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1. Introduction

Fractional calculus is a more advanced version of traditional calculus and has a wider
range of applications. It has been particularly useful in areas such as signal processing,
chemistry, biology, control theory, physics, economic systems and mechanics [1–7].

In the field of biology, the authors of [8] utilized the Caputo fractional derivative
as a mathematical technique to develop a model for the transmission of a coronavirus
(specifically, MERS-CoV) between humans and camels. Camels are suspected to be the
primary source of the infection. The paper investigates how the transmission of MERS-
CoV disease changes over time by employing a nonlinear fractional order based on the
Caputo operator. In the realm of physics, the nonlinear space–time fractional partial
differential symmetric regularized long-wave equation is a useful tool for summarizing
various physical phenomena. For example, it can describe ion-acoustic waves in plasma,
as well as solitary waves and shallow-water waves. In [9], the authors used this novel
approach to obtain the traveling wave solutions of two equations: the space–time fractional
Cahn–Hilliard equation and the space–time fractional symmetric regularized long-wave
equation.

Over the past two decades, several researchers have developed the theory of abstract
impulsive and abstract fractional differential equations with nonlocal conditions; see, for
instance, references [10–23] and the studies cited therein.

In [14], Hernandez et al. investigated the existence and uniqueness of a specific
problem, defined as follows:{

Dαχ(κ) = Aχ(κ) + ς(κ,Bχ(κ), χ(κ)), κ ∈ [0, a],
χ(0) = χ0 + g(χ),

(1)
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where Dα represents the Caputo fractional derivative, A is a closed linear operator with
a domain contained in a Banach space X, and ς and g are continuous functions. The
researchers employed various techniques, including the use of the resolvent operator and
other properties of fractional differential equations, to study this problem.

In [24–34], the uniqueness and existence of solutions for a sequential fractional differ-
ential equation of the general form(

Dα + λDβ
)

χ(κ) = ς(κ), λ ∈ R, (2)

were examined, where Dα, Dβ are two fractional derivatives, and ς is a continuous function.
In [29], Aqlan et al. investigated the following sequential fractional equation:(

Dα + λDα−1
)

χ(κ) = ς(κ, χ(κ)), κ ∈ [0, T], 1 < α ≤ 2, λ ∈ R, (3)

with boundary conditions of the form

α1χ(0) + ρ1χ(T) = β1, α2χ′(0) + ρ2χ′(T) = β2, (4)

and with the nonlocal integral boundary conditions

α1χ(0) + ρ1χ(T) = λ1

∫ a

0
χ(s)ds + λ2, α2χ′(0) + ρ2χ′(T) = µ1

∫ T

ξ
χ(s)ds + µ2,

where Dα is the Liouville–Caputo fractional derivative, and ς is a continuous function.
Salem and Almaghamsi [33] studied the existence of the solution of the following

sequential fractional differential equation:

Dα(D + λ)χ(κ) = ς(κ, χ(κ), χ′(κ),Dα−1χ(κ)) + e(κ), κ ∈ [0, 1], λ ∈ R, (5)

with the boundary conditions

χ(0) = 0, χ′(0) = 0, χ(1) = βχ(η), 0 < η < 1, (6)

where 1 < α ≤ 2, Dα represents the Caputo derivative, and D denotes the first-order
derivative.

In this paper, we extend Equations (2), (3) and (5) by considering the case where
λ represents a closed linear operator A. We investigate the following problem with an
abstract sequential fractional differential equation of the form

Dβ(Dα −A)χ(κ) = Hω(κ, Iσ(χ(κ)), χ(κ)), κ ∈ [0, T],
χ(0) = g(χ),
χ(T) = Iα

T(Aχ),
(7)

where Dα, Dβ are two Caputo fractional derivatives, and Iσ is the Riemann–Liouville
fractional integral, with 0 < α < 1, 0 < β, σ < 1. A is a closed linear unbounded operator,
with the domain D(A) contained in a Banach space X, and Hω depends on a parameter
ω ≥ 0, with Hω : [0, T]× X2 → X, g : C(J, X) → X, J ⊂ R being continuous functions.

Equation (7) can be interpreted as an abstract form of the following partial fractional
differential equation:

∂β

∂κβ

(
∂α

∂κα
− ∂2

∂τ2

)
χ(κ, τ) = Hω(κ, Iσ(χ(κ, τ)), χ(κ, τ)), κ ∈ [0, 1],

χ(κ, 0) = χ(κ, π) = 0, κ ∈ [0, 1],

χ(0, τ) = g(χ(0, τ)), χ(1, τ) = I
1
2

1

(
∂2χ(κ, τ)

∂τ2

)
, τ ∈ [0, π].

(8)

with Aχ = χττ and D(A) = {χ ∈ τ, χττ ∈ τ, χ(κ, 0) = χ(κ, π) = 0},
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The main objective of this paper is to examine the existence and uniqueness of mild so-
lutions of (1). In our study, we use the Caputo fractional derivative and Riemann–Liouville
fractional integral operators, with a specific emphasis on the significance of resolvent
operators. To demonstrate the uniqueness, we use the Banach contraction principle, and
for the existence of solutions, we apply the Krasnoseskii fixed-point theorem.

In our study, the domain of the operator A, represented by D(A), is equipped with the
graph norm, where ∥χ∥D(A) = ∥χ∥+ ∥Aχ∥. The norm of the space C([0, T], X) is defined
by ∥χ∥C([0,T],X) = max

κ∈[0,T]
∥χ(κ)∥.

2. Preliminaries

In this section, we will present definitions and preliminary concepts that will serve as
building blocks for the next sections. These essential definitions and preliminary explana-
tions will be referred to frequently in the upcoming sections.

