterns (see, e.g., [14]). Mod-
eling changes in population sizes or ecological systems often involves sudden shifts or
rapid changes in growth rates, which can be compared analogously to jerk-like behavior in
dynamic systems. Moreover, in neural systems, sudden changes in firing rates or neuronal
activities might indirectly relate to rapid changes in behavior akin to jerk-like dynamics.

Mathematics 2024, 12, 1260. https://doi.org/10.3390/math12081260 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12081260
https://doi.org/10.3390/math12081260
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4697-8699
https://doi.org/10.3390/math12081260
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12081260?type=check_update&version=1


Mathematics 2024, 12, 1260 2 of 12

The paper is organized as follows: in Section 2, we recall some notions regarding
Hamilton–Poisson systems and then we give some conditions for which system (1) is of this
type. Using the integrable deformation method (see [15] and references therein), we construct
a family of Hamilton–Poisson jerk systems. Also, we give Hamilton–Poisson realizations of
such a system. In Section 3, we analyze some dynamical properties of the obtained system,
namely, the stability of the equilibrium points, the existence of the periodic orbits around
some nonlinearly stable equilibria, and the existence of homoclinic or heteroclinic orbits. In
Section 4, we apply these results to a family of anharmonic oscillators [16].

2. A Family of Hamilton–Poisson Jerk Systems

In this section, we construct a family of jerk systems that have Hamilton–Poisson
realizations.

Recall that the three-dimensional dynamical system

(ẋ, ẏ, ż) = ( f1(x, y, x), f2(x, y, z), f3(x, y, z))

is a Hamilton–Poisson system on R3 if there are the smooth functions ν, H, C such that

( f1, f2, f3)
T = ν∇H ×∇C

on R3 (see, e.g., [17,18]). The function ν is called the rescaling function. In addition, the
Hamiltonian function H and the Casimir function C are constants of motion of the above
system. In fact, a Hamilton–Poisson system on R3 is a triple (R3, Π, H), where Π is a
Poisson structure, and in this case it is given by the matrix

Π = ν

 0 Cz −Cy
−Cz 0 Cx
Cy −Cx 0

, (2)

where we have denoted Cx = ∂C
∂x . Such a system writes (ẋ, ẏ, ż)t = Π · ∇H. Details on

Hamiltonian mechanics can be found, for example, in [19].
In the following, we consider ν = 1. One of our goals is to obtain jerk systems that can

be written in the form (ẋ, ẏ, ż)T = ∇H ×∇C, that is, to determine functions H, C such that

HyCz − HzCy = y

HzCx − HxCz = z

HxCy − HyCx = j(x, y, z),

and which are constants of motion of system (1), that is,

yHx + zHy + j(x, y, z)Hz = 0

yCx + zCy + j(x, y, z)Cz = 0.

We note that achieving this goal appears to be complicated for a general jerk function
j. However, the next result holds.

Theorem 1. If jz ̸= 0, then jerk system (1) cannot have a Hamilton–Poisson formulation
(ẋ, ẏ, ż)T = ∇H ×∇C.

Proof. On the one hand, the divergence of system (1) is div(y, z, j(x, y, z)) = jz. On the
other hand, div(∇H × ∇C) = ∇ · (∇H × ∇C) = 0; thus, jz = 0, which finishes the
proof.

Instead of starting with a function j and checking for the existence of the functions
H and C, we can construct Hamilton–Poisson jerk systems using integrable deformation
method [15].



Mathematics 2024, 12, 1260 3 of 12

Consider the jerk equation
...
x = 0

and the corresponding jerk system 
ẋ = y
ẏ = z
ż = 0

. (3)

It is easy to see that the functions

H(x, y, z) =
1
2

y2 − xz, C(x, y, z) = z

are constants of motion for system (3). Moreover, system (3) writes (ẋ, ẏ, ż)T = ∇H ×∇C;
thus, it has the Hamilton–Poisson realization (R3, Π, H) with the Hamiltonian H and the
Poisson structure given by the matrix

Π =

 0 1 0
−1 0 0
0 0 0

.

