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Abstract: In this review, the state of research over the past fifteen years in the field of the applications
of metal phthalocyanines and porphyrin derivatives as well as their hybrid materials with carbon
nanotubes, metal oxides, and polymers in optical sensors based on the phenomenon of surface
plasmon resonance (SPR) is analyzed. The first chapter of the review presents an analysis of works
on the use of porphyrins and phthalocyanines in classical SPR sensors for the detection of gases
and volatile organic vapors, as well as their improved modifications, such as total internal reflec-
tion ellipsometry (TIRE) and magneto-optical SPR (MOSPR) methods, while the second chapter is
devoted to their application for the detection of various analytes in solutions. The third chapter
of the review summarizes publications describing recent advances in the use of porous materials
based on hybrids of carbon nanotubes and oxides with metal phthalocyanines. The fourth chapter
describes two-dimensional metal-organic frameworks (MOFs) based on metal porphyrin derivatives
as SPR sensitizers.
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1. Introduction

Due to their unique electronic structure and properties, metal phthalocyanines (MPc)
and porphyrins are widely utilized in various types of chemical sensors, including resistive,
solid-state ionic, and capacitance sensors, sensors based on field-effect transistors (FET),
as well as optical, quartz crystal microbalance (QCM), and surface acoustic-wave (SAW)
sensing devices [1]. The ability to widely vary the structure of these molecules both by
introducing different central metals and by varying axial or peripheral substituents in the
macroring allows researchers to obtain sensors for the determination of analytes of various
natures, from simple gases to complex biological molecules. The introduction of various
functional groups into substituents makes these compounds reactive, which allows them
to be used as building blocks for the production of metal-organic frameworks [2,3], hybrid
and composite materials with polymers [4], nanoparticles [5], and nanocarbon materials [6].

The literature abounds with works on the study of the possibility of using phthalocya-
nines and porphyrins in the form of solutions and thin films in various types of chemical
sensors, among them are review articles. Several reviews were published on the application
of phthalocyanines over the last 15 years. For example, in 2009, Öztürk et al. [7] published
a brief review that included 40 references devoted to the methods of preparation of ph-
thalocyanine sensing films and their sensing mechanisms with several analytes. In 2013,
Bouvet et al. [8] published a mini-review that included 56 references in which they demon-
strated the chemical variability of phthalocyanines for the preparation of their hybrids
with polymers and carbon-based materials and showed their application as sensing layers
of electrochemical and conductometric sensors. Information about the modification of
electrodes in electrochemical sensors with phthalocyanine derivatives was summarized in
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the review by Demir and co-authors [9]. The resistive sensors based on porphyrins, phthalo-
cyanines, and their hybrid materials were also described in several recent reviews [10–12].
Paolesse and co-authors [13] devoted their review to the application of porphyrinoids in
chemical sensors based on various principles of transduction.

The role of phthalocyanines and porphyrins as active layers of optical sensors is also
very important. Optical sensors use various spectroscopic measurements, including flu-
orescence, optical absorption, Raman scattering, and surface plasmon resonance (SPR).
While review articles on fluorescent and colorimetric sensors based on phthalocyanines
and porphyrins have been written by researchers in recent years, systematic reviews on
their use in sensors based on SPR phenomena are practically absent in the literature. At
the same time, SPR sensors using these derivatives as active layers are utilized for the
detection of reducing and oxidizing gases, volatile organic compounds (VOCs), pesticides,
biological molecules, etc. (Figure 1). For example, Celiesiute et al. [14] summarized the data
on various electrochromic sensors based on polymers, metal oxides, and coordination com-
pounds. Among coordination compounds, they gave several examples of porphyrins and
phthalocyanines, but their number was not numerous (12 refs., the last one was published
in 2013). Several examples of phthalocyanine-based optical sensors were described in the
review by Gounden and co-authors [15]. Francis et al. [16] carried out a detailed analysis
of the literature devoted to porphyrin-based colorimetric and fluorescence sensors. Liu
et al. summarized the data on the study of porphyrin/phthalocyanine-based 2D covalent
organic frameworks as active layers of colorimetric sensors in their recent review [17]. At
the same time, the data on phthalocyanine-based SPR sensors were summarized only in a
book chapter in 2017 [1], but all cited references were published before 2010.
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using metal phthalocyanines and porphyrin derivatives as active layers.

In this review, the state of the research over the past fifteen years in the field of the
applications of metal phthalocyanines and porphyrin derivatives as well as their hybrid
materials with carbon nanotubes, metal oxides, and polymers in optical sensors based on
the phenomenon of surface plasmon resonance is analyzed (Figure 1).

The first part of the review summarizes the data on classical SPR sensors for detecting
gases and volatile organic vapors and their improved modifications, such as total internal
reflection ellipsometry (TIRE) and magneto-optical SPR (MOSPR) methods. The second
part is devoted to the application of phthalocyanines and porphyrins in sensors for the
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detection of various analytes in solutions. The third chapter of the review presents an
analysis of articles describing the latest advances in the use of porous materials based on
hybrids of carbon nanotubes with metal phthalocyanines, while two-dimensional metal-
organic frameworks (MOFs) based on metal porphyrin derivatives as SPR sensitizers are
described in the fourth chapter.

2. Phthalocyanine- and Porphyrin-Based Sensors for the Detection of Gases and Volatile
Organic Vapors

One of the important optical methods in which metal phthalocyanine films are used
as sensing layers is the method based on the phenomenon of surface plasmon resonance.
SPR is an extremely important method for studying interfacial binding processes. This
method is utilized both for the detection of various gases and VOC vapors [18] and for
the determination of biological and hazardous substances in solutions [19]. The classical
SPR technique [15,20] and two improved modifications of this method are most often
found in the literature. The last two modifications are the method of magneto-optical SPR
(MOSPR) [21] and total internal reflection ellipsometry (TIRE) [22,23]. Examples of the use
of these methods in which films of phthalocyanines and porphyrins, as well as their hybrid
materials, play the role of sensing layers for the determination of gases and volatile organic
vapors will be discussed in separate chapters below.

2.1. SPR Sensors

Surface plasmons are waves of variable electric charge density that can arise and
propagate in the electron plasma of a metal along its surface or along a thin metal film.
The resonant excitation of such oscillations by an electromagnetic wave in a thin layer of
conductive material placed between two media with different refractive indices is called
SPR [24]. SPR is a phenomenon of violation of the condition of total internal reflection in
which a significant part of the energy of the light incident on the surface of the metal film is
converted into the energy of plasmons, as a result of which the intensity of the light reflected
from the surface of the metal film drops sharply. SPR is observed under the condition of
total internal reflection and is characterized by a certain value of the refractive index of the
substance above the metal surface and the angle of reflection in the minimum of the SPR
spectrum. At a constant wavelength of the light source, the angle causing the SPR depends
on the refractive index (n) of the material near the surface of a metal film (typically Au, Ag,
Cu, or other plasmonic metals). As a result, any small change in n in the border region leads
to a change in the SPR conditions. Detection is accomplished by measuring the changes
in the reflected light obtained by a detector. This makes it possible to detect the analyzed
substances on the surface. The principles of the SPR method used for sensing applications
are described in a number of previous papers and book chapters [25,26]. Measurements
are usually carried out in the Kretschmann configuration (Figure 2) [27]. The excitation
of surface plasmons is achieved by focusing a p-polarized laser beam (λ = 633 nm) onto a
prism/sample system, and the SPR is observed as a minimum of reflection when the angle
of incidence of light changes, and the wavelength of light remains constant. SPR excitation
can also be achieved by using an optical waveguide (OWG) instead of a prism, which
is also known as waveguide-coupled SPR spectroscopy [28,29]. The values of refractive
index (n), absorption coefficient (k), and film thickness (d) are determined by processing
experimental data using the least squares minimization method of the modified Fresnel
equation [30,31].

