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Abstract: As artificial intelligence has evolved, deep learning models have become important in
extracting and interpreting complex patterns from raw multidimensional data. These models pro-
duce multidimensional embeddings that, while containing a lot of information, are often not directly
understandable. Dimensionality reduction techniques play an important role in transforming multi-
dimensional data into interpretable formats for decision support systems. To address this problem,
the paper presents an analysis of dimensionality reduction and visualization techniques that embrace
complex data representations and are useful inferences for decision systems. A novel framework is
proposed, utilizing a Siamese neural network with a triplet loss function to analyze multidimensional
data encoded into images, thus transforming these data into multidimensional embeddings. This
approach uses dimensionality reduction techniques to transform these embeddings into a lower-
dimensional space. This transformation not only improves interpretability but also maintains the
integrity of the complex data structures. The efficacy of this approach is demonstrated using a
keystroke dynamics dataset. The results support the integration of these visualization techniques into
decision support systems. The visualization process not only simplifies the complexity of the data,
but also reveals deep patterns and relationships hidden in the embeddings. Thus, a comprehensive
framework for visualizing and interpreting complex keystroke dynamics is described, making a
significant contribution to the field of user authentication.

Keywords: dimensionality reduction; data visualization; deep learning; triplet loss; multidimensional
embeddings; user authentication; decision support

1. Introduction

In the rapidly growing field of artificial intelligence, deep learning models, widely
used in pattern recognition tasks, are excellent at extracting multidimensional features
from raw data, transforming them into embeddings that reflect the complex patterns and
relationships inherent in the dataset. However, the multidimensional nature of these em-
beddings presents a major challenge: they cannot be easily interpreted by humans without
additional analysis. This comprehensibility gap requires effective dimensionality reduction
and data visualization strategies, which are important for several reasons. Dimensionality
reduction is crucial to overcome the "curse of dimensionality", a phenomenon where a
high-dimensional feature space leads to a sparse data distribution. As the dimension
increases, the volume of the space increases exponentially, making the available data
too sparse to produce reliable results. This sparsity makes it difficult for algorithms to
detect patterns or make predictions with high accuracy. Dimensionality reduction tech-
niques help to overcome this curse and improve the performance and accuracy of machine
learning models.

Consider multidimensional raw data described by n features. Let us denote the
data samples as Xi = (xi1, . . . , xin), i = 1, . . . , m, where each n-dimensional data point
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Xi ∈ Rn, n ⩾ 3, and m is the number of data samples. Dimensionality reduction aims
to find the points Yi = (yi1, . . . , yid), i = 1, . . . , m, in a lower-dimensional space (d < n),
Yi ∈ Rd, so that certain properties (such as distances or other proximities between the
points) of the dataset were preserved as faithfully as possible. This dimensionality reduction
is very important for interpreting data because it transforms the data into a more convenient
form. If we choose d ⩽ 3, the dimensionality reduction allows us to visualize the obtained
points in 2D or 3D space. Furthermore, data visualization is crucial for understanding
data in decision support systems. By transforming multidimensional data into a more
comprehensible and manageable form, dimensionality reduction techniques enable decision
makers to uncover hidden patterns and relationships, leading to more informed decisions.
Dimensionality reduction methods can assist in identifying and understanding the unique
characteristics of different data clusters, which is crucial for making informed decisions in
a decision support system [1,2].

Often, the need for visualization arises not only in the analysis of raw data, but also in
embeddings derived by deep neural networks such as Convolutional Neural Networks
(CNNs). Visualization allows researchers and practitioners to gain insight into the learned
representations (embeddings), contributing to a deeper understanding of model behavior.
This understanding plays a key role in decision making, especially in sensitive applications
such as user authentication, medical diagnosis, and autonomous driving, where fast and ac-
curate decisions are of crucial importance. Furthermore, visualization of CNN embeddings
helps to identify patterns and anomalies that may not be obvious in high-dimensional
space. It allows us to explore the relationships and clusters formed by the embeddings,
providing a qualitative assessment of the effectiveness of the model. For example, in user
authentication using keystroke dynamics [3], visualization of the embeddings can show
how well the model discriminates between different users, which is important for assessing
the reliability of an authentication system.

This paper aims to investigate the efficiency of advanced dimensionality reduction
and visualization techniques in the context of analyzing multidimensional embeddings
obtained by deep neural networks. The paper presents a new dimensionality reduction
framework that not only improves the interpretation of multidimensional data, but also
significantly enhances the comprehensibility of the data, such as in the domain of user
authentication. This research is designed to deepen the understanding of complex data
structures and facilitate more informed decision-making processes.