Definition 1 ([6]). Let α ∈ R such that n − 1 < α < n, n ∈ N∗. The Caputo fractional derivative
of order α for a function ς ∈ Cn(0, ∞) is defined by

Dα[ς(κ)] =
1

Γ(n − α)

∫ κ

A
(κ − s)n−α−1ς(n)(s)ds

= In−ας(n)(s),

for κ > 0.

Definition 2 ([6]). The Riemann–Liouville fractional integral of order α > 0 for a function ς is
defined by

Iα
κ [ς(κ)] =

1
Γ(α)

∫ κ

0
(κ − s)α−1ς(s)ds,

for κ > 0, where the Gamma function Γ(α) =
∫ ∞

0 e−ττα−1dτ.

Now, we present the following lemmas (the interested reader is referred to [35] for
more details).

Lemma 1 ([35] ). Let α, β > 0, ς ∈ L1([0, T]). Then,

IαIβς(κ) = Iα+βς(κ),DβIβς(κ) = ς(κ), κ ∈ [0, T]. (9)

Lemma 2 ([35]). Let β > α > 0, ς ∈ L1([0, T]). Then,

DαIβς(κ) = Iβ−ας(κ), κ ∈ [0, T]. (10)

To establish our results, we assume that the integral equation

χ(κ) =
1

Γ(α)

∫ κ

0
(κ − s)α−1Aχ(s)ds, κ ≥ 0, (11)

has an associated resolvent operator (R(κ))κ≥0 on X.
In the following two definitions, we will present some results that can be found in [36].

Definition 3 ([36]). A one-parameter bounded linear operator {R(κ)}κ≥0 on X is called a resolvent
operator for (11) if it fulfills the following conditions:

1. R(·)χ ∈ C([0, ∞), X) and R(0)χ = χ for all χ ∈ X.
2. R(κ)D(A) ⊂ D(A) and AR(κ)χ = R(κ)Aχ for all χ ∈ D(A) and κ ≥ 0.
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3. For all χ ∈ D(A) and κ ≥ 0,

R(κ)χ = χ +
1

Γ(α)

∫ κ

0
(κ − s)α−1AR(s)χds.

Definition 4 ([36]). A resolvent operator (R(κ))κ≥0 for (11) is called differentiable if the following
conditions are satisfied:

1. R(κ)χ ∈ W1,1
loc (R

+, X) for all χ ∈ D(A).
2. There exists ϕA ∈ L1

loc(R
+) such that ∥R′(κ)χ∥ ≤ ϕA∥χ∥D(A) for all χ ∈ D(A).

Definition 5 ([36]). Let us consider the integral equation

χ(κ) =
A

Γ(α)

∫ κ

0
(κ − s)α−1χ(s)ds + f (κ), κ ∈ [0, T]. (12)

Then, the function ψ ∈ C([0, T], X) is called a mild solutionof the introduced integral Equation (12)
if ∫ κ

0
(κ − s)α−1ψ(s)ds ∈ D(A) for all κ ∈ [0, T], f ∈ L1([0, T], X).

and Equation (12) is satisfied.

Lemma 3 ([36]). Under the conditions stated in Definition 3, the following properties hold true:

1. If χ is a mild solution of (12) on [0, T], then the function κ →
∫ κ

0 R(κ − s) f (s)ds is continu-
ously differentiable on [0, T] and

χ(κ) =
d

dκ

∫ κ

0
R(κ − s) f (s)ds, κ ∈ [0, T].

2. If (R(κ))κ≥0 is differentiable and f ∈ C([0, T],D(A)), then the function χ : [0, T] → X
defined by

χ(κ) =
∫ κ

0
R′(κ − s) f (s)ds + f (κ), κ ∈ [0, T],

is a mild solution of (12) on [0, T].

For the proof of this lemma, refer to [36]. The following example shows how operators
and their properties are used.

Example 1. Let us consider the following abstract fractional problem:{
Dδ(χ(κ)) = Bχ(κ) + ς(κ), κ ∈ [0, T],
χ(0) = χ0,

(13)

where Dδ is the Caputo fractional derivative, 0 < δ < 1, B is a closed linear operator, ς is a
continuous function, and χ0 ∈ X.

Problem (13) is equivalent to

χ(κ) =
1

Γ(δ)

∫ κ

0
(κ − s)(δ−1)Bχ(s)ds +

1
Γ(δ)

∫ κ

0
(κ − s)(δ−1)ς(s)ds + χ0.

The equation mentioned above can be expressed as an integral equation in thefollowing form:

χ(κ) =
1

Γ(δ)

∫ κ

0
(κ − s)(δ−1)Bχ(s)ds + f (κ), κ ≥ 0, (14)

where f (κ) = χ0 +
1

Γ(δ)

∫ κ
0 (κ−s)(δ−1)ς(s)ds.
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Assuming the existence of a differentiable resolvent operator S(κ), κ ≥ 0, for Problem (13),
then by using Point (2) of Lemma 3, we can write

χ(κ) = χ0 +
1

Γ(δ)

∫ κ

0
(κ − s)(δ−1)ς(s)ds

+
∫ κ

0
S ′(κ − s)

(
χ0 +

1
Γ(δ)

∫ s

0
(s − τ)(δ−1)ς(τ)dτ

)
dκ, κ ∈ [0, T]. (15)

We present two fixed-point theorems that allow us to establish the uniqueness and
existence results, as mentioned in references [37,38].

Theorem 1 (Banach’s fixed-point theorem). Let Ω be a nonempty closed subset of a Banach
space X; then, any contraction mapping Ψ of Ω onto itself has a unique fixed point.

Theorem 2 (Krasnoselskii fixed-point theorem). Let Ω be a closed convex and nonempty subset
of a Banach space X. Let Ψ1 and Ψ2 be two operators such that

1. Ψ1x + Ψ2y ∈ Ω, with x, y ∈ Ω.
2. Ψ1 is contraction.
3. Ψ2 is compact and continuous.

