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Abstract: This retrospective study aimed to analyze the treatment effect and prognostic factors
of pediatric acute myeloid leukemia (AML) patients with t(8;21). A total of 268 newly diagnosed
pediatric AML (pAML) enrolled from 1 January 2005 to 31 December 2022 were retrospectively
reviewed, and 50 (18.7%) patients harbored t(8;21) translocation. CR rate, OS, EFS, and RFS were
assessed by multivariate Logistic and Cox regression models in these patients. Of the 50 patients,
2 patients abandoned treatment during the first induction course. Of the remaining 48 patients
who received double-induction therapy and were included in the final analyses, CR1 and CR2 were
75.0% (36/48) and 95.8% (46/48), respectively. The overall three-year OS, EFS, and RFS were 68.4%
(95% CI, 55.0–85.1), 64.2% (95% CI, 50.7–81.4), and 65.5% (95% CI, 51.9–82.8), respectively. The
presence of loss of sex chromosome (LOS) at diagnosis (n = 21) was associated with a better 3-year
OS [87.5% (95% CI, 72.7–100) vs. 52.7% (95% CI, 35.1–79.3), p = 0.0089], 3-year EFS [81.6% (95% CI,
64.7–100) vs. 49.7% (95% CI, 32.4–76.4), p = 0.023], and 3-year RFS [81.6% (95% CI, 64.7–100) vs. 51.7%
(95% CI, 33.9–78.9), p = 0.036] than those without LOS (n = 27), and it was also an independent good
prognostic factor of OS (HR, 0.08 [95% CI, 0.01–0.48], p = 0.005), EFS (HR, 0.22 [95% CI, 0.05–0.85],
p = 0.029), and RFS (HR, 0.21 [95% CI, 0.05–0.90], p = 0.035). However, extramedullary leukemia
(EML) featured the independent risk factors of inferior OS (HR, 10.99 [95% CI, 2.08–58.12], p = 0.005),
EFS (HR, 4.75 [95% CI, 1.10–20.61], p = 0.037), and RFS (HR, 6.55 [95% CI, 1.40–30.63], p = 0.017)
in pediatric individuals with t(8;21) AML. Further analysis of combining LOS with EML indicated
that the EML+LOS− subgroup had significantly inferior OS (92.9%, [95% CI, 80.3–100]), EFS (86.2%,
[95% CI, 70.0–100]), and RFS (86.2%, [95% CI, 80.3–100]) compared to the other three subgroups (all
p < 0.001). LOS and EML are independent prognostic factors of OS, EFS, and RFS with t(8;21) pAML
patients. LOS combined with EML may help improve risk stratification.

Keywords: t(8;21); pediatric acute myeloid leukemia; prognosis; loss of sex chromosome;
extramedullary leukemia

1. Introduction

Acute myeloid leukemia (AML) constitutes 20% of pediatric leukemias, with 5.1% of
AML patients being diagnosed at an age younger than 20 years [1–3]. AML1::ETO (also
known as RUNX1::RUNX1T1) resulting from t(8;21) (q22;q22) is one of the most frequent
genetic aberrations, with a incidence of 20% in newly diagnosed pAML patients [4–7].
Although t(8;21) AML is generally categorized as a favorable subgroup, 20%–35% of
patients with this genotype experience relapse, and the outcomes of this genotype are
heterogeneous [8–10]. We conducted a single-center retrospective study of children with
this genotype from 1 January 2005 to 31 December 2022 to search for prognostic factors that
could potentially be useful to further improve outcomes and update therapy strategies.
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2. Materials and Methods
2.1. Study Design and Patients

Individuals aged ≤eighteen years with a confirmed diagnosis of AML were enrolled
in the retrospective study. Data from individuals without proof of t(8;21) presence and indi-
viduals without treatment during the first induction course were excluded from analyses.
All patients were treated in the Children’s Hospital of Fudan University between 2005 and
2023, receiving risk-stratified therapy without prophylactic cranial irradiation. Patients
treated in our institution from 2005 to 2014 received the CHFU-AML 2005 regimen, and
CCLG-AML-2015 and CALSIII-AML18 regimens were used in 2015–2018 and 2018–2023,
respectively [11,12]. The study was approved by the institutional review board of the Chil-
dren’s Hospital of Fudan University, and informed consent was obtained from all patients
or their legal guardians. Outcome data reported here were updated on 21 March 2023.