Now, we alter the above Hamiltonian and Casimir functions, that is, we consider
the functions

H̃(x, y, z) = H(x, y, z) + g1α(x, y, z) =
1
2

y2 − xz + g1α(x, y, z), (4)

C̃(x, y, z) = C(x, y, z) + g2β(x, y, z) = z + g2β(x, y, z), (5)

where α and β are smooth, and g1, g2 are real parameters. Then, an integrable deformation
of system (3) is given by

(ẋ, ẏ, ż)T = ∇H̃ ×∇C̃, (6)

that is 
ẋ = y + g2(yβz + xβy) + g1αy + g1g2(αyβz − αzβy)
ẏ = z + g2(zβz − xβx)− g1αx + g1g2(−αxβz + αzβx)
ż = g2(−zβy − yβx) + g1g2(αxβy − αyβx)

. (7)

System (7) is jerk only if{
g2(yβz + xβy) + g1αy + g1g2(αyβz − αzβy) = 0
g2(zβz − xβx)− g1αx + g1g2(−αxβz + αzβx) = 0

. (8)

Now, we choose
α(x, y, z) = α(x, y), β(x, y, z) = β(x, y),

and (8) turns into {
g1αy = −g2xβy
g1αx = −g2xβx

.

Then, {
g1αxy = −g2(βy + xβxy)
g1αxy = −g2xβxy

,

thus, βy = 0 and, consequently, αy = 0. Therefore,

α(x, y, z) = α(x), β(x, y, z) = β(x).

Consequently, if the functions α = α(x) and β = β(x) satisfy the relation

g1α′(x) = −g2xβ′(x), (9)
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then we constructed the following family of Hamilton–Poisson jerk systems
ẋ = y
ẏ = z
ż = −g2yβ′(x)

. (10)

The corresponding jerk equation is given by

...
x + g2β′(x)ẋ = 0. (11)

The jerk versions of the most known oscillators (the harmonic oscillator ẍ + x = 0, the
mathematical pendulum ẍ + sin x = 0, and the Duffing oscillator ẍ + x3 − x = 0) belong to
the above family of jerk equations.

In the following, we give Hamilton–Poisson realizations of system (10). For this
purpose, using (2), the functions

C(x, y, z) = z + g2β(x) and H(x, y, z) =
1
2

y2 − xz + g1α(x) (12)

give the matrices

Π1,0 =


0 1 0

−1 0 g2β′(x)

0 −g2β′(x) 0

 (13)

and

Π0,1 =


0 −x −y

x 0 −z + g1α′(x)

y z − g1α′(x) 0

, (14)

respectively.

Theorem 2. Let α, β be smooth functions such that g1α′(x) = −g2xβ′(x), where g1, g2 ∈ R.
Then, system (10) has the Hamilton–Poisson realizations(

R3, Π1,0, H
)

and
(
R3, Π0,1,−C

)
.

Moreover, (10) is a bi-Hamiltonian system.

Proof. Using (12)–(14), it is easy to see that system (10) writes (ẋ, ẏ, ż)T = ∇H ×∇C =
∇(−C)×∇H. In addition, Π0,1 · ∇H = Π1,0 · ∇(−C) = 0 and Π1,0 · ∇H = Π0,1∇(−C) =
(ẋ, ẏ, ż)T .

The sum of the matrices Π1 and Π2 is a Poisson structure. Therefore, Π1 and Π2 are
compatible Poisson structures, and (10) is a bi-Hamiltonian system.

As a consequence, we obtain the next result.

Theorem 3. Let a, b, c, d ∈ R such that ad − bc = 1. Then, system (10) admits infinitely many
Hamilton–Poisson realizations

(
R3, Πa,b, Hc,d

)
, where the Hamiltonian Hc,d is given by

Hc,d = cC + dH = c(z + g2β(x)) + d
(

y2

2
− xz + g1α(x)

)
,

the Poisson structure is defined by
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Πa,b = aΠ1,0 + bΠ0,1 =


0 a − bx −by

−a + bx 0 ag2β′(x) + bg1α′(x)− bz

by −ag2β′(x)− bg1α′(x) + bz 0

,

and a Casimir of the Poisson structure is

Ca,b = aC + bH = a(z + g2β(x)) + b
(

y2

2
− xz + g1α(x)

)
.

Since ∇C(x, y, z) = (g2β′(x), 0, 1) ̸= (0, 0, 0), for all (x, y, z) ∈ R3, every level set of
the Casimir function C is a regular surface. We denote such a level set by

Oc = C−1(c) = {(x, y, z) ∈ R3|z + g2β(x) = c}.