To prepare active layers for SPR sensors, thin films of porphyrins and phthalocyanines
of various metals are deposited on a substrate covered with gold or silver. The properties
of phthalocyanines and porphyrins, including their solubility and sensitivity to various
assays, can be widely varied, both by changing a central metal and by introducing various
substituents into the aromatic ring. The method of film deposition is chosen depending
on the properties of the compounds. Films of porphyrins and phthalocyanines soluble in
organic solvents are deposited by spin coating [1], Langmuir–Blodgett (LB), and Langmuir–
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Schaefer (LS) [32–34] methods, while compounds that are volatile in a vacuum are deposited
by vacuum deposition methods, namely physical vapor deposition (PVD) or organic
molecular beam deposition (OMBD) [35,36].
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Below, it will be considered how the molecular structure of phthalocyanines and
porphyrins affects their sensitivity to various analytes. Figures 3 and 4 show the structure
and designation of phthalocyanines and porphyrins, which were used as active layers of
sensors based on the SPR phenomenon in the works described in this review.
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Films of unsubstituted phthalocyanines and MPcs with fluorine and chlorine sub-
stituents in macrorings are usually deposited by PVD because they have very bad solubility
in organic solvents but are sublime without decomposition in vacuum. There are several
examples in the literature where films of unsubstituted and fluorosubstituted phthalocya-
nines, deposited by PVD, are used for the detection of ammonia and nitrogen dioxide. In
our previous work [37], films of perfluorinated metal phthalocyanines MPcF16 (M = Cu(II),
Co(II), Zn(II), Ni(II)) were prepared by PVD to test their SPR response to gaseous NH3 in
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concentrations of 100 and 200 ppm (“parts per million”, when describing the concentration
of gases, 1 ppm is equal to 0.0001%). Figure 5 shows that the minimum in the SPR curve,
which is directly related to the thickness and dielectric constant of the CuPcF16 film, shifts
from 44.4◦ to 46.4◦ (Figure 5a) after the film exposure to NH3 (200 ppm). The analysis of
kinetic curves (Figure 5b) showed that the SPR response depended on the type of central
metal and increased in the order of NiPcF16 < CuPcF16 < CoPcF16 < ZnPcF16.
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Figure 5. (a) SPR curves for a substrate covered with Au (1), Au/as-deposited CuPcF16 film (2), and
Au/CuPcF16 exposed to 200 ppm NH3 (3). SPR response curves were recorded using the wavelength
of 633 nm (He–Ne laser) at a fixed angle of incidence of 44.2◦. (b) SPR response of MPcF16 (M = Ni,
Cu, Co, Zn) films toward gaseous NH3 (100 ppm and 200 ppm). (c) The change of refractive index
(n) of MPcF16 films after exposure to NH3 vapor vs. calculated relative electronic energies (∆E) (1,
blue); the frequency shift of the IR band corresponding to the inner ring breathing (at 955, 953, 947,
937 cm−1 for NiPcF16, CoPcF16, CuPcF16, and ZnPcF16, respectively) vs. calculated relative electronic
energies (2, red). Adapted with permission from [37]. Copyright 2016 Elsevier.
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Spadavecchia et al. [38] showed that the adsorption of NH3 molecules caused the
change in UV–vis absorption spectra of MPcF16 films and, as a consequence, the change of
k. Since n and k are connected through the Kramers–Kronig relations, the refractive index
(n) also changes [39]. The most noticeable changes of n (from 1.64 to 1.51) and k (from 0.26
to 0.20) upon exposure to NH3 were observed in the case of the ZnPcF16 film (Figure 5c). It
was found that the value of the sensor response correlated well with the binding energy
values obtained using DFT calculations as well as with the data from the IR spectroscopy
study. Interaction with ammonia led to a shift (by 5–6 cm−1) of the bands in the IR spectrum
of phthalocyanine films (Figure 5c), which were associated with deformation of the inner
ring, which apparently indicated the coordination of ammonia by the central atom.

Opilski et al. [40] studied nickel phthalocyanine (NiPc) layers with thicknesses from 10
to 85 nm, deposited by PVD, in the SPR sensors for NO2 (100 ppm) and demonstrated the
dependence of the SPR response on the films’ thickness. The maximal sensor response was
given by a 30 nm-thick layer deposited on a substrate cooled to −10 ◦C. The authors also
mentioned that no shift in the coupling angle was observed when gases such as H2O and
CO2 were introduced into contact with the phthalocyanine film. The authors concluded
that the films had high sensitivity to gaseous NO2, but they did not study any quantitative
characteristics of the sensors.

Another group of researchers [41,42] carried out quantitative investigations of the SPR
response of CoPc films to NO2. The films were deposited by PVD onto a glass slide covered
with silver. The limit of detection (LOD) was determined to be around 0.07 ppm.

For the detection of VOCs, phthalocyanines with additional ligands in the axial po-
sition or with long alkyl substituents in the aromatic ring are used because such groups
provide additional active centers of interaction with analyte molecules. Evyapan et al. [43]
studied the SPR response of films of chloroaluminium phthalocyanine (ClAlPc), fluoroalu-
minium phthalocyanine (FAlPc), and fluorochromium phthalocyanine (FCrPc) containing
halogen substituents in axial positions toward acetic acid, alcohols, and amines in the con-
centration range of 200–1000 ppm (Figure 6). Films of these phthalocyanines were prepared
by spin-coating their solution in trifluoroacetic acid. Table 1 summarizes the sensitivity and
LOD of the investigated sensors. All films were shown to exhibit the maximum sensitivity
to CH3OH and CH3COOH among the investigated vapors.

Figure 6. SPR sensor response of FAlPc spun films to various VOCs (1000 ppm) (inset: the response
to five different vapor concentrations). Reprinted with permission from [43]. Copyright 2016 Elsevier.
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Table 1. Sensing characteristics of MPc spun films. Reprinted with permission from [43]. Copyright
2016 Elsevier.

Analyte
Vapor

S (ppm−1) × 10−7/LOD (ppm)

ClAlPc FAlPc FCrPc

Acetic acid 1.30/46.2 1.21/49.6 1.05/57.1

Methanol 1.01/59.4 0.99/60.4 0.85/70.5

Ethanol 0.88/67.5 0.74/80.5 0.65/91.7

Butanol 0.70/85.1 0.69/86.5 0.58/103.4

Methylamine 0.67/89.6 0.66/90.4 0.47/126.8

Dimethylamine 0.55/108.9 0.63/94.9 0.46/128.5

Trimethylamine 0.41/145.6 0.54/110.7 0.35/170.5
S is the sensitivity, determined as the change in reflected light intensity per concentration.

The penetration of analyte vapors into the film leads to its swelling, which causes
both a change in the thickness of the film and its optical parameters. The authors analyzed
the order of the sensor response from the point of view of the diffusion coefficient of
analyte vapors during the films’ swelling process. It was shown that the diffusion rate
was influenced by both the size of the analyte molecule and the functional groups in the
phthalocyanine molecule. Smaller analyte molecules can more easily penetrate the film.
The diffusion coefficients of C2H5OH and C4C9OH are lower than those of CH3COOH
and CH3OH. Although the size of the CH3COOH molecule is slightly larger than that of
CH3OH, the response to CH3COOH is higher than to other investigated VOCs. According
to the authors, this may be due to the better ability of -COOH groups to form hydrogen
bonds with Cl and F substituents in the axial positions of the phthalocyanines.

Another way to increase the sensitivity of VOCs is through the introduction of sub-
stituents with various functional groups. For example, films of CuPc3b were shown to
have a good SPR response to benzene and chloroform vapors [44].

It was shown using the theoretical fitting of experimental SPR curves (Figure 7a) to
Fresnel’s equation in a modified form (Equation (1)) [30] that the exposure of CuPc3b
films with benzene led to a change in their thickness from 10.39 nm to 11.45 nm and their
refractive indexes from 1.6 to 1.58.

∆θ =
(2π/λ)(|εm|εi)

3/2 d

np cosθ(|εm| − εi)
2ε
(ε − εi) (1)

where ∆θ is the SPR shift, d and ε are the thickness and complex dielectric constant of the
phthalocyanine layer, respectively, |εm| is the modulus of the real part of the dielectric
constant of gold film, and εi is the dielectric constant of air. The exposure of CuPc3b films to
chloroform led to an increase in film thickness to 11.68 nm and a decrease in the refractive
index to 1.56. Thus, CuPc3b films demonstrated a higher SPR response to chloroform than
to benzene vapors (Figure 7b).

Çapan and Ilhan [45] studied the SPR response of LB thin films of metal-free 2,3,9,10,16,
17,23,24-octakis(octyloxy)-29H,31H phthalocyanine (H2Pc3c) and its zinc (ZnPc3c) and
copper (CuPc3c) complexes mixed with stearic acid (SA) to VOCs and compared it with
the same Quartz Crystal Microbalance (QCM) sensors. The LB technique allowed the
depositing of ordered homogeneous nanoscale thin films of these phthalocyanines. LB-
film technology makes it possible to transfer Pc from the water-air interface to a solid
substrate and, at the same time, obtain ordered homogeneous nanoscale films, controlling
their molecular architecture during deposition. Several groups of VOCs were tested as
analytes, among them aromatic hydrocarbons (benzene and toluene), alcohols (methanol
and ethanol), and chlorinated hydrocarbons (CHCl3, CH2Cl2, and CCl4). It was shown that
the response to saturated vapors of chlorinated hydrocarbons was noticeably higher than
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that to alcohols and aromatic hydrocarbons (Table 2). The authors explained the interaction
of these gases with phthalocyanine as a physical absorption through a dipole/dipole
interaction or the formation of hydrogen bonds.
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Table 2. Response of LB thin films in terms of the change in reflected light intensity after exposure to
saturated vapors of VOCs. Prepared using the data from Ref. [45].