Then, there exists z ∈ Ω such thatz = Ψ1z + Ψ2z.

This paper is organized as follows.
In Section 3, we examine the existence of mild solutions and establish the theorems

regarding the existence and uniqueness of the mild solution to Problem (1). Section 4
presents the results concerning the existence in the specific case of A ≡ λ, λ ∈ R. In
Section 5, we investigate an example of partial differential equations with the Caputo
fractional derivative.

3. Main Results

In this section, we investigate the existence of mild solutions to Problem (1). We make
the following assumptions throughout this study:

Hypothesis 1 (H1). A : D(A) ⊂ X → X is a closed linear operator.

Hypothesis 2 (H2). The resolvent operator R(t), t ≥ 0, is differentiable, and there exists a
function ϕA in L1

loc([0, ∞);R+) such that∥∥R′(t)x
∥∥ ≤ ϕA(t)∥x∥D(A), for all t > 0.

Hypothesis 3 (H3). For ω ≥ 0, the function Hω : [0, T]× X2 → X is completely continuous,
and there exists a constant Lω > 0 such that

For all (κ, τi, si) ∈ [0, T]× X2, i = 1, 2, we have

∥Hω(κ, τ1, s1)−Hω(κ, τ2, s2)∥ ≤ Lω(∥τ1 − τ2∥+ ∥s1 − s2∥) .

Let us consider
M = max{Hω(κ, 0, 0), κ ∈ [0, T]}.

Hypothesis 4 (H4). There exists ω∗ ≥ 0, ∀ω ≥ ω∗, and we have

∥g(τ1)− g(τ2)∥ ≤ ρ(ω)∥τ1 − τ2∥, ∀τi ∈ X, i = 1, 2,

where ρ : [w∗,+∞] → R+ is such that lim
ω→+∞

ρ(ω) = 0.
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Hypothesis 5 (H5). There exists ω∗ ≥ 0, for all ω ≥ ω∗, such that

Υ = 2(1 + ∥ϕA∥L1)

(
2LωTα+β

Γ(α + β + 1)

(
Tσ

Γ(σ + 1)
+ 1
)
+ ρ(ω)

)
< 1.

Lemma 4. Let us consider the problem{
Dβ(Dα −A)χ(κ) = h(κ), κ ∈ [0, T],
χ(0) = g(χ), χ(T) = Iα

T(Aχ)
(16)

where h ∈ C([0, T], X), 0 < α, β < 1.
Then, Problem (16) is equivalent to

χ(κ) =
1

Γ(α)

∫ κ

0
(κ − τ)α−1

(
1

Γ(β)

∫ τ

0
(τ − s)β−1h(s)ds

)
dτ

− κα

Tα

(
1

Γ(α)

∫ T

0
(T − τ)α−1

(
1

Γ(β)

∫ τ

0
(τ − s)β−1h(s)ds

)
dτ

)
+ g(χ)

[
1 − κα

Tα

]
+

1
Γ(α)

∫ κ

0
(κ − τ)α−1Aχ(τ)dτ.

Proof. We have
Dβ(Dα −A)χ(κ) = h(κ). (17)

By applying the Riemann–Liouville fractional integral of order β toEquation (17), we obtain

Dαχ(κ)−Aχ(κ) =
1

Γ(β)

∫ κ

0
(κ − s)β−1h(s)ds + c0. (18)

By once again applying the Riemann–Liouville fractional integral of orderα to
Equation (18), we obtain the following result:

χ(κ) =
1

Γ(α)

∫ κ

0
(κ − τ)α−1Aχ(τ)dτ

+
1

Γ(α)

∫ κ

0
(κ − τ)α−1

(
1

Γ(β)

∫ τ

0
(τ − s)β−1h(s)ds

)
dτ

+
c0

Γ(α + 1)
κα + c1,

where c0, c1 are constants.
Using the first boundary condition χ(0) = g(χ), we obtain c1 = g(χ). The second

boundary condition, χ(T) = Iα
T(Aχ), implies

χ(T) =
1

Γ(α)

∫ T

0
(T − τ)α−1Aχ(τ)dτ

+
1

Γ(α)

∫ T

0
(T − τ)α−1

(
1

Γ(β)

∫ τ

0
(τ − s)β−1h(s)ds

)
dτ

+
c0

Γ(α + 1)
Tα + g(χ)

=
1

Γ(α)

∫ T

0
(T − τ)α−1Aχ(τ)dτ,

which means

c0 =
Γ(α + 1)

Tα

(
−g(χ)− 1

Γ(α)

∫ T

0
(T − τ)α−1

(
1

Γ(β)

∫ τ

0
(τ − s)β−1h(s)ds

)
dτ

)
.
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Consequently, Problem (16) is equivalent to the following:

χ(κ) =
1

Γ(α)

∫ κ

0
(κ − τ)α−1Aχ(τ)dτ

+
1

Γ(α)

∫ κ

0
(κ − τ)α−1

(
1

Γ(β)

∫ τ

0
(τ − s)β−1h(s)ds

)
dτ

− κα

Tα × Γ(α)

∫ T

0
(T − τ)α−1

(
1

Γ(β)

∫ τ

0
(τ − s)β−1h(s)ds

)
dτ

+ g(χ)
[

1 − κα

Tα

]
. (19)

Let us denote the solution of Problem (16) as follows:

χ(κ) = Iα
κ

(
Iβ

τ h(s)
)
− κα

Tα
Iα

T

(
Iβ

τ h(s)
)
+ g(χ)

(
1 − κα

Tα

)
+ Iα

κ (Aχ(τ)).

Remark 1. Equation (19) can be alternatively represented as an integral equation in the following
scientific form:

χ(κ) =
1

Γ(α)

∫ κ

0
(κ − τ)α−1Aχ(τ)dτ + f (κ), κ ≥ 0, (20)

where

f (κ) = Iα
κ

(
Iβ

τ h(s)
)
− κα

Tα
Iα

T

(
Iβ

τ h(s)
)
+ g(χ)

(
1 − κα

Tα

)
.