The main contributions of this paper are the following:

• An innovative dimensionality reduction-based visualization framework is proposed,
which uniquely integrates dimensionality reduction techniques with Siamese neural
networks with a triplet loss function. It is specifically designed for interpreting
and visualizing complex multidimensional embeddings from deep neural networks.
It significantly enhances the interpretability of high-dimensional data, facilitating
insightful and efficient analysis in decision support systems.

• The usefulness and effectiveness of the proposed framework are demonstrated through
an empirical evaluation using a keystroke dynamics dataset to solve a user authenti-
cation problem. This approach illustrates the ability of the framework to efficiently
process and visualize multidimensional data to make reasoned decisions in user
authentication systems.

The remainder of the paper is organized as follows. Section 2 presents related works
in the field of dimensionality reduction and multidimensional data visualization. The
dimensionality reduction framework for multidimensional embedding visualization is
outlined in Section 3. The obtained results are presented and analyzed in Section 4. Finally,
Section 5 summarizes the main findings and highlights future research directions.

2. Related Works

Dimensionality reduction and data visualization techniques are important in ma-
chine learning, especially when analyzing complex data [4–6]. These methods are par-
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ticularly valuable in exploratory analysis, offering insights into similarity relations in
multidimensional data, which is essential for understanding and interpreting neural
network embeddings.

Classical methods such as Principal Component Analysis (PCA) [7,8] and Multidimen-
sional Scaling (MDS) [8–10] have traditionally been used to reduce dimensionality in data
visualization. PCA reduces the dimensionality of the data by identifying orthogonal linear
combinations of the original variables (features) that have maximum variance [11]. How-
ever, the linear PCA approach may not fully capture the complexity of nonlinear structures
present in the data, which has led to the development of local distance-preserving methods
such as Local Linear Embedding (LLE) [12] and Isomap [13,14]. More recent methods
such as t-Distributed Stochastic Neighbour Embedding (t-SNE) [15] and Uniform Manifold
Approximation and Projection (UMAP) [16] have gained popularity due to their ability to
preserve the local structure of high-dimensional data, making them particularly suitable
for visualizing embeddings obtained by deep neural networks.

These techniques transform multidimensional data into a lower-dimensional space,
which not only simplifies data visualization [17–19], but also improves the computational
efficiency of the tasks. In addition, visualizing the data in these reduced dimensions is very
important for data interpretation. Figure 1 (top left) shows an example of a tabular raw
synthetic dataset consisting of 4050 samples in 10-dimensional space (m = 4050, n = 10).
The data has been generated to include four distinct clusters with additional noise and out-
liers. Analyzing the raw tabular data, particularly discerning interlocations and clustering,
is challenging without deeper analysis. In the visualization shown at the top right, where
the dimensionality of the data is reduced to three (3D space), the results are displayed in a
Cartesian coordinate system, providing a clearer perspective of the data structure. While
we can see the clusters of data here, they are overlapping, and it is challenging to see them
in their completeness without additional interactive tools. At the bottom of the figure,
visualizations where the data dimensionality is reduced to two (2D space) by three different
methods (t-SNE, MDS, and PCA) are shown. Here, we can see that the clusters are best
expressed using the t-SNE method, while with MDS and PCA, although the clusters are
visible, the noise is also quite significant. This example demonstrates that while traditional
tabular representations of multidimensional data hide complex structures, dimensionality
reduction techniques can greatly improve clarity.

To demonstrate the practical application of dimensionality reduction techniques, we
consider an example using keystroke dynamics data from the CMU dataset (see Section 3.2).
This dataset consists of multidimensional time series representing the password typing
behavior of users, which are inherently difficult to interpret in raw form due to the high-
dimensional space. In raw form, each typed password record represents a complex pattern
of user typing behavior, recorded as a series of time intervals between keystrokes. The raw
data is unsuitable for direct human perception because there are no patterns or relationships
that can be easily interpreted (see top of Figure 2). By applying dimensionality reduction
techniques to transform multidimensional keystroke dynamics into 2D space the internal
structure of the data is preserved. To illustrate, consider data associated with two separate
different users, each of whom entered a password 400 times (m = 800, n = 31). Methods
such as t-SNE, MDS, and PCA have been used to visualize the data in a more intuitive way.
Applying these methods allows us to identify distinct clusters in the transformed data that
correspond to the unique typing patterns of each user. As shown in Figure 2, the t-SNE
method in particular effectively separates data points into consistent clusters, allowing
us to visually distinguish between two users. This visualization clarity demonstrates
the potential of dimensionality reduction methods to authenticate users by highlighting
individual keystroke dynamics. Different dimensionality reduction methods emphasize
different aspects of the data. While PCA provides a broad overview by maximizing variance
and identifying potential linear relationships, t-SNE and MDS focus on preserving local
and global patterns, respectively. The resulting 2D visual representation of the data is more
understandable and highlights the unique typing characteristics of each user, which is
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important for authentication purposes. While there is already some visual separation of
users, decision making is complicated by overlapping clusters when there are many users.
Therefore, in the remainder of this paper, a strategy to improve the visualization of clusters
is proposed (see Section 3).