H2Pc3c/SA ZnPc3c/SA CuPc3c/SA

Benzene 223 259 57

Toluene 111 75 32

Methanol 178 96 33

Ethanol 93 175 26

CHCl3 384 210 103

CCl4 135 92 47

CH2Cl2 762 269 221

Langmuir–Blodgett films containing 2–10 layers of ZnPc1d were tested as active layers
of SPR sensors for detecting dichloromethane, CCl4, toluene, and m-xylene [46]. It was
shown that the films of ZnPc1d also demonstrated a higher response to dichloromethane.

In another work [47], the same group of authors used ZnPc5 (Figure 3) bearing crown
ether moieties, which are capable of host–guest interaction. Films consisting of 8, 12, 16, and
20 monolayers of ZnPc5 were produced by an LB method on gold-coated glass slides and
tested as a sensing layer for the determination of chloroform. It was shown that the films
consisting of 20 monolayers exhibited a higher sensor response to CHCl3, with response
and recovery times of 2 and 6 s (Figure 8). The LOD and sensitivity were 3.76 ppm and
0.797 × 10−3 ppm−1, respectively. The same compound was also tested in SPR sensing of
acetone, methanol, ethanol, and isopropanol (at saturated concentrations) [48]. It was found
that among the investigated analytes, the highest SPR response was observed for acetone,
which has the largest dipole moment and diffusion coefficient, which was estimated in
this work.

The influence of the substituent type on the SPR response of spun films of NiPc3 bear-
ing R = –S(CH2)11CH3 (NiPc3e), –SCH(CH2OC12H25)2 (NiPc3f), and –S(CH2CH2O)3CH3
(NiPc3g) to chloroform and benzene vapors was studied in the work of our research
group [49]. It was shown that the SPR response to chloroform was dependent on the type
of substituent and increased in the order of NiPc3e < NiPc3f < NiPc3g, while the type of
substituents did not affect the response to benzene vapors. The interaction of films with
organic vapors led to a change in both their thickness and optical parameters. For example,
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a maximal change in thickness by 8.9% and refractive index by 2.1% was observed when
a film of NiPc3g with R = –S(CH2CH2O)3CH3 was exposed to chloroform. The nature of
the interaction between the films and gaseous analytes was studied by means of Raman
spectroscopy. It was concluded that CHCl3 interacted with substituents in NiPc3e g because
the changes of C-H vibrations typical for the formation of hydrogen bonds C-H· · ·Cl with
CHCl3 molecules were observed in the Raman spectra of the films in the presence of CHCl3.
In the Raman spectra of NiPc3e g films recorded in benzene vapors, the most prominent
changes were observed in the range of vibrations of aromatic macrorings, which was an
indication of π–π interaction between the phthalocyanine and benzene aromatic rings.
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Another group of researchers [50] also studied the effect of the substituents in the ring
of CuPc4h and CuPc3c on the SPR response to chloroform, dichloromethane, and toluene
vapors. The role of the expanded aromatic system was also considered using the copper
naphthalocyanine derivative CuPc6c (Figure 3) as an example. Thin films of these CuPc
derivatives were deposited by a spin-coating technique. The sensor response was expressed
as R = ∆I/Io × 100%, where ∆I is the difference between the reflected light intensity values
at the steady state (I) and the unexposed CuPc film (Io). The concentration of investigated
VOCs varied from 20% to 100% saturated vapor pressure. It was shown that the CuPc films
demonstrated the maximal response at a thickness of 60–90 nm, which can be achieved
when depositing at a rotation speed of 250 rpm. The sensor response was decreased in the
order of CuPc6c > CuPc3c > CuPc4h, that is, the expansion of the aromatic ring and an
increase in the alkyl substituent length led to an increase in the SPR response.

Substituted porphyrin derivatives were also shown to be used for the detection of VOCs.
Evyapan et al. [51] used the SPR method for the detection of acetic acid and methylamine
using Langmuir–Schaefer films of 5,10,15,20-tetrakis-[3,4-bis(2-ethylhexyloxy)phenyl]-21H,
23H-porphine (Por2, Figure 4) deposited onto 40 nm gold-coated glass substrates as active
layers. The dependence of the sensor response to the vapors of acetic acid (855 ppm) and
methylamine (900 ppm) on the number of layers was investigated (Table 3).

The adsorption of gaseous analytes caused the films’ swelling and, as a result, an
increase in their thickness. The films’ sensitivities and LOD calculated as 3σ/S are also
given in Table 3. All films demonstrated a better sensor response to acetic acid than to
methylamine. The minimal detection limit was observed for the thicker film containing
10 layers.

Çapan and Özkaya [52] compared the SPR response of spun films of 2,3,7,8,12,13,17,18-
Octaethyl-21H, 23H-porphine (Por3, Figure 4) and 2,3,7,8,12,13,17,18-Octaethyl-21H, 23H-
porphine zinc(II) porphyrins (ZnPor3) to saturated vapor of chloroform and acetone. It
was shown that metal-free porphine demonstrated a higher response to both chloroform
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and acetone compared to that of ZnPor3. The authors explained this result by the reduced
π-stacked aggregation of the molecules in ZnPor films. A comparative study of the Por3
films obtained by spin coating and Langmuir–Blodgett methods showed that the SPR
response to chloroform, benzene, toluene, and methanol was higher in the case of LB films
exhibiting larger surface areas [53].

Table 3. SPR analysis of thin films of Por2. Adapted with permission from [51]. Copyright
2018 Elsevier.

4 Layers 6 Layers 8 Layers 10 Layers

Thickness of LS
films (Å) 66 151 238 314

Analyte
vapors Acetic acid Methyl-

amine Acetic acid Methyl-
amine Acetic acid Methyl-

amine
Acetic
acid

Methyl-
amine

Swelling time (s) 147 388 214 480 285 483 334 654

SPR shift after
exposure (∆θ◦) 0.35 0.15 0.95 0.30 1.00 0.55 1.95 0.70

Thickness change
after exposure (Å)

~15 ~7 ~39 ~12 ~41 ~18 ~81 ~24

S (ppm−1) × 10−7 1.50 0.55 3.18 1.50 5.52 2.76 9.82 4.38

LOD (ppm) 40.08 108.00 18.86 40.00 10.87 21.77 6.11 13.71

Çapan [54] compared the SPR sensor response of LB thin films of zinc porphyrin (Por4,
Figure 4) to benzene and ethyl benzene, toluene, and xylene. It was shown that the films
demonstrated a higher sensitivity to benzene due to its higher volatility, a lower molar
volume, and a relatively high viscosity parameter, which, according to the authors’ opinion,
led to easier penetration of benzene molecules into the sensing layer.

2.2. MOSPR Sensors

Manera et al. [21,55,56] suggested an original method of magneto-optical SPR (MO-
SPR), which was based on the combination of magneto-optical effects and SPR excited
in multilayer structures of noble (Au or Ag) and ferromagnetic metals (e.g., Co or Fe)
(Figure 9). The applicability of this method to control changes in the refractive index at the
metal–dielectric interface has been demonstrated.
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This MOSPR technique was based on a magneto-plasmonic (MP) modulation pro-
duced in multilayers of noble and ferromagnetic metals. The combination of these metals
led to a noticeable enhancement of the MO Kerr effects of p-polarized light when the SPR
condition was met. Such enhancement significantly depends on the excitation conditions
and, therefore, on the refractive index of the dielectric, which is in contact with the metal
layer. In a traditional SPR sensor, the metal layer (Ag or Au) acts as the transducing layer,
while in the MOSPR technique, this role is played by a magneto-plasmonic multilayer
structure consisting of noble metal and ferromagnetic layers of suitable thickness. The
MOSPR sensor signal is determined as the relative variation in the reflected p-polarized
light, defined as ∆R = R(+M) − R(−M), where R (±M) is the reflectance of the p-polarized
light with the sample magnetically saturated along the direction of the applied magnetic
field. For the measurements of magneto-optical activity upon plasmon excitation, an elec-
tromagnet was installed in a transversal configuration, which changes the magnetization of
the Co layer between its saturation states. The principles of this method were described
in detail by Gonzalez-Diaz et al. [57]. The MOSPR technique allowed the researchers to
draw some conclusions about changes in the optical anisotropy of the investigated sensing
layers, which was important not only to investigate the sensor response but also to find
correlations between optical and structural properties.