Using Lemma 4, we can establish the equivalence of Problem (1) to the following
integral equation:

χ(κ) = Iα
κ (Aχ(τ)) + Iα

κ

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)

− κα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
+ g(χ)

(
1 − κα

Tα

)
, (21)

where κ ∈ [0, T].
In the subsequent definition, we present a conceptually similar definition for the mild

solution of Problem (1).

Definition 6. A function χ ∈ C([0, T], X) is considered to be a mild solution of Problem (1) in the

interval [0, T] if Iα
κ (χ(τ)) =

1
Γ(α)

∫ κ
0 (κ − τ)α−1χ(τ)dτ ∈ D(A) for all κ ∈ [0, T] and

χ(κ) = A(Iα
κ (χ(τ))) + Iα

κ

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)

− κα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
+ g(χ)

(
1 − κα

Tα

)
, κ ∈ [0, T].

Now, we present the main theorems, along with their corresponding proofs, regarding
the existence and uniqueness of the mild solution to Problem (1).

3.1. The Uniqueness of the Mild Solution

Theorem 3. Under assumptions (H1)–(H5), there exists a unique mild solution of Problem (1) in
the interval [0, T].
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Proof. Suppose there exists a differentiable resolvent operator R(κ) for κ ≥ 0, and the
functions Hω and g are continuous in X. Additionally, referring to Remark 1 and Property 2
of Lemma 3, we define the map Λ : C([0, T], X) → C([0, T], X), for ω ≥ 0, by

Λχ(κ) =
∫ κ

0
R′(κ − s)

(
Iα

s

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)

(22)

− sα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
+ g(χ)

(
1 − sα

Tα

))
ds

+ Iα
κ

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
− κα

Tα
Iα

κ

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)

+ g(χ)
(

1 − κα

Tα

)
.

The goal now is to prove that Λ is a contraction.
Let χ ∈ C([0, T], X); then, from the assumption on Hω, for ω ≥ 0, we have∥∥∥∥∫ κ

0
R′(κ − s)

(
Iα

s

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)

− sα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
+ g(χ)

(
1 − sα

Tα

))
ds
∥∥∥∥

≤
∫ κ

0

∥∥R′(κ − s)
∥∥(Iα

s

(
Iβ

τ (1)
)
+

sα

Tα
Iα

κ

(
Iβ

τ (1)
))

sup
t∈[0,T]

∥Hω(t, Iσχ(t), χ(t))∥ds

+
∫ κ

0

∥∥R′(κ − s)
∥∥∥g(χ)∥

(
1 − sα

Tα

)
ds

≤
∫ κ

0

∥∥R′(κ − s)
∥∥(Iα

s

(
Iβ

τ (1)
)
+

sα

Tα
Iα

T

(
Iβ

τ (1)
))

ds × sup
t∈[0,T]

∥Hω(t, Iσχ(t), χ(t))∥

+
∫ κ

0

∥∥R′(κ − s)
∥∥∥g(χ)∥

(
1 − sα

Tα

)
ds

≤ ∥ϕA∥L1

(
2

κα+β

Γ(α + β + 1)
sup

t∈[0,T]
∥Hω(t, Iσχ(t), χ(t))∥+ ∥g(χ)∥

)
.

Then, we have

s → R′(κ − s)
(
Iα

s

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)

− sα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
+ g(χ)

(
1 − sα

Tα

))
which is integrable on [0, T] for all κ ∈ [0, T].

This leads to the conclusion that Λχ ∈ C([0, T], X), and as a result, Λ is well defined.
Moreover, for χ, ψ ∈ C([0, T], X), we have
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∥Λχ − Λψ∥

≤ Iα
κ

[
Iβ

τ (∥Hω(s, Iσχ(s), χ(s))−Hω(s, Iσψ(s), ψ(s)))∥
]

+
κα

Tα
Iα

T

(
Iβ

τ (∥Hω(s, Iσχ(s), χ(s))−Hω(s, Iσψ(s), ψ(s))∥)
)

+ ∥g(χ)− g(ψ)∥
(

1 − κα

Tα

)
+
∫ κ

0

∥∥R′(κ − s)
∥∥(Iα

s

(
Iβ

τ (∥Hω(t, Iσχ(t), χ(t))−Hω(t, Iσψ(t), ψ(t))∥
)

+
sα

Tα
Iα

T

(
Iβ

τ (∥Hω(s, Iσχ(s), χ(s))−Hω(s, Iσψ(s), ψ(s))∥
))

dκ

+
∫ κ

0

∥∥R′(κ − s)
∥∥∥g(χ)− g(ψ)∥

(
1 − sα

Tα
)

)
dκ,

and by using hypotheses (H2), (H3) and (H4), we obtain

∥Λχ − Λψ∥

≤
(
Iα+β

κ (1) +
κα

Tα
Iα+β

T (1)
)

Lω(∥Iσ
κ χ(t)− Iσ

κ ψ(t)∥+ ∥χ − ψ∥)

+ ρ(ω)∥χ − ψ∥+
(∫ κ

0
ϕA

(
Iα+β

κ (1) +
κα

Tα
Iα+β

T (1)
)

ds
)

× Lω(∥Iσ
κ χ(t)− Iσ

κ ψ(t)∥+ ∥χ − ψ∥)
+ ∥ϕA∥L1 ρ(ω)∥χ − ψ∥.

Then,

∥Λχ − Λψ∥ ≤ 2
Tα+β

Γ(α + β + 1)
Lω(∥Iσ

κ χ(t)− Iσ
κ ψ(t)∥+ ∥χ − ψ∥) + ρ(ω)∥χ − ψ∥

+ 2
Tα+β

Γ(α + β + 1)
Lω(∥Iσ

κ χ(t)− Iσ
κ ψ(t)∥+ ∥χ − ψ∥)∥ϕA∥L1 + ρ(ω)∥χ − ψ∥∥ϕA∥L1 .