The regular symplectic leaves associated with the Poisson structure Π1,0 are given by
the connected components corresponding to pre-images of regular values of the Casimir
function C. Therefore, Oc is the regular symplectic leaf of the Poisson structure Π1,0 corre-
sponding to the regular value c ∈ R of C. In addition, the dynamics of the Hamilton–Poisson
system

(
R3, Π1,0, H

)
are foliated by these symplectic leaves. Moreover, the restriction of

system (10) to a regular leaf Oc is the following completely integrable Hamiltonian system
(Oc, ω = dp ∧ dq, H|Oc), where the Hamiltonian H|Oc = H(p, q) is given by

H(p, q) =
1
2

p2 + g1α(q) + g2qβ(q)− cq, (15)

The reduced equations are {
q̇ = Hp = p
ṗ = −Hq = c − g2β(q)

, (16)

or equivalent
q̈ = W ′(q), (17)

where W ′(q) = c − g2β(q).
Thus, on each level set Oc the dynamics of system (10) are given by system (16) or

Equation (17), representing a nonlinear oscillator with the kinetic energy T = 1
2 p2 and

the potential energy V(q) = −W(q) = g1α(q) + g2qβ(q)− cq (for details about the system
ẍ = f (x), see, e.g., [10,20]).

3. Some Dynamical Properties

In this section, we study the stability of system (10) and we prove the existence of
some periodic orbits. Also, we obtain sufficient conditions for the existence of heteroclinic
and homoclinic orbits.

The equilibrium points of system (10) are given by the family E =
{
(M, 0, 0)

∣∣M ∈ R
}

.
Now, we discuss their stability.

Theorem 4. Let α, β be smooth functions such that g1α′(x) = −g2xβ′(x), where g1, g2 ∈ R.
Denote eM = (M, 0, 0) ∈ E, M ∈ R as an arbitrary equilibrium point of system (10). Also consider
the function

F(x) = g1(α(M)− α(x)) + g2x(β(M)− β(x)). (18)

(i) If g2β′(M) < 0 or g2 = 0, then the equilibrium point eM is unstable.
(ii) If g2β′(M) > 0, then the equilibrium point eM is nonlineary stable.
(iii) If β′(M) = 0 and there is a neighborhood V ⊂ R of M such that F(x) < 0, for all

x ∈ V \ {M}, then the equilibrium point eM is nonlineary stable.
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(iv) If β′(M) = 0 and there is a neighborhood V = (a, b) ⊂ R of M such that F(x) > 0, for all
x ∈ (a, M) or x ∈ (M, b), then the equilibrium point eM is unstable.

Proof. The Jacobian matrix of system (10) at eM is

J(M, 0, 0) =


0 1 0

0 0 1

0 −g2β′(M) 0

, (19)

with the characteristic polynomial

PM(λ) = −λ(λ2 + g2β′(M)) (20)

and eigenvalues

λ1 = 0 , λ2,3 = ±
√
−g2β′(M). (21)

(i) Let g2β′(M) < 0. From (21), it results that one of the eigenvalues is a positive number.
Therfore, eM is an unstable equilibrium point.

If g2 = 0, system (10) becomes (3), and it has the solution

x(t) =
C1

2
t2 + C2t + C3, y(t) = C1t + C2, z(t) = C1

where C1, C2, C3 ∈ R. Thus, eM is an unstable equilibrium point.
(ii) Let g2β′(M) > 0. In this case, we use the Arnold stability test (see, e.g., [21]). We
consider the function

Fλ = H(x, y, z) + λC(x, y, z) =
1
2

y2 − xz + g1α(x) + λ(z + g2β(x)),

where λ is a real parameter. We obtain:

1. dFλ(M, 0, 0) = 0 if and only if λ = M.
2. W = ker dC(M, 0, 0) = spanR{(1, 0,−g2β′(M)), (0, 1, 0)}.
3. d2Fλ(M, 0, 0)|W×W = g2β′(M)dx2 + dy2, which is positive definte.