The authors of [21,58] used this technique for monitoring optical and morphologi-
cal changes in the LS layers of Zn(II) and Co(II) porphyrins upon their interaction with
VOCs and amines. Films of ethane-bridged zinc bis-porphyrin (ZnPP with R = -CH2CH3,
Figure 10) were deposited by the horizontal lifting or LS technique onto magnetoplas-
monic substrates. The prepared films were exposed to nitrogen-containing analytes, viz.
n-butylamine and aniline vapors as well as NH3 gas in dry air. The response of similar
ethane-bridged bis-porphyrin of Co(II) to methanol, ethanol, and isopropanol using the
same method was studied in another work by the same group of authors [59]. The investi-
gated dimeric porphyrins incline toward a conformational change when interacting with
the analytes (Figure 10) [60].
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SPR and magneto-optical curves of ZnPP films on an Au/Co/Au multilayer before
and during interaction with aniline vapors are shown in Figure 11.
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The adsorption of amines on the surface of the ZnPP layer led to a change in its optical
properties and the plasmon wave vector, which, in turn, translated into the angular shift of
both the SPR and MOSPR curves.

The same group of authors [56] also used the layers of the ZnPP derivative to compare
their SPR and MOSPR sensor responses to n-butylamine and di-butylamine vapors. SPR
and MOSPR sensor responses to di-butylamine were higher than those to n-butylamine, the
response and recovery times were also shorter in the case of the secondary amine (Table 4).
The better sensitivity to the secondary amine was explained by their electron-donating
power and, as a consequence, by the increase in the bond strength of di-butylamine with
the active site of the porphyrin films.

Table 4. Comparison of gas sensing parameters of the sensors based on ZnPP investigated by SPR
and MOSPR techniques. Adapted with permission from [55]. Copyright 2013 Elsevier.

Technique Analyte Sensitivity
(ppm−1) LOD (ppm) tresp (min) trec (min)

SPR
n-butylamine 2.32 × 10−6 14,200 10 8

di-butylamine 4.32 × 10−5 760 3 6

MOSPR
n-butylamine 5.23 × 10−6 5100 12 9.7

di-butylamine 4.31 × 10−4 60 3 7.5

The MOSPR method allowed recording the higher signal-to-noise ratio sensorgram
and, as a result, provided better characteristics, such as sensitivity, signal-to-noise ratio,
and LOD, than the traditional SPR. For instance, the LOD of di-butylamine was 60 ppm in
the case of the MO-SPR method, whereas it was 760 ppm in the case of SPR.

The same group of authors [58] compared the MOSPR sensor response of CoPP
(Figure 10) and bisphthalocyanine of terbium Tb(Pc(OC11H21)4)2. To prepare a MOSPR
sensor for the detection of n-butylamine, their films were deposited by the LS method onto
Au/Co/Au magneto-optical transducers. It was found that, like CoPP, Tb(Pc(OC11H21)4)2
films demonstrated a good MOSPR response to n-butylamine. The sensitivity of the
MOSPR sensor depended on the overlap between the plasmonic probe energy and the
electronic absorption transitions of the studied complexes. Sensitivity to the detected
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n-butylamine increased when the propagating plasmonic energy was in resonance with the
HOMO–LUMO transitions of the investigated macrocyclic derivatives.

2.3. TIRE Sensors

Another optical technique that is based on the SPR phenomenon is Total Internal
Reflection Ellipsometry (TIRE). This technique combines ellipsometry in total internal
reflection mode and the SPR phenomenon [61–64]. This technique can be realized as an
extension to the commercial spectroscopic ellipsometer (Figure 12a, elements 1–5) and is
comprised of a 45◦ prism and gold-coated glass slide, which were brought into optical
contact via index matching fluid. The experimental flow cell was attached to the slide with
a deposited active layer [44].
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Unlike SPR, which measures the p-polarized light intensity, the TIRE method gives the
spectra of two ellipsometric parameters, Ψ and ∆. The spectra of Ψ, representing the ratio
of the amplitudes of polarized light (tn(Ψ) = Ap/As), are very similar to the SPR curves.
While the spectra of ∆, representing the phase shift between p and s components (∆ = φp
− φs), look like a sharp (almost vertical) drop of the phase from 2700 to −900 near the
plasmon resonance (Figure 12b). For this reason, the TIRE method demonstrates better
sensitivity than the SPR one.

As in the SPR technique, films of metal phthalocyanine with long alkyl substituents are
used as active layers. For example, films of CuPc3b with bulky substituents
(R = –N(SO2C6H5–CH3)CH2(CH2)8CH3 spun onto a gold-coated slide were tested in
the sensor layer for the detection of benzene and chloroform [44]. Ψ and ∆ spectra of
CuPc3b films and the same films after exposure to these analytes are shown in Figure 13.
The larger change of the film thickness (difference of 0.39 nm) and the higher ∆ shift (from
530.1 to 525.3 nm) in the case of CHCl3 compared to those in the case of benzene exposure
(from 525.3 to 523.7 nm) testified to the higher sensitivity of the CuPc3b films to CHCl3.

A more detailed study of the performance of TIRE sensors was carried out in our work
using films of octa-substituted zinc phthalocyanines bearing nonfluorinated (ZnPc3i) and
fluorinated (ZnPc3j) n-propanol substituents in peripheral positions as optical membranes
to determine trimethylamine vapor (10–300 ppm) [65]. Exposure to 100 ppm N(CH3)3
led to a noticeable ∆ shift (Figure 14a,b), which was the result of a change in the optical
parameters (n and k) (Figure 14c,d). The ∆ shift was much smaller in the case of ZnPc3i films,
which indicated their lower sensitivity to the investigated amine. The LOD of N(CH3)3 was
calculated to be 20 ppm in the case of ZnPc3j film. A higher value of the binding energy
between ZnPc3j and N(CH3)3 molecules (−1.151 eV) compared to that between ZnPc3i
and N(CH3)3 (−1.093 eV), obtained as a result of DFT calculations, correlated well with the
higher sensor response of ZnPc3j to N(CH3)3.
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try (Figure 10), depending on the chemical medium, changing the electronic absorption 
spectra [70–72]. Bettini et al. [60] tested LS films of bis-porphyrin compounds described 
above (Figure 10) with different central metals (Ni and Cu) as active layers of SPR sensors 
for the detection of histidine in water solutions. It was shown that the molecules in ag-
gregated species of LS films were mostly in the syn-form (Figure 10), whereas in the his-
tidine media, the molecules underwent the conformational switch into the anti-form. This 
was reflected in the bathochromic shift of the Q-band by 15 nm in the case of CuPP and 
the hypsochromic shift by 5 nm in the case of NiPP. The corresponding shifts of the SPR 
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Figure 14. ψ(λ) and ∆(λ) TIRE spectra: (a) ZnPc3i in air (curve 1); after injection of trimethylamine
200, 250, and 300 ppm (curves 2, 3, and 4, respectively); after flushing with air (curve 5); (b) ZnPc3j in
air (curve 1); after injection of trimethylamine 20, 60, 100, 250, and 300 ppm (curves 2–6, respectively);
after flushing with air (curve 7). Enlarged sections of the ∆(λ) spectra are shown at the top. Variation
in the refractive index (n) and extinction coefficient (k) of (c) ZnPc3i and (d) ZnPc3j films exposed to
air (solid lines, 1) and trimethylamine (dotted lines, 2) at a concentration of 100 ppm. Reprinted with
permission from [65]. Copyright 2015, Elsevier.
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3. Phthalocyanine- and Porphyrin-Based SPR Sensors for the Detection of Analytes
in Solutions

Sensors based on the SPR phenomenon can be used not only for the detection of
gaseous analytes but also for the determination of various compounds in solutions [66–69].
There are several examples of the application of porphyrin and phthalocyanine-based SPR
sensors in the literature.

Among porphyrins, bisporphyrins with an ethane bridge are of great interest due to
their ability to change conformations from syn- to anti-form or to a tweezer-type geome-
try (Figure 10), depending on the chemical medium, changing the electronic absorption
spectra [70–72]. Bettini et al. [60] tested LS films of bis-porphyrin compounds described
above (Figure 10) with different central metals (Ni and Cu) as active layers of SPR sen-
sors for the detection of histidine in water solutions. It was shown that the molecules in
aggregated species of LS films were mostly in the syn-form (Figure 10), whereas in the
histidine media, the molecules underwent the conformational switch into the anti-form.
This was reflected in the bathochromic shift of the Q-band by 15 nm in the case of CuPP
and the hypsochromic shift by 5 nm in the case of NiPP. The corresponding shifts of the
SPR curves are shown in Figure 15. NiPP films were sensitive to histidine in the concentra-
tion range from 10−4 to 10−6 M, while CuPP films demonstrated the capability to detect
histidine down to nanomolar concentration. The authors associated these different effects
produced by histidine on NiPP and CuPP with the different spatial architectures of these
metalloporphyrins, namely the predominant planar structure of the CuPP complex and
the tetrahedral distorted structure of NiPP. It was also shown that the films of the CuPP
complex can be used for the detection of histidine in the presence of arginine.
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Thin films of another bisporphyrin (Figure 10, M1 = 2H, M2 = Cu) were deposited
by the LS technique using pure water as a subphase to test them as active layers in SPR
sensors to detect aniline at low concentrations up to 1 nM in aqueous solution [73]. It was
found that in order to induce the syn-to-anti conformational change in this bisporphyrine,
the simultaneous presence of an amino group and an aromatic ring in the analyte molecule
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was necessary. The films showed no optical response to either aliphatic amines or phenols,
which indicated a cooperative effect of the amine and aromatic groups. At the same time,
the films were sensitive to α-methylbenzylamine and N-methylphenethylamine, but the
SPR response to these analytes was less than to anyline.