Since we have

∥Iσ
κ χ(t)− Iσ

κ ψ(t)∥ =

∥∥∥∥ 1
Γ(σ)

∫ κ

0
(κ − s)σ−1χ(s)ds − 1

Γ(σ)

∫ κ

0
(κ − s)σ−1ψ(s)ds

∥∥∥∥
≤ 1

Γ(σ)

∫ κ

0
(κ − s)σ−1∥χ(s)− ψ(s)∥ds

≤ Tσ

Γ(σ + 1)
∥χ(s)− ψ(s)∥, 0 < σ < 1,

we finally obtain

∥Λχ − Λψ∥ ≤
(

2
LωTα+β

Γ(α + β + 1)

(
Tσ

Γ(σ + 1)
+ 1
)
+ ρ(ω)

)
∥χ − ψ∥

+

(
2

LωTα+β

Γ(α + β + 1)

(
Tσ

Γ(σ + 1)
+ 1
)
+ ρ(ω)

)
∥ϕA∥L1∥χ − ψ∥

≤ (1 + ∥ϕA∥L1)

(
2

LωTα+β

Γ(α + β + 1)

(
Tσ

Γ(σ + 1)
+ 1
)
+ ρ(ω)

)
∥χ − ψ∥.

Due to assumption (H5), there exists ω∗ ≥ 0 such that for all ω ≥ ω∗, the operator Λ
is a contraction. By applying Banach’s fixed-point theorem, we conclude that there exists a
unique mild solution to Problem (1). Thus, the proof is complete.
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3.2. The Existence of the Mild Solution

Theorem 4 (Existence). Under assumptions (H1)–(H5), there exists a mild solution to
Problem (1) in the interval [0, T].

Proof. We convert the existence of a solution to Problem (1) into a fixed-point problem. We
introduce a map denoted by Λ : C([0, T], X) → C([0, T], X), which is defined according to
Equation (22), stated in the proof of the previous theorem.

Λχ(κ) =
∫ κ

0
R′(κ − s)

(
Iα

s

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)

− sα

Tα
Iα

T

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)
+ g(χ)

(
1 − sα

Tα

))
ds

+ Iα
κ

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
− κα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)

+ g(χ)
(

1 − κα

Tα

)
.

We decompose Λ into two parts, denoted by Λ1 and Λ2, on the closed ball Br(0, E),
where Br(0, E) represents the closed ball centered at 0 with the radius r in the space
E = C([0, T], X), where

Λ1χ(κ) =
∫ κ

0
R′(κ − s)g(χ)

(
1 − sα

Tα

)
ds + g(χ)

(
1 − κα

Tα

)
,

and

Λ2χ(κ) =
∫ κ

0
R′(κ − s)

(
Iα

s

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)

− sα

Tα
Iα

T

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
))

ds

+ Iα
κ

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
− κα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)

.

Obviously, due to hypothesis (H3), we have

Iα
κ

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)
− κα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
∈ C([0, T], X).

Let Br(0, E) = {z ∈ E = C([0, T], X) : ∥z∥ ≤ r}. For χ, ψ ∈ C([0, T], X). We choose

2(1 + ∥ϕA∥L1)

(
2M
(

Tα

Γ(α + β + 1)

)
+ ∥g(0)∥

)
< r. (23)

Then, for χ, ψ ∈ Br(0, E) and ω ≥ 0, we have

∥Λ1χ(κ) + Λ2ψ(κ)∥

≤
∥∥∥∥∫ κ

0
R′(κ − s)g(χ)

(
1 − sα

Tα

)
ds +

(
1 − κα

Tα

)
g(χ)

∥∥∥∥
+

∥∥∥∥∫ κ

0
R′(κ − s)

(
Iα

s

(
Iβ

τ Hω(t, Iσψ(t), ψ(t))
)

− sα

Tα
Iα

T

(
Iβ

τ Hω(t, Iσψ(t), ψ(t))
))

ds
∥∥∥∥

+

∥∥∥∥Iα
κ

(
Iβ

τ Hω(s, Iσψ(s), ψ(s))
)
− κα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσψ(s), ψ(s))
)∥∥∥∥,
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and then, since ω ≥ 0, we obtain

∥Λ1χ(κ) + Λ2ψ(κ)∥

≤
(∫ κ

0

∥∥R′(κ − s)
∥∥(∥g(χ)− g(0)∥+ ∥g(0)∥)ds + ∥g(χ)− g(0)∥+ ∥g(0)∥

)
+
∫ κ

0

∥∥R′(κ − s)
∥∥{Iα

s I
β
τ (∥Hω(t, Iσψ(t), ψ(t))−Hω(t, 0, 0)∥)

+
sα

Tα

(
Iα

s I
β
τ (∥Hω(t, Iσψ(t), ψ(t))−Hω(t, 0, 0)∥)

)}
ds

+ Iα
κ I

β
τ (∥Hω(s, Iσψ(s), ψ(s))−Hω(s, 0, 0)∥)

+
κα

Tα

(
Iα

κ I
β
τ (∥Hω(s, Iσψ(s), ψ(s))−Hω(s, 0, 0)∥)

)
+
∫ κ

0

∥∥R′(κ − s)
∥∥[Iα

s I
β
τ (∥Hω(t, 0, 0)∥) + sα

Tα

(
Iα

TI
β
τ (∥Hω(t, 0, 0)∥)

)]
ds

+ Iα
κ I

β
τ (∥Hω(s, 0, 0)∥) + κα

Tα

(
Iα

κ I
β
τ (∥Hω(s, 0, 0)∥)

)
.