2.2. Morphology, Cytogenetics and Immunophenotyping

The morphologic assessment was founded on May-Grünwald–Giemsa stains, myeloper-
oxidase reactions, and nonspecific esterases utilizing α-naphthyl acetate following the FAB
and WHO classifications [13–15]. A chromosome G-banding analysis was conducted on all
cases according to standard procedures [16,17]. The description of karyotypes followed
the ISCN [18]. Loss of sex chromosomes (LOS) was defined as the presence of a -X/-Y
clone in more than 3 of the 20 cells analyzed [19]. Complex karyotype (CK) was defined
as ≥3 chromosomal aberrations [20]. Monosomal karyotype (MK) was defined as ≥2
separate autosomal monosomies or 1 monosomy plus ≥ 1 structural aberrations [21,22].
Immunophenotyping was conducted in bone marrow (BM) specimens of all cases following
previous descriptions [23,24]. Quantification of minimal residual disease (MRD) in the
BM (after induction therapy I and II, or other later timepoint) using multiparameter flow
cytometry (MFCM) commenced in June 2018.

2.3. Molecular Biology Analysis

Molecular studies were performed from June 2018, and the results for 20 patients are
available. Mononuclear cells were isolated, and both DNA and mRNA were extracted from
BM and peripheral blood samples. Additionally, random-primed cDNA synthesis was
conducted according to the protocols [25]. As for fusion genes, interphase fluorescence
in situ hybridization (FISH) with probes for RUNX1 and RUNX1T1 was conducted using
commercially available probes. Investigations for FLT3-ITD, C-KIT/D816, NPM1 (Exon12),
and CEBPA were carried out in these patients [26].

2.4. Statistical Analysis

Each statistical assessment was performed utilizing R software (version 4.1.0). Out-
comes were evaluated by using complete remission (CR), overall survival (OS), event-free
survival (EFS), and relapse-free survival (RFS) (Table S1) [27]. Categorical variables were
compared between groups utilizing the χ2 test and continuous variables by the Mann–
Whitney U test. To identify factors associated with CR and prognosis, variables with
p < 0.2 [28] in univariate analyses entered a multivariate Logistic regression model and a
multivariate Cox regression model, respectively. Results were presented as OR or HR and
95% CI. Survival outcomes were determined utilizing the Kaplan–Meier method, and com-
parisons between groups were conducted utilizing the logrank test. Statistical importance
was denoted by two-sided p < 0.05.

3. Results
3.1. Clinical Characteristics

From 1 January 2005 to 31 December 2022, 268 evaluable individuals were enrolled
from a Chinese children’s medical center. Data from 218 individuals without proven
t(8;21) presence and two individuals without treatment during the first induction course
were excluded (Figure 1). An amount of 48 individuals with t(8;21) AML were included
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in the final analyses, with a male-to-female ratio of 1.8:1. The median age at diagnosis
was 8.6 years (range, 2.5–16.7), with 46 patients (95.8%) aged between 3 and 14 years
and only one patient (2.1%) in each age group younger than three years and older than
fourteen years, respectively. The median white blood cell (WBC) count was 15.9 × 109/L
(range, 1.7–123.0). The median platelet count was 28.5 × 109/L (range, 4–265). The
median hemoglobin (Hb) count was 78.6 g/L (38.2–122.0). The median follow-up time was
35.5 months (IQR, 12.8–74.8). According to MFCM, the sums of the percentage of positive
cells for CD34 plus CD117 or HLA-DR were greater than 95% in these cases. CD19 antigen
and CD56 antigen were detected in 23 (47.9%) and 21 (43.6%) of these cases, respectively. As
for additional chromosome abnormality (ACA), t(8;21) was the sole cytogenetic aberration
in 13 patients (27.1%), while 35 (72.9%) harbored other ACAs, 21 (43.8%) had loss of
sex chromosome (LOS), 7 (14.6%) had CK, 11 (22.9%) had MK, 3 (6.3%) had deletion of
chromosome 9q [del(9q)], only one (2.1%) had trisomy 4, and no one had trisomy 8. Of the
20 patients analyzed for genetic mutation, two (10.0%) were FLT3-ITD positive, 12 (60.0%)
were C-KIT positive, and none of them had CEBPA and NPM1 mutations. Within the
same cohort evaluable for MRD analysis, 7 (35%) and 18 (90%) had a negative MRD status
(defined by <0.1%) after induction therapy I and II, respectively (Table 1).
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Table 1. Baseline features of 48 pediatric acute myeloid leukemia (pAML) patients with t(8;21).