The combination of SPR with other physical methods, e.g., spectroscopy, electrochem-
istry, chromatography, and mass spectrometry, makes this method more powerful [74]. For
example, SPR combined with electrochemistry is used for simultaneous monitoring of the
change in electrochemical parameters and refractive index of the active surface in order to
study various reactions at the interface [75].

Munoz et al. [76] employed SPR in combination with cyclic voltammetry to study the
electrochemical oxidation of acetaminophen, dopamine, and catechol. For this purpose,
they deposited a Zn(II) porphyrin derivative bearing electrochemically active substituents
(Por5, Figure 4) on the gold surface. Simultaneous variation of the SPR angle and cyclic
voltammetry recording made it possible to register changes in the electronic states of
adsorbed molecules. A graph of the dependence of the SPR reflection angle on the applied
potential at a Por5/Au interface in a pure electrolyte and in the presence of analytes is
shown in Figure 16. It can be seen that the SPR signal increases in the presence of catechol
and dopamine, indicating that they interact more effectively with the film by changing the
electron density at the Por5/Au interface. The authors explained this by the π-π interaction
of the aromatic ring of these phenolic derivatives with the porphyrin macrocycle. Such an
interaction may be sufficient to slow down the diffusion of electroactive molecules from
the electrode surface and reduce them to sufficient cathode potentials. In addition, the
electrocatalytic reaction can have an effect on the molecular interface.
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Figure 16. Dependence of the SPR reflection angle on the applied potential at a Por5/Au interface in
pure 0.1 M NaClO4 electrolyte solution (dashed line) and in the presence of 100 M (solid lines) of
(A) catechol, (B) dopamine, (C) acetaminophen, and (D) ferrocyanide. Reprinted with permission
from [76]. Copyright 2009, Elsevier.

In addition to toxins and hazardous substances, porphyrin films are also used to detect
biomolecules and bacteria and to study interactions with peptides and DNA [77,78]. For
example, Perenon et al. [79] studied the interaction of N-methyl mesoporphyrin IX (Por6,
Figure 4) with DNA by SPR. It was shown that N-methyl mesoporphyrin IX interacts
more strongly with a parallel G4 structure than with an antiparallel one. Zangenehzadeh
et al. [80] demonstrated the performance of self-assembled monolayers (SAMs) of meso-
pyridyl porphyrin, 5-(4-(2-(4-(S-acetylthiomethyl)phenyl)ethynyl)phenyl)-10,15,20-tris(4-
pyridyl)porphyrin on a gold substrate to capture Escherichia coli (E. coli) bacteria and studied
the stability and repeatability of their SPR response.
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4. Hybrid Materials of Phthalocyanines and Porphyrins with Carbon Nanotubes and
Other Porous Media

One of the most widely used approaches to increasing the sensitivity of sensors is the
preparation of active layers with a porous structure. In this connection, hybrid materials
of metal phthalocyanines with carbon nanomaterials [6,81], oxides [82,83], polymeric
membranes [84], and silica matrix [85] are very promising due to their high surface area-to-
volume ratio. Some of them were successfully used in SPR sensors.

Hybrids of metal phthalocyanines and porphyrins with such carbon nanomaterials as
carbon nanotubes, nanohorns, graphite, graphene, and their derivatives are widely used in
various chemical sensors, especially resistive and electrochemical ones [6,86–88]. To obtain
hybrid materials, nanocarbon materials are modified with phthalocyanines and porphyrins
by both covalent and non-covalent functionalization [81].

There are not many works on the use of hybrid materials with nanotubes modified with
polyaromatic molecules in SPR sensors in the literature, but their analysis shows that these
materials exhibit good sensor performance and can be successfully used for the analysis of
both gaseous analytes and for the determination of various substances in solutions. For
example, a quite interesting result was obtained by Banimuslem et al. [89]. The researchers
used hybrid materials of single-walled carbon nanotubes (SWCNT) functionalized with
phthalocyanines bearing long alkyl substituents as active layers of TIRE sensors. The TIRE
response was compared with the layers of CuPc/SWCNT with R = -O(CH2CH2O)3CH3
or -S(CH2CH2O)3CH3 introduced in different positions of the phthalocyanine ring, viz.
peripheral (CuPc1g, CuPc1k) and non-peripheral (CuPc2g, CuPc2k) (Figure 3). The sen-
sitivity of the layers of these four types of hybrids to methylamine, dimethylamine, and
trimethylamine is compared with that of the films of the corresponding CuPc derivatives
in Figure 17. It can be seen that the sensitivity of the hybrids turned out to be higher
than the sensitivity of the initial copper phthalocyanines (Figure 17). The minimal LOD of
methylamine, dimethylamine, and trimethylamine (3.6, 4.4, and 6.4 ppm, respectively) was
found for the layer of SWCNT/CuPc1k hybrid with R = -O(CH2CH2O)3CH3 in peripheral
positions. The response time was no more than 136 s for such types of sensors, while the
recovery time varied from 150 to 191 s. The lower sensitivity to secondary and tertiary
amines compared to methylamine was explained by that the steric hindrance led to a
smaller number of amine molecules interacting with the active film surface.
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Figure 17. Sensitivity of Cu(II) phthalocyanines and their hybrids with SWCNT active layers for
methylamine, dimethylamine, and trimethylamine. Sensitivity (S) was evaluated using the equation
S = 1

∆o

1
m ∑m

i=1
∂∆
Ci

, where δ∆ is the change in the ∆ spectra under analyte concentration (Ci), m is
the number of different concentrations used in the study, and ∆◦ is the initial change in the phase
shift spectra (before exposure to amine vapors). Reprinted with permission from [89]. Copyright
2015, Elsevier.
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Hybrid materials of phthalocyanine derivatives with carbon nanotubes were also used
for the detection of hazardous substances in water media. If carbon nanotubes themselves
do not give a sensor response when examined by the SPR method, then their hybrid
materials with phthalocyanines exhibit a significant SPR sensor response when interacting
with analytes, which is even higher than the response of films of those phthalocyanines
that are used to modify the nanotubes. For example, the phthalocyanine CuPc2g (Figure 3)
and its hybrid with acid-treated SWCNT were used for the detection of benzo[a]pyrene
in water [90,91]. For this purpose, the films were drop-casted onto the slide covered with
gold and then dipped into pure water or a water solution of benzo[a]pyrene (6.2 µg/L)
to demonstrate the changes of ψ(λ) and ∆(λ) TIRE spectra. The response of the layer of
the hybrid material was found to be two times larger than in the case of CuPc2g films
(Figure 18). The higher sensitivity of the hybrid film to benzo[a]pyrene is apparently due
to the large number of adsorption sites available for the analyte molecules on the surface of
the SWCNT/CuPc2g layer, which is associated with a large surface area-to-volume ratio
compared with the CuPc2g film.
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layers of SPR sensors. Zhu et al. [94] developed a nanonetwork of pyridinium porphy-
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Figure 18. ∆(λ) TIRE spectra of a CuPc2g film in water (dashed line), after injection of benzo[a]pyrene
saturated solution (dotted line), and a layer of CuPc2g/SWCNT hybrid in water (solid line), after
injection of benzo[a]pyrene saturated solution (dashed-dotted line).

A similar increase in the sensor response of hybrid layers compared to pure phthalo-
cyanine films was also observed when investigating the TIRE sensors toward pesticides
(pentachlorophenol (PCP), 2-chlorophenol (2CP), diuron, and simazine) in water [92,93].
The hybrids were prepared by non-covalent functionalization of acid-treated SWCNT with
CuPc1l bearing R = −S(CH2)15CH3. The pesticides were examined in concentration ranges
from 0.5 to 25 µg/L. The phase shift ∆(λ) of SWCNT/CuPc1l layers and sensitivity were
1.2–2 times larger than those of pristine CuPc1l films (Figure 19); the layers were completely
recovered after washing the cell with clean water. The limits of detection of PCP, 2CP,
diuron, and simazine were found to be 0.69, 0.44, 0.75, and 1.34 µg/L, respectively.
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The interactions leading to the phase shift were both due to interactions between the
aromatic rings of CuPc derivatives and pesticide molecules and van der Waals interactions
between substituents in the phthalocyanine ring and chlorine atoms of pesticides. The
higher sensitivity of CuPc films to pentachlorophenol than to other pesticides seems to be
due to the greater number of Cl atoms in the PCP molecule.