Using hypotheses (H3) and (H4), we can deduce that

∥Λ1χ(κ) + Λ2ψ(κ)∥
≤ ∥ϕA∥L1(ρ(ω)r + ∥g(0)∥) + (ρ(ω)r + ∥g(0)∥)

+ ∥ϕA∥L1 Lωr
(

Tσ

Γ(σ + 1)
+ 1
)(

Tα+β

Γ(α + β + 1)
+

Tα

Tα

(
Tα+β

Γ(α + β + 1)

))
+ Lωr

(
Tσ

Γ(σ + 1)
+ 1
)(

Tα+β

Γ(α + β + 1)
+

Tα

Tα

Tα+β

Γ(α + β + 1)

)
+ ∥ϕA∥L1 M

(
Tα+β

Γ(α + β + 1)
+

Tα

Tα

Tα+β

Γ(α + β + 1)

)
+ M

(
Tα+β

Γ(α + β + 1)
+

Tα

Tα

Tα+β

Γ(α + β + 1)

)
.

Consequently,

∥Λ1χ(κ) + Λ2ψ(κ)∥
≤ (∥ϕA∥L1 + 1)ρ(ω)r + (∥ϕA∥L1 + 1)∥g(0)∥

+ 2∥ϕA∥L1 Lωr
(

Tσ

Γ(σ + 1)
+ 1
)(

Tα+β

Γ(α + β + 1)

)
+ 2Lωr

(
Tσ

Γ(σ + 1)
+ 1
)(

Tα+β

Γ(α + β + 1)

)
+ 2∥ϕA∥L1 M

(
Tα+β

Γ(α + β + 1)

)
+ 2M

(
Tα+β

Γ(α + β + 1)

)
.

So, for ω ≥ 0,

∥Λ1χ(κ) + Λ2ψ(κ)∥ ≤ (∥ϕA∥L1 + 1)
(

ρ(ω) + 2
LωTα+β

Γ(α + β + 1)

(
Tσ

Γ(σ + 1)
+ 1
))

r

+ (∥ϕA∥L1 + 1)
(

2M
(

Tα+β

Γ(α + β + 1)

)
+ ∥g(0)∥

)
.

Then, due to hypothesis (H5) and the condition stated in (23), we have

∥Λ1χ(κ) + Λ2ψ(κ)∥ < r.
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Consequently, for any χ and ψ in Br(0, E), we haveΛ1χ + Λ2ψ ∈ Br(0, E). From assump-
tions (H2) and (H4), we can observe that for any χ ∈ C([0, T], X), the inequality∥∥∥∥∫ κ

0
R′(κ − s)g(χ)ds

∥∥∥∥ ≤ ∥ϕA∥L1(ρ(ω)r + ∥g(0)∥),

holds. Consequently, we can deduce that the function s → R′(κ − s)g(χ) is integrable over
[0, T] for all κ ∈ [0, T], and therefore, Λ1χ ∈ C([0, T], X). Moreover, for χ, ψ ∈ C([0, T], X)
and κ ∈ [0, T], we obtain, for ω ≥ 0,

∥Λ1χ(κ)− Λ1ψ(κ)∥ ≤
∣∣∣∣1 − κα

Tα

∣∣∣∣∥g(χ)− g(ψ)∥

+
∫ κ

0

∥∥R′(κ − s)
∥∥∣∣∣∣1 − sα

Tα

∣∣∣∣∥g(χ)− g(ψ)∥ds

≤ ρ(ω)∥χ − ψ∥+ ∥ϕA∥L1 ρ(ω)∥χ − ψ∥
≤ ρ(ω)(1 + ∥ϕA∥L1)∥χ − ψ∥.

By leveraging hypothesis (H5), we can establish that Λ1 is a contraction on Br(0, E).
In this step, we will show that the operator Λ2 is compact and continuous. Note that

the function

s →
∫ κ

0
R′(κ − s)

(
Iα

s

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)
− sα

Tα
Iα

T

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
))

ds,

is integrable based on assumptions (H2) and (H3), as demonstrated earlier. First, we show
that Λ2 is uniformly bounded. Indeed, for κ ∈ [0, T] and ω ≥ 0, we have

∥Λ2χ(κ)∥ ≤
∫ κ

0
R′(κ − s)

(
Iα

s

(
Iβ

τ ∥Hω(t, Iσχ(t), χ(t))∥
)

+
sα

Tα
Iα

T

(
Iβ

τ ∥Hω(t, Iσχ(t), χ(t))∥
))

ds

+ Iα−β
κ

(
Iβ

τ ∥Hω(s, Iσχ(s), χ(s))∥
)
+

κα

Tα
Iα

T

(
Iβ

τ ∥Hω(s, Iσχ(s), χ(s))∥
)

≤ 2(∥ϕA∥L1 + 1)
[

rLωTα+β

Γ(α + β + 1)

(
Tσ

Γ(σ + 1)
+ 1
)
+

MTα+β

Γ(α + β + 1)

]
.

So, Λ2 is uniformly bounded.
Let (χn)n∈N be a sequence in Br(0, E) such that χn → χ in Br(0, E). Since the function

Hω is continuous,

Hω(s, Iσχn(s), χn(s)) → Hω(s, Iσχ(s), χ(s)) as n → ∞,

and
∥Λ2χn(κ)− Λ2χ(κ)∥

≤
∫ κ

0

∥∥R′(κ − s)
∥∥(Iα

s

(
Iβ

τ ∥Hω(t, Iσχn(t), χn(t))−Hω(t, Iσχ(t), χ(t))∥
)

+
sα

Tα
Iα

T

(
Iβ

τ (∥Hω(s, Iσχn(s), χn(s))−Hω(s, Iσχ(s), χ(s))∥)
))

ds

+ Iα
κ

(
Iβ

τ (∥Hω(s, Iσχn(s), χn(s))−Hω(s, Iσχ(s), χ(s))∥)
)