Characteristics n = 48

Gender, n (%)
Male 31 (64.6)
Female 17 (35.4)

Age (M[range]) (years), n (%) 8.6 (2.5–16.7)
<3 1 (2.1)
3–14 45 (93.8)
>14 2 (4.2)

HB (M[range]) (g/L) 78.6 (38.2–122.0)
≤60 10 (20.8)
60–90 24 (50.0)
>90 14 (29.2)

PLT (M[range]) (×109/L) 28.5 (4.0–265.0)
≤20 11(22.9)
20–100 34 (70.8)
>100 3 (6.3)

PB blast (M[range]) (%) 1, n (%) 45.0 (5.0–88.0)
BM blast (M[range]) (%), n (%) 51.25 (5.0–87.0)
FAB

M2 33 (68.8)
M4 10 (20.8)
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Table 1. Cont.

Characteristics n = 48

M5 3 (6.2)
NOS 2 (4.2)

Immunological classification, n (%)
CD19 (+) 23 (47.9)
CD56 (+) 21 (43.6)
CD34 (+) 47 (97.9)
HLA-DR (+) 48 (100)
CD117 (+) 48 (100)
MPO (+) 34 (70.8)
CD13 (+) 20 (41.7)
CD33 (+) 35 (72.9)

Karyotype, n (%)
CK 7 (14.6)
LOS 21 (43.8)
MK 11(22.9)
del(9q) 3 (6.3)
trisomy 4 1 (2.1)

Genetic mutations 2, N (%) from 2018, N = 20
C-KIT (+) 12 (60.0)
FLT3-ITD (+) 2 (10.0)

Induction I MRD (%) 3, n (%) from 2018, N = 20
<0.1 7 (35.0)
≥0.1 13 (65.0)

Induction II MRD (%) 3, n (%) from 2018, N = 20
<0.1 18 (90.0)
≥0.1 2 (10.0)

EML 4, n (%) 8 (16.7)
CR1, n (%)

CR 36 (75.0)
NR 5 (10.4)
PR 7 (14.6)

CR2, n (%)
CR 46 (95.8)
NR 2 (4.2)

Year of diagnosis, n (%)
2005–2014 18 (37.5)
2015–2018 10 (20.8)
2019–2023 20 (41.7)

HSCT, n (%) 9 (18.8)
Relapse, n (%) 13 (27.1)
Death, n (%) 13 (27.1)

Abbreviations: WBC: white blood cell counts; MRD: minimal residual disease; BM blast: bone marrow leukemic
blast percentage; PLT: platelets; LOS: loss of sex chromosome; CR1: first complete remission; HB: hemoglobin;
MK: monosomal karvotype; EML: extramedullary leukemia; PR: partial remission; NR: no remission; PB blast:
peripheral blast percentage; del(9q), Deletion of chromosome 9q; M: median; CR2: second complete remission;
CK: complex karyotype. 1 Missing data are due to being not submitted to the statistics center. N = 46. 2 Genetic
mutation detection has been available since June 2018. N = 20. 3 MRD detection has been available since June
2018. N = 20. 4 EML was defined as the process whereby malignant leukemic cells from the BM infiltrate into
tissues outside the BM at diagnosis, including the central nervous system, cutis, and periosteum, leading to the
formation of an extramedullary mass.