In addition to hybrid materials with carbon nanotubes, composite materials of por-
phyrins and phthalocyanines with metal nanoparticles are also used to produce active
layers of SPR sensors. Zhu et al. [94] developed a nanonetwork of pyridinium porphyrin-
mediated calix [4]arene-functionalized AuNP composites (Apt/PyP-pSC4-AuNPs) for the
creation of ultrasensitive SPR sensors for the detection of B-type natriuretic peptide (BNP).
To prepare the nanonetwork, AuNPs modified with para-Sulfonatocalix [4]arene pSC4
were incubated with pyridinium porphyrin and then mixed with BNP-specific aptamers.
The prepared sensing platform, based on the bionanonetworks, induced localized SPR
and a large refractive index for different concentrations of BNP. The linear concentration
range was from 1 to 10,000 pg/mL (R2 = 0.9852), while the LOD was 0.3 pg/mL. The
detection recovery was in the range of 92.13 to 108.69%. It was shown that the response to
BNP was much higher than to bovine hemoglobin, ascorbic acid, ovalbumin, and bovine
serum albumin.

Porous, fibrous membranes can also be prepared with polymers. Y.-Y. Lv and col-
leagues [95] studied films of composites of a zinc porphyrin covalently bound with poly-
imide, as shown in Figure 20a.
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Figure 20. (a) Scheme of a composite based on a zinc porphyrin covalently bound with polyimide.
(b) SPR response induced by the porphyrinated nanofibrous membrane (solid line) and dense film
(dashed line) deposited on SPR chips when exposed to TNT solution with different concentrations.
The average densities of the porphyrinated nanofibrous membrane and dense film coated on SPR
chips are 2.17 µg cm−2 and 6.98 µg cm−2, respectively. Reprinted with permission from [95]. Copy-
right 2013 Elsevier.

To prepare sensing layers for the detection of 2,4,6-trinitrotoluene (TNT) in water, the
resulting polymer was deposited using electrospinning [96] and standard spin coating
techniques. The effect of the deposition technique on the sensor response was investigated.
It was shown that the films obtained as a result of electrospinning deposition were porous
nanofibrous membranes, while spun films had dense structures. Due to the large surface
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area-to-volume ratio, the electrospun films demonstrated a better sensor response to TNT
and were sensitive to its low concentration up to 5 ppb (Figure 20b). At the same time, the
spun films exhibited only a neglectable signal at this concentration.

Composite materials with titanium and silicon oxides are also prepared to increase
the surface area of the sensor layers. For example, Rella et al. [97] used a hybrid structure
of TiO2 with MPc1a (M = Fe, Pd, Cu) (Figure 3) to determine NO2. TiO2/MPc1a thin films
were prepared by a sol-gel method with subsequent annealing at 80 ◦C to carry out SPR
studies in angular modulation of the response toward NO2. The measurements of the
variation in the reflectivity close to the resonance angle were performed using 20–50 ppm of
NO2 gas in a controlled atmosphere (Figure 21). The authors demonstrated the applicability
of the prepared hybrid films for the SPR detection of NO2 but did not carry out detailed
investigations of the sensor performance.

Chemosensors 2024, 12, x FOR PEER REVIEW 21 of 33 
 

 

plicability of the prepared hybrid films for the SPR detection of NO2 but did not carry out 
detailed investigations of the sensor performance. 

 
Figure 21. (a) SPR curves of a TiO2/FePc1a layer in the presence of dry air flux and in ambient air 
containing 20 ppm NO2 gas. (b) Dynamic response measured in the presence of different concen-
trations of NO2 gas for a sol-gel TiO2/PdPc1a film. Reprinted with permission from [97]. Copyright 
2002, Elsevier. 

Berrier et al. [98] reported on a manner of sensing NO2 (290–6000 ppb) by SPR using 
a layer of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine (Por1, Figure 4) em-
bedded in a nanoporous silica matrix (NPS), which was then deposited on an Au film. 
The authors compared the sensitivity of four different samples to NO2: (1) a Por1 layer (10 
nm), (2) a layer of Por1 embedded in the NPS matrix (65 nm), (3) a thicker layer of Por1 
embedded in the NPS matrix (130 nm), and (4) a layer of Por1 embedded in the ethyl-
cellulose (EC) matrix (65 nm). The results of the investigation of the sensing behavior of 
the prepared samples by the methods of attenuated total internal reflection (ATR) in the 
Kretschmann configuration in comparison with the specular reflectance (Refl) measure-
ments are summarized in Table 5. It was shown that the change in reflectance (ΔR) of the 
film containing only Por1 was very weak, while in the case of 65 nm thick Por1 films 
embedded in NPS, ΔR was 17% after the interaction with 700 ppb of NO2 and 3% after the 
interaction with 350 ppb of NO2. An increase in the film thickness to 130 nm led to an 
increase in ΔR to 14%. ΔR of Por1 embedded in the polymeric matrix was 700 ppb, and 
NO2 was only 2%. It means that due to the high porosity, the nanoporous silica as an 
embedding matrix leads to an increase in sensor sensitivity to NO2 compared to a low 
porous polymer matrix. 

Table 5. Comparison of the reflectance changes as a function of the experimental conditions of the 
sample thickness, matrix, presence of porphyrin molecules, gas concentration, and optical method. 
Adapted with permission from [98]. Copyright 2011, Elsevier. 

Sample Layer Thickness 
(nm) 

Matrix NO2 (ppb) Optical Method ΔR (%) 

(1) Por1 layer  10 None 6000 ATR 1.5 
(2) Por1 in NPS 65 NPS 700 ATR 17 
(2) Por1 in NPS 65 NPS 700 Refl 8 
(2) Por1 in NPS 65 NPS 350 ATR 3 
(3) Por1 in EC 130 NPS 350 ATR 14 
(4) Por1 in EC 65 EC 700 Refl 2 

NPS—nanoporous silica matrix; EC—ethylcellulose; Refl—reflectance; ATR—attenuated total re-
flectance; ΔR—variation of reflectance at a wavelength of 680 nm and at the angle corresponding to 
the minimum reflectance of the unexposed sample.  

Figure 21. (a) SPR curves of a TiO2/FePc1a layer in the presence of dry air flux and in ambient
air containing 20 ppm NO2 gas. (b) Dynamic response measured in the presence of different
concentrations of NO2 gas for a sol-gel TiO2/PdPc1a film. Reprinted with permission from [97].
Copyright 2002, Elsevier.

Berrier et al. [98] reported on a manner of sensing NO2 (290–6000 ppb) by SPR using a
layer of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine (Por1, Figure 4) embedded
in a nanoporous silica matrix (NPS), which was then deposited on an Au film. The authors
compared the sensitivity of four different samples to NO2: (1) a Por1 layer (10 nm), (2) a
layer of Por1 embedded in the NPS matrix (65 nm), (3) a thicker layer of Por1 embedded in
the NPS matrix (130 nm), and (4) a layer of Por1 embedded in the ethylcellulose (EC) matrix
(65 nm). The results of the investigation of the sensing behavior of the prepared samples by
the methods of attenuated total internal reflection (ATR) in the Kretschmann configuration
in comparison with the specular reflectance (Refl) measurements are summarized in Table 5.
It was shown that the change in reflectance (∆R) of the film containing only Por1 was very
weak, while in the case of 65 nm thick Por1 films embedded in NPS, ∆R was 17% after
the interaction with 700 ppb of NO2 and 3% after the interaction with 350 ppb of NO2.
An increase in the film thickness to 130 nm led to an increase in ∆R to 14%. ∆R of Por1
embedded in the polymeric matrix was 700 ppb, and NO2 was only 2%. It means that due
to the high porosity, the nanoporous silica as an embedding matrix leads to an increase in
sensor sensitivity to NO2 compared to a low porous polymer matrix.
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Table 5. Comparison of the reflectance changes as a function of the experimental conditions of the
sample thickness, matrix, presence of porphyrin molecules, gas concentration, and optical method.
Adapted with permission from [98]. Copyright 2011, Elsevier.

Sample Layer Thickness (nm) Matrix NO2 (ppb) Optical Method ∆R (%)

(1) Por1 layer 10 None 6000 ATR 1.5

(2) Por1 in NPS 65 NPS 700 ATR 17

(2) Por1 in NPS 65 NPS 700 Refl 8

(2) Por1 in NPS 65 NPS 350 ATR 3

(3) Por1 in EC 130 NPS 350 ATR 14

(4) Por1 in EC 65 EC 700 Refl 2

NPS—nanoporous silica matrix; EC—ethylcellulose; Refl—reflectance; ATR—attenuated total reflectance; ∆R—
variation of reflectance at a wavelength of 680 nm and at the angle corresponding to the minimum reflectance of
the unexposed sample.