+
κα

Tα
Iα

T

(
Iβ

τ (∥Hω(s, Iσχn(s), χn(s))−Hω(s, Iσχ(s), χ(s))∥))
)

→ 0 as n → ∞.
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Finally, Λ2 is continuous.
Let us now prove that the set {Λ2χ(κ) : χ ∈ Br(0, E)} is relatively compact in X for

all κ ∈ [0, T]. One can remark that {Λ2χ(κ) : χ ∈ Br(0, E)} is compact, fix κ ∈ (0, T] and
χ ∈ Br(0, E), and define the operator Λε

2:

Λε
2χ(κ) =

∫ κ−ϵ

0
R′(κ − s)

(
Iα

s

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)

− sα

Tα
Iα

T

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
))

ds

+ Iα
κ−ϵ

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
− (κ − ϵ)α

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)

, ω ≥ 0.

Due to the complete continuity of Hω, as stated in (H3), we can conclude that for every
ϵ > 0 with 0 < ϵ < κ, the set

Ωϵ = {Λϵ
2χ(κ) : χ ∈ Br(0, E)},

is precompact in X. Moreover, for every χ ∈ Br(0, E), we have

∥Λ2χ(κ)− Λϵ
2χ(κ)∥

≤
∫ κ

κ−ϵ
R′(κ − s)

(
Iα

s

(
Iβ

τ ∥Hω(t, Iσχ(t), χ(t))∥
)

+
sα

Tα
Iα

T

(
Iβ

τ ∥Hω(t, Iσχ(t), χ(t))∥
))

ds

+
1

Γ(α)

∫ κ

κ−ϵ
(κ − τ)α−1

(
Iβ

τ ∥Hω(s, Iσχ(s), χ(s))∥
)

dτ

+

(
κα − (κ − ϵ)α)

Tα
Iα

T

(
Iβ

τ (∥Hω(s, Iσχ(s), χ(s))∥)
)

.

This means that the precompact sets Ωϵ, 0 < ϵ < κ,are close in the set {Λ2χ(κ) : χ ∈ Br(0, E)}.
Hence, the set {Λ2χ(κ) : χ ∈ Br(0, E)} is precompact in X.

Next, our goal is to establish that Λ2(Br(0, E)) is equicontinuous. The functions
Λ2χ, χ ∈ Br(0, E) are equicontinuous at κ = 0; then, if κ < κ + h ≤ T, h > 0, we have

∥Λ2χ(κ + h)− Λ2χ(κ)∥

≤
∥∥∥∥∫ κ+h

0
R′(κ − s)

(
Iα

s

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)

− sα

Tα
Iα

T

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
))

dκ

−
∫ κ

0
R′(κ − s)

(
Iα

s

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
)

− sα

Tα
Iα

T

(
Iβ

τ Hω(t, Iσχ(t), χ(t))
))

dκ

∥∥∥∥
+
∥∥∥Iα

κ+h

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
− Iα

κ

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)∥∥∥

+

∥∥∥∥∥
(
(κ + h)α − κα

)
Tα

Iα
T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)∥∥∥∥∥.

So, we obtain
lim
h→0

∥Λ2χ(κ + h)− Λ2χ(κ)∥ = 0.

According to hypothesis (H3), the function Hω iscompletely continuous. This means that
the set

{Λ2χ(κ) : χ ∈ Br(0, E)},
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is equicontinuous. Therefore, we have demonstrated that Λ2(Br(0, E)) is relatively compact
for κ ∈ [0, T]. By applying the Arzela–Ascoli theorem, we conclude that Λ2 is a compact
operator.

Consequently, based on the Krasnoseskii fixed-point theorem, there exists a fixed point
χ ∈ C([0, T], X) such that Λχ = χ, with Λ = Λ1 + Λ2. This fixed point represents a mild
solution to Problem (1).

4. Particular Case A ≡ λ

We consider the following problem:{
Dβ(Dα − λ)χ(κ) = Hω(κ, Iσ(χ(κ)), χ(κ)), κ ∈ [0, T],
χ(0) = g(χ), χ(T) = λIα

T(χ),
(24)

where Dα, Dβ are Caputo fractional derivatives, and Iσ is the Riemann–Liouville fractional
integral, where 0 < α < 1, 0 < β, σ < 1, λ ∈ R. Here, Hω depends on a parameter
ω ≥ 0, where Hω : [0, T]× X2 → X, g : C(J, X) → X are continuous functions, and X is a
Banach space.

Problem (24) is equivalent to the following integral equation:

χ(κ) = λIα
κ (χ(τ)) + Iα

κ

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)

− κα

Tα
Iα

T

(
Iβ

τ Hω(s, Iσχ(s), χ(s))
)
+ g(χ)

(
1 − κα

Tα

)
, κ ∈ [0, T].

Corollary 1. Under assumptions (H2), (H3), (H4) and (H5), we can conclude the existence and
uniqueness of a mild solution to Problem (24).

5. Application

In this section, our focus is on investigating the existence and uniqueness of a mild
solution for a differential system that involves Caputo derivatives.

Example 2. We consider the following differential equation with a Caputo derivative in X =
L2([0, π]) : 

D 1
2

(
D 2

5 + 1
2

)
χ(κ) =

1
ω2 + ω

I
1
3

κ (χ(κ)),

χ(0) =
1

ω + 1
cos(χ),

χ(1) = I
1
2

1 (−
1
2 χ) = − 1

2Γ( 1
2 )

∫ 1
0 (κ − s)−

1
2 χ(s)ds,

(25)

where Aχ = χ and D(A) = X. Clearly, there exists a resolvent operator for this problem, with
∥R′(t)x∥ ≤ θ∥x∥.