3.2. Treatment Outcome

Overall, first complete remission (CR1) and second complete remission (CR2) were
achieved by 75.0% (n = 36) and 95.8% (n = 46) of the patients, respectively. CR was achieved
in 20 (100.0%) patients treated with the CALSIII-AML18 protocol, of whom 18 (90.0%)
had a negative MRD status at the end of induction therapy. The 3-year OS, EFS, and RFS
were 68.4% (95% CI, 55.0–85.1), 64.2% (95% CI, 50.7–81.4), and 65.5% (95% CI, 51.9–82.8),
respectively (Figure 2a–c). The 3-year OS, EFS, and RFS of 18 cases treated with the CHFU-
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AML 2005 protocol were 72.2% (95% CI, 54.2–96.2), 61.1% (95% CI, 42.3–88.3), and 64.7%
(95% CI, 45.5–91.9), respectively. The 3-year OS, EFS, and RFS of 10 cases treated with the
CCLG-AML 2015 protocol were 60.0% (95% CI, 36.2–99.5), 60.0% (95% CI, 36.2–99.5), and
60.0% (95% CI, 36.2–99.5), respectively. The 3-year OS, EFS, and RFS of 20 cases treated
with the CALSIII-AML18 protocol were 68.2% (95% CI, 43.8–100), 71.1% (95% CI, 47.5–100),
and 71.1% (95% CI, 47.5–100), respectively. No significant differences were found in the
outcomes (Figure S1) and CR rate among these protocols (Tables S2 and S3).
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Figure 2. Outcomes of t(8;21) pAML patients. Kaplan–Meier analysis of overall survival (OS) (a),
event-free survival (EFS) (b) and relapse-free survival (RFS) (c) for all patients. Three-year OS, EFS
and RFS: 0.68 ± 0.08, 0.64 ± 0.08, 0.66 ± 0.08, respectively.

Of note, patients with LOS (n = 21) had significantly better 3-year OS [87.5% (95% CI,
72.7–100) vs. 52.7% (95% CI, 35.1–79.3), p = 0.0089], 3-year EFS [81.6% (95% CI, 64.7–100) vs.
49.7% (95% CI, 32.4–76.4), p = 0.023], and 3-year RFS [81.6% (95% CI, 64.7–100) vs. 51.7%
(95% CI, 33.9–78.9), p = 0.036] than those without LOS (n = 27, Figure 3a–c). Additionally,
the OS, EFS, and RFS of patients with EML did not have any significant differences to those
without EML (p > 0.05, Figure 4a–c), which may be associated with the limited quantity
of individuals with EML (n = 8). For the 20 patients treated under the CALSIII-AML18
regimen, there was no significant difference in prognosis between those with and without
C-KIT/negative MRD status, respectively (all p > 0.05, Figures S2–S4).
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Figure 4. Outcomes depending on the extramedullary leukemia (EML) in t(8;21) AML. Kaplan–Meier
analysis of OS (a), EFS (b) and RFS (c) for patients stratified by EML.

3.3. Impact of Clinical and Biological Characteristics on CR Achievement

We assessed the association of clinical and biological features with CR achievement
in a logistic regression model. As shown in Table 2, age at diagnosis, WBC, PB blast, FAB,
CD19, MK, and Year of diagnosis were significantly linked to CR achievement of those
patients. We then included these seven variables in the multivariate logistic analysis and
revealed that none of these values remained significantly different for CR achievement.

Table 2. Univariate and multivariate logistic analyses of first complete remission (CR1) in 48 patients
with t(8;21) AML.

Characteristics CR CRR
Univariate Multivariate

OR 95% CI p Value OR 95% CI p Value

Gender
Female 11 64.7 Ref
Male 25 80.6 2.27 0.59–8.89 0.228

Age at diagnosis (years)
≤8.6 21 84.0 Ref Ref
>8.6 15 65.2 0.36 0.08–1.35 0.141 0.55 0.08–3.25 0.514

WBC (×109/L)
>20 11 61.1 Ref Ref
≤20 25 83.3 3.18 0.84–12.99 0.093 1.86 0.34–10.32 0.464

PB blast (%)
<45 20 83.3 Ref Ref
≥45 14 58.3 0.23 0.05–0.94 0.053 0.24 0.03–1.29 0.119

BM blast (%)
<50 16 0.8 Ref
≥50 20 71.4 0.62 0.15–2.37 0.501

FAB
M2 27 81.8 Ref Ref
M4 5 50.0 0.22 0.05–1.02 0.053 0.22 0.03–1.41 0.120
M5 2 66.7 0.44 0.04–10.47 0.534 0.90 0.03–36.68 0.988
NOS 2 100 3,478,080 0–NA 0.993 1,881,857 0-NA 0.996

CD19
No 21 84.0 Ref Ref
Yes 15 65.2 0.36 0.08–1.35 0.141 0.66 0.04–7.82 0.752

CD56
No 21 77.8 Ref
Yes 15 71.4 0.71 0.19–2.70 0.615

LOS
No 21 77.8 Ref
Yes 15 71.4 0.71 0.19–2.70 0.615

CK
No 29 70.7 Ref
Yes 7 100 4,785,467 0-NA 0.996
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Table 2. Cont.