From the Arnold stability test, it results that the equilibrium point eM is nonlineary
stable for g2β′(M) > 0.
(iii) Let U ⊂ R3 be a neighborhood of (M, 0, 0) such that {x|(x, 0, 0) ∈ U} = V. We consider
the function L ∈ C∞(U,R),

L(x, y, z) =
(

y2

2
− xz + g1α(x)− g1α(M)

)2

+ (z + g2β(x)− g2β(M))2, (22)

and we prove that it is a Lyapunov function.
By the condition L(x, y, z) = 0, we obtain

y2

2
− xz + g1α(x) = g1α(M) , z + g2β(x) = g2β(M), (23)

and
1
2

y2 = g1(α(M)− α(x)) + g2x(β(M)− β(x)) = F(x). (24)

Then, using the hypothesis, we deduce that x = M and y = 0. Therefore, L(x, y, z) = 0 on
U if and only if x = M, y = z = 0, that is, L given by (22) is a positive definite function
on U. Moreover, by (10) we obtain L̇ = ∇L · (ẋ, ẏ, ż) = 0; thus, L is a Lyapunov function.
Therefore, the equilibrium point (M, 0, 0) is nonlineary stable.
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(iv) Consider, for example, F(x) > 0, for all x ∈ (M, b). From (24), let us take y =
√

2F(x)
for x ∈ (M, b) and z = g2(β(M)− β(x)) (23). Then, system (10) reduces to the equation
ẋ =

√
2F(x). Considering the initial condition x(0) ∈ (M, b), near M, we obtain a solution

x = x(t) that is increasing and moving away from M, and the conclusion follows.

Remark 1. If g2β is an increasing function such that β′(M) = 0, then the function F fulfills the
hypothesis given in Theorem 4 (iii); thus, the equilibrium point (M, 0, 0) is nonlinearly stable.

The next result shows the existence of a family of periodic orbits around some nonlin-
early stable equilibrium points.

Theorem 5. Let α, β be smooth functions such that g1α′(x) = −g2xβ′(x), where g1, g2 ∈ R. Let
eM = (M, 0, 0) be a nonlineary stable equilibrium point of system (10) in the case g2β′(M) > 0.
Then, for each sufficiently small ϵ ∈ R∗

+, any integral surface

ΣeM
ϵ :

1
2

y2 + (M − x)z + g1(α(x)− α(M)) + g2M(β(x)− β(M)) = ϵ2

contains at least one periodic orbit γ
eM
ϵ of system (10) whose period is close to

2π

ω
, where

ω =
√

g2β′(M).

Proof. The characteristic polynomial associated with the linearization of system (10) at eM
has the eigenvalues λ1 = 0 and λ2,3 = ±i

√
g2β′(M). The eigenspace corresponding to the

eigenvalue zero, which is spanR{(1, 0, 0)}, has dimension 1.
We consider the constant of motion of system (10) given by

I(x, y, z) =
y2

2
− xz + g1α(x) + M(z + g2β(x)).

It follows that:

1. dI(M, 0, 0) = 0.
2. d2 Iλ(M, 0, 0)|W×W = g2β′(M)dx2 + dy2 > 0 is positive definte for g2β′(M) > 0,

where W = ker dC(M, 0, 0) = spanR{(1, 0,−g2β′(M)), (0, 1, 0)}.

and the conclusion follows via a version of the Moser theorem in the case of zero
eigenvalue [22].

In the following, we study the existence of homoclinic and heteroclinic orbits of
system (10).

Let us consider an arbitrary unstable equilibrium point (M, 0, 0), M ∈ R of system
(10), which is a saddle, that is, g2β′(M) < 0. A homoclinic or heteroclinic orbit is given
by the intersection of the level sets C(x, y, z) = C(M, 0, 0) and H(x, y, z) = H(M, 0, 0),
provided it exists. In this case, we can reduce system (10) to

ẋ = ±
√

2F(x)
y = ±

√
2F(x)

z = F′(x)
, (25)

where the smooth function F is given by (18). We have F′(x) = g2(β(M) − β(x)) and
F′′(x) = −g2β′(x). Moreover, F(M) = 0, F′(M) = 0, F′′(M) > 0.

Considering only the level set C(x, y, z) = C(M, 0, 0), system (10) reduces to{
ẋ = y
ẏ = F′(x)

, (26)
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for which an equilibrium point is (q∗, 0), if F′(q∗) = 0. The above system writes ẍ = F′(x),
and it is given by the Hamiltonian H = 1

2 y2 + V(x), where V(x) = −F(x) is the potential
energy. Therefore, for a given function F, “a look at the graph of the potential energy is
enough for a qualitative analysis of such an equation” [10]. In addition, “if there are two
saddle points with the same energy level, corresponding to two maxima of V(x), with no
higher maximum between them, then they must be connected by heteroclinic orbits” [20].