For a sufficiently large value of ω, we have

Hω(κ, Iσχ(κ), χ(κ)) =
1

ω2 + ω

(
I

1
3

κ χ(κ)

)
,

and
g(χ) =

1
ω + 1

cos(χ),

so we obtain

∥Hω(κ, τ1, s1)−Hω(κ, τ2, s2)∥ ≤ 1
ω2 + ω

(∥τ1 − τ2∥+ ∥s1 − s2∥)with Lω =
1

ω2 + ω
,

and
∥g(τ1)− g(τ2)∥ ≤ ρ(ω)∥τ1 − τ2∥ where ρ(ω) =

1
ω + 1

,
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and lim
ω→+∞

ρ(ω) = 0.

On the other hand, ∃ω∗ ≥ 0 such that ∀ω ≥ ω∗, and we have

2(1 + ∥ϕA∥L1)

[
2Lω

Γ(α + β + 1)

(
1

Γ(σ + 1)
+ 1
)
+ ρ(ω)

]
= 2(1 + θ)

[
2

(ω2 + ω)Γ
( 9

10
)( 1

Γ( 4
3 )

+ 1

)
+

1
ω + 1

]
< 1,

Therefore, assumptions (H1)–(H5) are satisfied, so Problem (25) possesses a unique mild solution.

Example 3. Consider the following partial differential equation with a Caputo derivative in the
space X = L2([0, π]) : the problem for X = L2([0, π]) is given by

∂
1
2

∂κ
1
2

(
∂

3
4

∂κ
3
4
− ∂2

∂τ2

)
χ(κ, τ) =

1
ω

(
sin(κ)χ(κ, τ) + I

1
2

κ (χ(κ, τ))

)
,

χ(κ, 0) = χ(κ, π) = 0, κ ∈ [0, 1],

χ(0, τ) =
1

ω + 1
sin(χ),

χ(1, τ) = I
1
2

1

(
∂2χ

∂τ2

)
= 1

Γ( 1
2 )

∫ 1
0 (κ − s)−

1
2

∂2χ

∂τ2 (s, τ)ds, τ ∈ J = [0, π],

(26)

where α = 1
2 , β = 3

4 , σ = 1
2 , and ω > 0 is sufficiently large.

Let Aχ = χ′′ with the domain

D(A) =
{

χ ∈ X, χ′′ ∈ X, χ(0) = χ(π) = 0
}

.

Due to [15,39], the integral equation

χ(κ) =
1

Γ(α)

∫ κ

0
(κ − s)α−1Aχ(s)ds, κ ≥ 0, (27)

has an associated resolvent operator (R(t))t≥0 on X, and there exists a constant η > 0 such that∥∥R′(t)x
∥∥ ≤ η∥x∥, for all t > 0, for x ∈ D(A).

Therefore, we can confirm that assumptions (H1) and (H2) are satisfied. For a sufficiently large
value of ω, we have

Hω(κ, Iσχ(κ), χ(κ)) =
1
ω

(
sin(κ)χ(κ, τ) + I

1
2

κ χ(κ, τ)

)
,

and
g(χ) =

1
ω + 1

sin(χ),

so, we obtain

∥Hω(κ, τ1, s1)−Hω(κ, τ2, s2)∥ ≤ 1
ω
(∥τ1 − τ2∥+ ∥s1 − s2∥)with Lω =

1
ω

,

and
∥g(τ1)− g(τ2)∥ ≤ ρ(ω)∥τ1 − τ2∥ with ρ(ω) =

1
ω + 1

,

and lim
ω→+∞

ρ(ω) = 0.
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Then, we can conclude that both (H3) and (H4) are satisfied. On the other hand, we have

2(1 + ∥ϕA∥L1)

[
2Lω

Γ(α + β + 1)

(
1

Γ(σ + 1)
+ 1
)
+ ρ(ω)

]
= 2(1 + ∥ϕA∥L1)

[
2

ωΓ(α + β + 1)

(
1

Γ(σ + 1)
+ 1
)
+

1
ω + 1

]
,

and

2(1 + ∥ϕA∥L1)

 2
ωΓ
( 5

4 + 1
)
 1

Γ
(

1
2 + 1

) + 1

+
1

ω + 1


< 2(1 + ∥ϕA∥L1)

 2
ωΓ
( 5

4 + 1
)
 1

Γ
(

1
2 + 1

) + 1

+
1
ω

.

So,

2(1 + η)

[
2

ω × 1.13

(
1

0.88
+ 1
)
+

1
ω

]
< 1,

which is equivalent to

(1 + η)

[
4

1.13

(
1

0.88
+ 1
)
+ 2
]
< ω

This means ω > 9.54 × (1 + η).
Then, there exists ∃ω∗ = 9.54(1 + η) > 0 such that, for all ω > ω∗,

Υ = 2(1 + ∥ϕA∥L1)

[
2Lω

Γ(α + β + 1)

(
1

Γ(σ + 1)
+ 1
)
+ ρ(ω)

]
< 1.

Therefore, for any ω > ω∗ = 9.54 × (1 + η), Problem (26) possesses a unique mild solution.

6. Conclusions

In this study, we have extended the concept of sequential fractional differential equa-
tions by introducing an operator coefficient, thus creating what we refer to as an abstract
sequential fractional differential equation. We have examined the uniqueness and exis-
tence of mild solutions to such abstract sequential fractional differential equations with
nonlocal boundary conditions. Our investigation utilizes the Caputo fractional derivative
and Riemann–Liouville fractional integral operators, with a particular focus on the role of
resolvent operators. To establish uniqueness, we apply the Banach contraction principle,
while, for existence, we utilize the Krasnoseskii fixed-point theorem. We also provide an
application of our results to a partial differential equation to demonstrate their applicability
to practical problems. In our future research, we will concentrate on investigating the
Ulam–Hyers and Ulam–Hyers–Rassias stability of similar problems using the approach of
resolvent operators.
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