5. Phthalocyanine and Porphyrin-Based MOFs

Metal-organic frameworks are a class of hybrid crystalline porous materials consisting
of metal ions or clusters bonded to each other by organic linkers. The chemical variability,
large pore volume, and internal surface area of the frameworks make them an ideal platform
for creating functional materials for a wide range of applications, including chemical
sensors [99,100]. Liu et al. [17] summarized the works devoted to the applications of porous
polymeric structures based on tetrapyrrole compounds in electrochemical, colorimetric,
fluorescence, chemiresistive, and QCM sensors.

In recent years, a direction related to the study of 2D materials in plasmon structures
has been developing [101]. SPR platforms based on various MOFs can amplify the sensor
response, therefore extending its applications from the detection of biomolecules to VOC
sensing [64,102–104].

It was shown that a two-dimensional MOF based on metal porphyrin derivatives can
be used as an SPR sensitizer [105,106]. Among other 2D materials like graphene, molyb-
denum disulfide, and others, 2D MOFs are characterized by a highly ordered structure
with a large specific surface area and possess good electrical conductivity, high mobility
of charge carriers, and efficiency of photogenerated carriers that enhance the electric field
excitation and the surface plasmon resonance of the sensing interface. Apart from these, 2D
MOFs can enhance the absorption of incident light, thereby improving the output signal.
In addition, due to their lamellar-ordered structure, their own surface plasmon waves are
coupled with the SPR of the gold film. All these properties contribute to improving the
characteristics of the SPR sensor.

There are several examples of the use of porphyrin-based 2D MOF as an SPR sensi-
tizer in the recent literature. For example, Wang and co-authors [106] demonstrated that
MOF synthesized from tetra(4-carboxyphenyl)porphine (TCPP) by a simple hydrothermal
method served as an ideal SPR sensitizer for detecting trace disease markers. A 2D MOF
based on Cu-TCPP was used to improve direct SPR analysis of programmed death ligand-1
exosomes (PD-L1) in human serum samples. The prepared MOF was deposited onto a gold
substrate by drop casting and modified with special peptides with the ability to capture
PD-L1 exosomes (Figure 22). MOF Cu-TCPP with high charge mobility contributed to the
distribution of the electron concentration on the surface of the gold slide, enhancing the
generation of surface plasmons and thereby increasing the sensitivity of the sensor.

It was shown that the SPR signal of the gold chip modified with 2D MOF was no-
ticeably higher than the signal of the bare gold chip (Figure 23a). The same concentration
of PD-L1 exosomes caused a change in the SPR angle when using a 2D MOF-based SPR
sensor, while a pure gold-based SPR sensor caused almost no change in the SPR angle
(Figure 23b). The authors explained this by using a different type of protein binding to
the sensing layer. Non-specific binding of peptides occurs on the gold substrate, which
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leads to disorderly attachment of peptides at the sensitive interface [107]. At the same time,
in 2D MOF, porphyrin molecules can participate in the π-π interaction [108], significantly
improving the binding of peptides to the sensitive interface, which facilitates the capture of
target molecules and leads to an increase in the sensitivity of the SPR sensor. The LOD of
the sensor based on 2D MOF Cu-TCPP was 16.7 particles/mL, and its recovery rate was
93.43–102.35%.
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Figure 23. SPR raw signal (a) and data analysis (b) of peptides and exosomes flowed through the
bare gold chip and 2D MOF chip, respectively. Reprinted with permission from [106]. Copyright
2022 Elsevier.

Later, the same group of authors [109] tested 2D MOF Cu-TCPP for the SPR detection
of the antibiotic sulfamethazine (4-amino-N-(4,6-dimethyl-2-pyrimidinyl). They prepared
a bilayer sensing platform based on 2D MOF Cu-TCPP, which enhances SPR, and Para-
Sulfonatocalix [4]arene (pSC4), which provides the “specific” host–guest interaction with
sulfamethazine. The prepared sensor had a LOD of only 75.54 pM and could accurately
detect sulfamethazine in environmental water samples with complete recovery in the range
of 95% to 110%.

Li et al. [110] also used Cu-TCPP 2D MOF to prepare an optical SPR sensor for
glucose detection. The MOF was deposited onto a specially prepared arrayed resonant
cavity silver film (ARC/Ag) with strong hotspots, effectively extending the sensing region
(Figure 24). Due to the synergetic effect of the ordered MOF with ARC/Ag, a local electric
field enhancement was observed. Glucose oxidase (GOD) was immobilized on the MOF
layer by immersing the structure in the buffer solution.
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Figure 24. Schematic diagram of (a) the ARC/Ag/MOF sensor structure and the optical detection
path (b). Reprinted with permission from [110]. Copyright 2023 Elsevier.

Figure 25a–c show a scheme of the reaction between glucose and GOD-ARC/Ag/MOF
and a change in the position of the resonance wavelength when different concentrations
of D-glucose solution (0–1.8 mg/mL) are added. The resulting sensor demonstrated
high stability and a linear response factor of 9.99 nm/(mg/mL) in the range of glucose
concentrations from 0.1 to 1.2 mg/mL (Figure 25d,f). The response of the sensor to glucose
was noticeably higher than to ascorbic acid and uric acid (Figure 25e).
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Figure 25. (a) Schematic diagram of the reaction between glucose and the GOD-ARC/Ag/MOF.
(b) Normalized transmission spectra for different concentrations of glucose (0–1.8 mg/mL). (c) The
redshift of GOD-functionalized and non-GOD-functionalized optical fibers changes with glucose
concentration. (d) Redshift linear response of GOD-ARC/Ag/MOF at a glucose concentration of
0.6–1.2 mg/mL. (e) Fitting curves of selectivity for the ARC/Ag/MOF sensor. (f) Stability test of the
GOD-ARC/Ag/MOF sensor. Reprinted with permission from [110]. Copyright 2023 Elsevier.
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Kutenina et al. [111] fabricated uniformly structured surface-attached metal-organic
frameworks (SURMOFs) from Zn-TCPP and zinc acetate, which were obtained as films
on the surface of self-organizing monolayers of silanes and thiols by the method of layer-
by-layer self-assembly. The prepared SURMOF films were utilized as sensing layers to
study the qualitative SPR response to organic molecules in water solutions. It was shown
that SURMOF films did not bind 4-nitrophenol and uracil, whereas they bound purine
compounds, viz. adenine and adenosine 5-monophosphate. It was found by spectral
methods that this binding occurred through the interaction of amino groups with Zn ions
in metal clusters rather than with central metal ions in porphyrin cores.

It is known that metal nanoparticles loaded on the surface of a gold film improve the
SPR signal due to the resonance coupling effect [112]. Mao et al. [113] recently used this ef-
fect to create a biosensor based on 2D MOF Cu-TCPP for the determination of Programmed
Death-Ligand 1 (PD-L1), which plays an important role in regulating immune response.
2D MOF Cu-TCPP, due to its expanded conjugate surface, provides a substrate for the
directional fixation of nucleic acid nanostructures through noncovalent interaction [114]. In
this work, the DNA tetrahedron nanostructure was immobilized to improve the selectivity
of PD-L1 detection. The sensitivity of the prepared chip was 253.31◦/RIU.

Feng et al. [115] also used a structure of 2D MOF Cu-TCPP modified with gold
nanoparticles (AuNPs) for the fabrication of a D-shaped fiber SPR sensor for dopamine
detection. As already noted, Cu-TCPP has high electron mobility, which helps to increase
the concentration of electrons on the metal surface and enhances the generation of surface
plasmons. The authors showed that the Fermi level of the gold film and Cu-TCPP are
close, while the value of the LUMO level of gold exceeds the value of Cu-TCPP. Under the
influence of white light, electrons inside the metal are excited and move from HOMO to
LUMO levels, which leads to aggregation. Due to differences in energy levels, the electrons
move to the LUMO level of Cu-TCPP. The same electronic transition occurs between
AuNPs and Cu-TCPP. This double electronic transition leads to an increase in the mobility
of electrons inside the composite structure, thereby improving the values of the electric
field on the surface of the sensing film and providing larger changes in the refractive index
of the sensing layer. To improve the selectivity of dopamine detection, DNA molecules,
which form hydrogen bonds with the –OH and –NH2 groups of dopamine molecules, were
immobilized on the surface of a 2D Cu-TCPP MOF. The prepared AuNPs/2D MOF/Au
composite structure had the linear range of the dependence of the response on the dopamine
concentration from 5 × 10−14 M to 5 × 10−7 M in both PBS solution and serum samples
(Figure 26) with an LOD of 1.07 ± 0.07 × 10−14 M. The sensor exhibited good selectivity
for dopamine because the SPR response to 5 × 10−9 M of dopamine was higher than the
response to interfering ascorbic (AA) and uric (UA) acids at their concentration in a solution
of 5 × 10−3 M (Figure 26d). The higher sensor response was due to the specific interaction
between the aptamer DNA and dopamine molecules.