The motion of the particle is confined to the region F(x) ≥ 0, and the points with the
property F(x) = 0 determine the bounds for the motion. Because heteroclinic and homo-
clinic orbits are bounded, we assume there is b > M such that F(b) = 0 and F(x) > 0 for
all x ∈ (M, b). Since F(M) = 0, we obtain that F has at least a local maximum N ∈ (M, b);
hence, (N, 0, 0) is an equilibrium point. Moreover, F is concave in a neighborhood of N;
thus, (N, 0, 0) is a nonlinearly stable equilibrium point (via Theorem 4 (ii); note that F′′(x)
is the same for all equilibrium points). Then, we obtain the next result.

Theorem 6. Let α, β be smooth functions such that g1α′(x) = −g2xβ′(x), where g1, g2 ∈ R
and (M, 0, 0), M ∈ R represent an arbitrary unstable equilibrium point of system (10) such that
g2β′(M) < 0. We consider the function F defined in (18), that is, F(x) = g1(α(M)− α(x)) +
g2x(β(M)− β(x)).

Assume there is b > M such that F(b) = 0, F(x) > 0 for all x ∈ (M, b), and the function F
does not have local minima on (M, b).

(i) If F
′
(b) = 0 and g2β′(b) < 0, then a heteroclinic orbit HE(t) = (x(t), y(t), z(t)) given by

(25) exists, which connects the unstable equilibrium points (M, 0, 0) and (b, 0, 0).
(ii) If F

′
(b) ̸= 0, then a homoclinic orbit H(t) = (x(t), y(t), z(t)) given by (25) exists, which

connects the unstable equilibrium point (M, 0, 0) with itself.

Remark 2. The above theorem also holds for b < M.

4. The Anharmonic Oscillator

In this section, we apply the obtained results to the jerk version of the anharmonic
oscillator given by the equation ẍ + δxn = 0, where δ ̸= 0 and n > 1 integer.

We have
...
x + nδxn−1 ẋ = 0, n > 1, δ ̸= 0, (27)

or equivalent 
ẋ = y
ẏ = z
ż = −nδxn−1y

. (28)

Therefore, system (28) belongs to the considered family of Hamilton–Poisson jerk systems
(10) if

g1 = − nδ

n + 1
, g2 = δ , α(x) = xn+1 , β(x) = xn.

The constants of motion are given by

H(x, y, z) =
y2

2
− xz − nδxn+1

n + 1
, C(x, y, z) = z + δxn. (29)

The stability of the equilibrium points follows by Theorem 4.

Proposition 1. Let eM = (M, 0, 0), M ∈ R be an arbitrary equilibrium point of system (28),
n ∈ N, n > 1, and δ ̸= 0.

(i) If δMn−1 < 0, then the equilibrium point eM is unstable.
(ii) If δMn−1 > 0, then the equilibrium point eM is nonlinearly stable.
(iii) If δ > 0 and n is odd, then the equilibrium point (0, 0, 0) is nonlineary stable; otherwise, it

is unstable.
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Around some nonlinearly stable equilibrium points, there is a family of periodic orbits
of the considered system. More precisely, by Theorem 5 we deduce the next result.

Proposition 2. Let eM = (M, 0, 0) be a nonlineary stable equilibrium point of system (28) in the
case δMn−1 > 0. Then, for each sufficiently small ϵ ∈ R∗

+, any integral surface

ΣeM
ϵ :

1
2

y2 + (M − x)z − nδ

n + 1
(xn+1 − Mn+1) + δM(xn − Mn) = ϵ2

contains at least one periodic orbit γ
eM
ϵ of system (28) whose period is close to

2π

ω
, where

ω =
√

nδMn−1.

As we have seen in Theorem 6, some homoclinic or heteroclinic orbits can exist in the
considered dynamics.

Proposition 3. Let eM = (M, 0, 0) be an unstable equilibrium point of system (28). If n is even
and δM < 0, then a homoclinic orbit H exists that connects the unstable equilibrium point (M, 0, 0)
with itself. Moreover, the heteroclinic orbits cannot exist in this case.

Proof. Let nδMn−1 < 0. We consider the function F defined in (18), namely,

F(x) =
−δ

n + 1

[
xn+1 − (n + 1)Mnx + nMn+1

]
. (30)

Using F′′(x) and F′(x), we deduce the following:

(a) Let δ < 0 and M > 0. Then, there is an unique b ∈ R \ {M} such that F(b) = 0
(b < −M). In fact, F(b) = F(M) = 0, F(x) > 0 for all x ∈ (b, M), and F(x) < 0
otherwise. Using Theorem 6, a homoclinic orbit H exists that connects the unstable
equilibrium point (M, 0, 0) with itself. Moreover, the heteroclinic orbits cannot exist.