Characteristics CR CRR
Univariate Multivariate

OR 95% CI p Value OR 95% CI p Value

MK
No 26 70.3 Ref Ref
Yes 10 90.9 4.23 0.68–82.44 0.193 3.62 0.36–87.81 0.318

EML
No 29 72.5 Ref
Yes 7 87.5 2.66 0.40–52.62 0.386

Year of diagnosis
2005–2014 16 88.9 Ref Ref
2015–2018 6 60.0 0.19 0.02–1.21 0.091 0.42 0.02–7.38 0.540
2019–2023 14 70.0 0.29 0.04–1.5 0.168 0.48 0.02–16.72 0.666

Abbreviations: WBC: white blood cell counts; LOS: loss of sex chromosome; HB: hemoglobin; MK: monosomal
karvotype; PB_blast: peripheral blast percentage; EML: extramedullary leukemia; BM blast: bone marrow
leukemic blast percentage; CRR: complete remission rate; PLT: platelets; CI: confidence interval; CK: complex
karyotype; OR: odds ratio.

3.4. Prognostic Factors for OS, EFS, and RFS

To assess the significant prognostic factors, Cox regression modeling was performed.
As shown in Table 3 and Tables S4–S8, EML and LOS were significantly correlated with
the OS, EFS, and RFS of t(8;21) pAML patients. Individuals with EML had lower OS
(p = 0.071), EFS (p = 0.164), and RFS (p = 0.108), while those with LOS had higher OS
(p = 0.022), EFS (p = 0.036), and RFS (p = 0.051). We then included the two covariates
in the multivariate analyses and demonstrated that EML was an independent risk factor
for inferior OS (hazard ratio [HR], 10.99 [95% CI, 2.08–58.12], p = 0.005), EFS (HR, 4.75
[95% CI, 1.10–20.61], p = 0.037), and RFS (HR, 6.55 [95% CI, 1.40–30.63], p = 0.017), while
LOS was an independent good prognostic factor that influenced OS (HR, 0.08 [95% CI,
0.01–0.48], p = 0.005), EFS (HR, 0.22 [95% CI, 0.05–0.85], p = 0.029), and RFS (HR, 0.21
[95% CI, 0.05–0.90], p = 0.035).

Table 3. Univariate and multivariate COX analyses of event-free survival (EFS) in 48 patients with
t(8;21) AML.

Characteristics
Univariate Multivariate

HR 95% CI p Value HR 95% CI p Value

Gender
Female Ref
Male 1.63 0.51–5.20 0.412

Age at diagnosis (years)
≤8.6 Ref
>8.6 1.55 0.54–4.42 0.417

WBC (×109/L)
>20 Ref
≤20 0.76 0.25–2.28 0.623

PB blast (%)
<45 Ref
≥45 1.48 0.47–4.67 0.502

BM blast (%)
<50 Ref
≥50 1.10 0.38–3.17 0.864

FAB
M2 Ref
M4 0.29 0.04–2.25 0.236
M5 0.98 0.13–7.61 0.984
NOS 1.83 0.24–14.21 0.564
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Table 3. Cont.

Characteristics
Univariate Multivariate

HR 95% CI p Value HR 95% CI p Value

CD19
No Ref
Yes 0.53 0.17–1.68 0.28

CD56
No Ref
Yes 0.65 0.22–1.95 0.443

LOS
No Ref Ref
Yes 0.26 0.07–0.92 0.036 0.22 0.05–0.85 0.029

CK
No Ref
Yes 1.12 0.25–5.04 0.878

MK
No Ref
Yes 0.57 0.13–2.56 0.464

C-KIT
No Ref
Yes 1.99 0.2–19.39 0.554

FLT3-ITD
No Ref
Yes NA NA NA

Induction I MRD (%)
<0.1 Ref
≥0.1 0 0-Inf 0.999

Induction II MRD (%)
<0.1 Ref
≥0.1 4.29 0.38–48.77 0.241

EML
No Ref Ref
Yes 2.52 0.69–9.24 0.164 4.75 1.10–20.61 0.037

CR1
CR Ref
not in CR 0.91 0.25–3.27 0.885

CR2
CR Ref
not in CR ∞ 0-Inf 1.00

Year of diagnosis
2005–2014 Ref
2015–2018 1.21 0.35–4.13 0.766
2019–2023 0.64 0.16–2.5 0.523

Abbreviations: WBC: white blood cell counts; MK: monosomal karvotype; BM blast: bone marrow leukemic blast
percentage; CK: complex karyotype; PLT: platelets; LOS: loss of sex chromosome; HB: hemoglobin; CR1: first
complete remission; PB blast: peripheral blast percentage; EML: extramedullary leukemia; HR: hazard ratio; CR2:
second complete remission; CI: confidence interval.