Chemosensors 2024, 12, x FOR PEER REVIEW 26 of 33 
 

 

 
Figure 26. (a) The schematic diagram of dopamine (DA) solution detection by a microfluidic de-
vice. (b) Resonance wavelength change of DA solution with different concentrations. (c) The linear 
relationship between DA concentrations and the sensor resonance wavelength. (d) Comparison of 
the sensor response to DA (5 × 10−9 M), ascorbic acid (AA, 5 × 10−3 M), and uric acid (UA, 5 × 10−3 M) 
under the same experimental conditions. (e) Resonance wavelength change of DA in serum solu-
tion with different concentrations. (f) The linear relationship between the serum DA concentration 
and the resonant wavelength of the sensor. Reprinted with permission from [115]. Copyright 2024 
Elsevier. 

6. Current Issues and Future Scope 

This review provided an overview of the state of research over the past fifteen years 
in the field of the application of porphyrins, phthalocyanines, and their hybrid materials 
as active layers of sensors based on the phenomenon of surface plasmon resonance. These 
sensors, which include classical SPR sensors and their advanced modifications such as 
total internal reflection ellipsometry and magneto-optical SPR techniques, are widely 
used for the qualitative and quantitative determination of not only gaseous analytes but 

Figure 26. Cont.



Chemosensors 2024, 12, 56 25 of 31

Chemosensors 2024, 12, x FOR PEER REVIEW 26 of 33 
 

 

 
Figure 26. (a) The schematic diagram of dopamine (DA) solution detection by a microfluidic de-
vice. (b) Resonance wavelength change of DA solution with different concentrations. (c) The linear 
relationship between DA concentrations and the sensor resonance wavelength. (d) Comparison of 
the sensor response to DA (5 × 10−9 M), ascorbic acid (AA, 5 × 10−3 M), and uric acid (UA, 5 × 10−3 M) 
under the same experimental conditions. (e) Resonance wavelength change of DA in serum solu-
tion with different concentrations. (f) The linear relationship between the serum DA concentration 
and the resonant wavelength of the sensor. Reprinted with permission from [115]. Copyright 2024 
Elsevier. 

6. Current Issues and Future Scope 

This review provided an overview of the state of research over the past fifteen years 
in the field of the application of porphyrins, phthalocyanines, and their hybrid materials 
as active layers of sensors based on the phenomenon of surface plasmon resonance. These 
sensors, which include classical SPR sensors and their advanced modifications such as 
total internal reflection ellipsometry and magneto-optical SPR techniques, are widely 
used for the qualitative and quantitative determination of not only gaseous analytes but 

Figure 26. (a) The schematic diagram of dopamine (DA) solution detection by a microfluidic device.
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under the same experimental conditions. (e) Resonance wavelength change of DA in serum solution
with different concentrations. (f) The linear relationship between the serum DA concentration and the
resonant wavelength of the sensor. Reprinted with permission from [115]. Copyright 2024 Elsevier.

6. Current Issues and Future Scope

This review provided an overview of the state of research over the past fifteen years in
the field of the application of porphyrins, phthalocyanines, and their hybrid materials as
active layers of sensors based on the phenomenon of surface plasmon resonance. These
sensors, which include classical SPR sensors and their advanced modifications such as total
internal reflection ellipsometry and magneto-optical SPR techniques, are widely used for
the qualitative and quantitative determination of not only gaseous analytes but also low
concentrations of pesticides, herbicides, biomolecules, and even bacteria in water solutions
and biological liquids.

The quantitative characteristics of some sensors for the detection of analytes in the
gaseous phase and solutions are summarized in Table 6. It can be seen that SPR sensors
based on phthalocyanine and porphyrin films are mainly used to detect vapors of volatile
organic compounds, such as chlorinated hydrocarbons, acetic acid, and amines. The
detection limit of these compounds for most sensors is units or tens of ppm, which is
lower than for electrical and gravimetric sensors based on films of similar phthalocyanines
and porphyrins [10,116,117]. At the same time, the response and regeneration times are
only a few seconds, which is better than in their case. It should also be noted that the
selectivity of SPR sensors is not very high and is comparable to the selectivity of electrical
and QCM sensors.
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Table 6. Examples of phthalocyanine- and porphyrin-based sensors for the detection of gaseous
analytes and analytes in solutions.

Sensors for Gaseous Analytes

Active Layer Method Analyte Sensitivity,
ppm−1 LOD, ppm

Response/
Recovery
Time, s

Ref.

CoPc, PVD film SPR NO2 - 0.07 - [41]

FCrPc, spun film SPR Acetic acid 57.1 × 10−7 0.85 [43]

ZnPc5,
LB film, 20 layers SPR Chloroform 7.97 × 10−4 3.76 3/6 [47]

Por2,
LS film, 10 layers

SPR
Acetic acid 9.82 × 10−7 6.11

[51]
Methylamine 4.38 × 10−7 13.71

ZnPP (Figure 10),
LS film, 3 layers

SPR
Dibutylamine

4.32 × 10−5 760 3/6
[55]

MOSPR 4.31 × 10−4 60 3/7.5

ZnPc3j, spun film TIRE Trimethylamine - 20 - [65]

CuPc1k, spun film
TIRE Methylamine

1.55 × 10−4 8 158/-
[89]CuPc1k-CNT,

spun film 3.25 × 10−4 3.6 66/-

Sensors for analytes in solutions

Material Method Analyte Investigated concentration range Sensitivity LOD Ref.

CuPc1l TIRE Pentachlorophenol 0.5–25
µg/L

0.00396
(µg/L)−1 690 ng/L [92]

pyridinium
porphyrin mediated

calix [4]arene-
functionalized AuNP

composites

SPR
B-type

natriuretic
peptide

1–10,000
pg/mL - 0.3 pg/mL [94]

2D MOF Cu-TCPP SPR Sulfamethazine 0.278–27.83 ng/mL - 0.02 ng/mL [109]

2D MOF Cu-TCPP
modified with GOD

on ARC/Ag

Optical fiber
SPR Glucose 0.1–1.2

mg/mL

9.99
nm

(mg/mL)−1
- [110]

AuNP/2D MOF
Cu-TCPP modified

with DNA

Optical fiber
SPR Dopamine 5 × 10−14–5 × 10−7 M

0.371
nm (logM)−1 1.07 × 10−14 M [115]

The current scenario for the development of these sensors goes in two directions. The
first direction is related to the modification of substrates for SPR and the development of
new research methods based on a combination of two different techniques, e.g., MSPR
and SPR combined with electrochemistry. For example, using the MSPR technique makes
it possible to increase the sensitivity of ZnPP-based sensors to dibutylamine by about
10 times (Table 6) compared to the classical SPR method [55].

The second direction is related to the search for new materials with a large surface area,
concentration of active centers, and specificity to the investigated analytes. Along with
the use of porous hybrid materials of phthalocyanines and porphyrins with metal oxides,
polymers, and carbon nanotubes, in recent years much attention has been paid to the study
of metal-organic frameworks based on porphyrins and phthalocyanines for use in optical
sensors. 2D MOFs have a highly ordered structure and exhibit excellent electrical conduc-
tivity, high mobility of charge carriers, and highly efficient photogenerated carriers that can
enhance the electric field of excitation and the surface plasmon resonance of the sensitive
interface. In addition, the 2D MOF can enhance the absorption of incident light, thereby
improving the output signal. In addition, due to their lamellar structure, their own surface
plasmon waves may connect to the SPR of the gold film. All these properties contribute to
improving the performance of the SPR sensor. This is especially important for obtaining
highly sensitive sensors for the determination of low concentrations of biomolecules in
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solutions, e.g., sulfamethazine, glucose, dopamine, etc. (Table 6). The selectivity of such
sensors can be achieved by modifying porous 2D MOF layers with enzymes or DNA that
provide specific interactions with bioanalytes. An analysis of the literature has shown that
currently the set of such 2D MOF materials is limited, and, as a rule, all SPR sensors are
made on the basis of tetra(4-carboxyphenyl)porphine. Therefore, the synthesis of such
materials based on other derivatives of phthalocyanines and porphyrins is of particular
interest. Thus, it would be useful to focus further research in the field of searching for new
materials for sensors based on the SPR phenomenon on (i) obtaining hybrid materials not
only with carbon nanotubes but also with graphene, since graphene has established itself as
one of the best materials for improving the performance of SPR sensors on many platforms,
and (ii) preparing new 2D MOFs based on porphyrins and phthalocyanines.
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