(b) If δ > 0 and M < 0, then we obtain the same result on (M, b), which finishes the proof.

Remark 3. If n is odd, then (M, 0, 0), M ̸= 0 is an unstable equilibrium point for δ < 0. In this
case, the above-mentioned function F has the property F(M) = 0 and F(x) > 0 otherwise. Thus,
the motion of system (28) is unbounded.

As a particular case, we consider n = 2, that is,
ẋ = y
ẏ = z
ż = −2δxy

. (31)

Let δ > 0. Thus, the equilibrium point eM = (M, 0, 0), M > 0 is nonlinearly stable,
and a family of periodic orbits of the above system surrounds it (white curves in Figure 1).
Choosing initial conditions farther and farther from eM, these periodic orbits approach
the unstable equilibrium point e−M, that is, they tend towards the homoclinic orbit that
connects the unstable equilibrium point e−M with itself (the pink curve in Figure 1). After
that, the unbounded curves appear in the dynamics of system (31) (yellow curves in
Figure 1).
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Figure 1. The dynamics of system (31) on the level set C(x, y, z) = C(M, 0, 0) (δ = 0.25; M = 1):
periodic orbits (white) around the stable equilibrium point (M, 0, 0), M > 0 (red), a homoclinic orbit
(pink) that connects the unstable equilibrium point (−M, 0, 0) (green) with itself, and unbounded
curves (yellow).

Below, we deduce the parametric representation of the homoclinic orbit of system (31)
in the case δ > 0 and M < 0. Using (25) and (30), system (31) reduces to the equation

ẋ = ±
√

2δ

3
(x − M)2(−2M − x).

By integration and (25), (31), we obtain the homoclinic orbit

H−
M : R → R3, H−

M(t) = (x(t), y(t), z(t)),

where

x(t) =
432M3(

e(t−t0)
√
−2δM − 6M

)2 +
72M2

e(t−t0)
√
−2δM − 6M

+ M,

y(t) = −
72
√
−2δM

(
M2e(t−t0)

√
−2δM

(
e(t−t0)

√
−2δM + 6M

))
(

e(t−t0)
√
−2δM − 6M

)3 ,

z(t) = −δM2


(

60Me(t−t0)
√
−2δM + e2(t−t0)

√
−2δM + 36M2

)2

(
e(t−t0)

√
−2δM − 6M

)4 − 1

,

where t0 is an arbitrary constant.
A similar result is obtained in the case δ < 0 (M > 0), namely, the homoclinic orbit

H+
M : R → R3, H+

M(t) = (x(t), y(t), z(t)),
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where

x(t) =
432M3(

e(t−t0)
√
−2δM + 6M

)2 − 72M2

e(t−t0)
√
−2δM + 6M

+ M,

y(t) =
72
√
−2δM

(
M2e(t−t0)

√
−2δM

(
e(t−t0)

√
−2δM − 6M

))
(

e(t−t0)
√
−2δM + 6M

)3 ,

z(t) =
144δM3e(t−t0)

√
−2δM

(
−24Me(t−t0)

√
−2δM + e2(t−t0)

√
−2δM + 36M2

)
(

e(t−t0)
√
−2δM + 6M

)4 .

5. Conclusions

In this paper, we constructed a family of Hamilton–Poisson jerk systems and we
studied some dynamical properties.

The dynamics of a three-dimensional Hamilton–Poisson system take place at the
intersection of the level sets given by the two constants of motion. Thus, for particular
constants of motion, the orbits of the system can be depicted. In general, we studied the
stability of the equilibrium points, and we proved the existence of periodic orbits around
nonlinearly stable equilibrium points. Also, we established conditions for the existence
of homoclinic and heteroclinic orbits. Particularly, we applied the results to a family of
anharmonic oscillators.

We noticed that jerk versions of some nonlinear oscillators belong to this family,
particularly the harmonic oscillator and some anharmonic oscillators. In quantum field
theory (QFT), while the harmonic oscillator is a fundamental concept, there are other general
potentials, including anharmonic potentials. Consequently, we expect some connections
between our work and QFT, particularly solitons.
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