3.5. Risk Stratification

To provide an estimation of prognostic stratification, we classified individuals into
four risk groups based on EML and LOS: the EML+LOS+ (n = 4), EML+LOS− (n = 4),
EML−LOS+ (n = 17), and EML−LOS− (n = 23) subgroups. As for other secondary ACAs
that accompany t(8;21), one out of four individuals in the EML+LOS− subgroup had
trisomy 4, 1 out of 23 individuals in the EML−LOS− group and 2 out of 17 patients in
the EML−LOS+ subgroup had del(9q), and no patients had trisomy 8. Kaplan–Meier
survival analysis unveiled that t(8;21) pAML patients with EML+LOS− had the most
inferior outcome, while those with EML−LOS+ had the best prognosis, showing the
following statistically significant survivals: the 3-year OS [0 vs. 92.9% (95% CI, 80.3–100),
p < 0.001], the 3-year EFS [0 vs. 86.2% (95% CI, 70.0–100), p < 0.001], and the 3-year
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RFS [0 vs. 86.2% (95% CI, 80.3–100), p < 0.001] (Figure 5a–c). Given that the number of
patients in the EML+LOS− and EML+LOS− subgroups was too small, we need to exercise
caution when explaining the impact of risk stratification on prognosis. The observation of
distinct prognostic effects between the two groups based on risk stratification suggested
that EML+LOS− should be differentiated from EML−LOS+ in future research.
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4. Discussion

This study demonstrated that, among a large cohort of 268 pAML individuals, 50 (18.7%)
harbored t(8;21) translocation. This finding aligns with the range reported in other stud-
ies [29,30]. We explored the prognostic factors of t(8;21) pAML patients at a single Chinese
children’s medical center. Previous studies demonstrated that t(8;21) pAML individuals
likely benefit from regimens incorporating high doses of Ara-C during induction ther-
apy [29]. In this study, the three-year OS, EFS, and RFS were 68.4% (95% CI, 55.0–85.1),
64.2% (95% CI, 50.7–81.4), and 65.5% (95% CI, 51.9–82.8), respectively, which were greater
than that in the research by Wu et al. [31], comparable with the research by Che et al. [32],
and obviously lower than that reported by a Japanese team [8]. Their better therapeutic ef-
fect may be attributed to a higher cumulative dose of Ara-C (59.4–78.4 g/m2) and adequate
supportive care.

There was no difference in CR rate among different induction protocols [33,34]. In ac-
cordance with these studies, our cohort showed that patients treated with CHFU-AML 2005,
CCLG-AML 2015, and CALSIII-AML18 regimens also showed no significant difference in
CR rate (p > 0.05). Walter et al. [35] demonstrated that CR is a unique clinical significance
factor in trials of de novo AML. Fang et al. [34] observed that AML individuals achieving
CR1 showed better prognoses than those without CR1. In our study, however, we did not
verify their finding that the clinical and biological features of individuals between CR1 and
PR/NR groups were compared, but there was no statistical difference in CR rate among all
factors (p > 0.05). Our results were slightly different from previous studies, considering
that the sample size included in our study was small and needs to be further expanded in
future studies.

In line with prior reports, the prevalence of ACAs was high (72.9%), and the most
common cytogenetic aberration was LOS [36–41]. According to the Cox model, EML
and LOS were independent prognostic factors for t(8;21) pAML individuals. Previous
studies found that loss of Y chromosome (LOY) was linked to a high relapse risk and
shorter OS [42,43]. However, some studies demonstrated that LOS had no significant
associations with survival probabilities [19,36,44,45]. Mitterbauer et al. [46] suggested that
LOS was linked to a significantly better EFS outcome. In our study, LOS was correlated
with significantly better OS, EFS, and RFS, aligning with the research by Chen et al. [47].

The prognostic values of EML remain controversial across studies. Previous studies
found that t(8;21) pAML patients with EML were linked to a low CR rate and poor RFS
and OS [48–50]. However, Bisschop et al. [51] did not find significant associations with
survival outcomes. The differences in results between studies may relate to the small-scale
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cohort, differences in race, and the wide range of case cohorts. In our study, EML was
identified as an independent prognostic factor that is correlated with worse OS, EFS, and
RFS, in line with the findings reported by Stove et al. [49] In addition, some reports claimed
that patients with EML involving different sites had different survival outcomes [52,53].
In our study, subgroup analysis for the prognosis effect of EML at different sites could
not be conducted due to the insufficient number of cases. Furthermore, individuals were
categorized into four risk groups based on the two independent prognostic factors, LOS and
EML, enabling the refinement of patients with different survival outcomes and suggesting
that MRD should be closely monitored, as well as that HSCT should be considered in time
among those subgroups with worse outcomes. To enhance the robustness of the findings,
a larger cohort involving multiple medical centers is required for further verification of
the results.

C-KIT mutations are reported to occur in 12−46% of adult t(8;21) AML patients [52–55],
whereas they account for approximately 17−43% in pediatric t(8;21) patients [29,53,56–59].
The frequency of C-KIT in this study reached 60.0% (12/20), surpassing previous pediatric
series [30,60]. This discrepancy could be owing to factors such as the small-sized sample
from a single center, as well as the variations in the detection method and sequencing
depth and coverage. Although C-KIT mutations mediate an adverse prognostic impact
on the prognosis of adults with AML [61,62], the impact of C-KIT on pAML is still incon-
clusive [57,63]. Chen et al. [30] observed that C-KIT mutations are genetic markers linked
to inferior prognoses in pAML patients. Another study indicated that C-KIT mutations
were strongly correlated with poor outcome in t(8;21) pAML individuals [58]. In our study,
despite the high frequency of C-KIT in t(8;21) pAML, it did not impact long-term progno-
sis, in line with previous pediatric reports [29,34]. This suggests potential differences in
prognostic factors between pediatric and adult individuals diagnosed with this disease.

MRD is a pivotal marker in modern studies of pAML, with a commonly accepted
threshold set at 0.1% [64]. MRD levels exceeding this threshold are linked to an elevated
risk of relapse and unfavorable prognosis. In our study, MRD levels were quantified using
MFCM following the first and second induction therapy phases in the CALSIII-AML18
protocol. However, the definitive prognostic value of MRD status derived from our findings
may be inconclusive, likely due to the limited sample size.

The primary limitation of our study stems from its retrospective design, which may
lead to missing data and an unavoidable bias. The power of the subsequent stratified
analysis is constrained by the relatively small size of the subgroups and prospective
research with a large-scale sample size is warranted to be practicable.

5. Conclusions

In conclusion, LOS is prognostically favorable, whereas EML is deemed to be strongly
correlated with adverse prognoses in pediatric patients with t(8;21) AML. LOS combined
with EML may help improve risk stratification and potentially facilitate the customization
of future therapies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/children11050605/s1. Figure S1. Probability of survival for
patients with t(8;21) AML in the protocols. Figure S2. Probability of survival depending on the
C-KIT mutation in t(8;21) AML. Kaplan–Meier survival curves of OS (a), EFS (b) and RFS (c) for
patients stratified by C-KIT mutation. Figure S3. Probability of survival depending on the Induction
I MRD status in t(8;21) AML. Kaplan–Meier survival curves of OS (a), EFS (b) and RFS (c) for
patients stratified by Induction I MRD status. Figure S4. Probability of survival depending on the
Induction II MRD status in t(8;21) AML. Kaplan–Meier survival curves of OS (a), EFS (b) and RFS
(c) for patients stratified by Induction II MRD status. Table S1. Definitions of end points. Table S2.
Comparison of characteristics for patients with t(8;21) AML in differrent consecutive protocols.
Table S3. Univariate and multivariate COX analyses of OS in 48 patients with t(8;21) AML. Table S4.
Univariate and multivariate COX analyses of RFS in 48 patients with t(8;21) AML. Table S5. Univariate
and multivariate COX analyses of overall survival (OS) in 48 patients with t(8;21) AML. Table S6.
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Univariate and multivariate COX analyses of overall survival (OS) in 20 t(8;21) AML patients who
enrolled after 2018. Table S7. Univariate and multivariate COX analyses of relapse-free survival (RFS)
in 48 patients with t(8;21) AML. Table S8. Univariate and multivariate COX analyses of relapse-free
survival (RFS) in 20 t(8;21) AML patients who enrolled after 2018.
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