Figure 1. Visualization techniques used to represent multidimensional data in a lower-
dimensional space.

Figure 2. Visualization of the keystroke dynamics for authentication based on an example with two
users (each color represents a different user).
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The importance of dimensionality-reduction techniques for transforming multidimen-
sional data into lower-dimensional data to facilitate easier visualization and analysis is
discussed in [20]. It focuses on the use of popular nonlinear dimensionality reduction
algorithms such as t-SNE and UMAP. In the article [21], traditional dimensionality re-
duction methods such as PCA and Isomap are compared with autoencoders. The study
demonstrated the relevance of PCA in this context, despite the emergence of autoencoders
as a more flexible neural network alternative for dimensionality reduction. While autoen-
coders provided nonlinear dimensionality reduction that can outperform methods such as
PCA, they also required more computational time or resources for training. The findings
showed that PCA remained competitive with neural networks in terms of accuracy when
the projection dimensionality was large enough. However, PCA was significantly faster
and less computationally intensive than autoencoders.

The paper [22] explored the use of vibration features extracted based on machine
learning models for identifying bearing faults. The possibility of reducing the number
of features was examined, and the performance of the model was observed when work-
ing with reduced dimensionality of the input data. Of all the methods evaluated, PCA
performed the best, second only to manual feature selection based on expert knowledge.
Visual analytics for cluster analysis and dimensionality reduction of high-dimensional
electronic health records was proposed and analyzed in [23]. The main contribution of
the proposed visual analytics was to bring together a wide range of state-of-the-art and
traditional analysis methods, integrating them seamlessly and making them accessible
through interactive visualizations.

The study [24] investigated how different visualization methods reflect both discrete
and continuous structures in single-cell data. The focus was on a new method and its
comparison with UMAP. The authors used both simulated and real datasets to evaluate the
performance of these methods. They aimed to find out how well these methods preserve
different patterns, such as discrete clusters, continua, and branching structures in low-
dimensional visualizations. The paper [25] presented a self-supervised learning algorithm
that obtained interpretable and consistent embeddings of high-dimensional recordings
using auxiliary variables. It combined the concepts of nonlinear independent component
analysis and contrastive learning to generate latent embeddings that were dependent on
behavior and/or time. The proposed algorithm was compared with t-SNE and UMAP.

In summary, recent studies have shown the growing importance of neural networks
for dimensionality reduction and data visualization, especially while preserving data struc-
ture. These techniques find applications in fields ranging from genomics to cybersecurity.
The dimensionality reduction methods previously described are summarized in Table 1.
The comparative study has shown that while autoencoders and other deep learning-based
techniques provide flexibility, methods such as PCA, t-SNE, LLE, and UMAP remain com-
petitive and are suitable for balancing computational efficiency, the ability to handle specific
data structures, and methodological relevance to the study objectives. The continuous
development of neural network technologies requires innovative solutions to overcome
the challenges of data volume, computational requirements, and interpretation. Effective
dimensionality reduction and visualization techniques can have a direct impact on decision-
making, problem-solving, and knowledge discovery. Further research is needed to ensure
that these methods remain practical and relevant to real-world problems.
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Table 1. Comparison of dimensionality-reduction techniques.

Techniques Advantages Disadvantages

PCA [7,8]
Efficient for linear dimensionality

reduction. Fast and scalable to
large datasets.

Assumes linear relationships between
features. May not capture complex,

nonlinear structures in data.

MDS [8–10]

Aims to preserve the pairwise distances
between points in multidimensional and
low-dimensional spaces. Can be used to
visualize dissimilarities or similarities

in data.

Can be computationally expensive and
not suitable for large datasets.

Performance may degrade with very
high-dimensional data. Sensitive to noise.

LLE [12]
Maintains local relationships effectively

in high-dimensional data. Uncovers
underlying manifold structures.

Can produce distorted results if the data
contains significant noise or outliers.
Difficulties with maintaining global

data relationships.

t-SNE [15]
Excellent at revealing local data

structures and clusters. Effective for
high-dimensional data visualization.

Computationally intensive, especially for
large datasets. Results can vary based on

hyperparameter settings.

Isomap [13,14]

Attempts to preserve the geodesic
distances between all points. Good for
datasets lying on a curved manifold.

Reveals the intrinsic geometry of
the data.

Computationally expensive for large
datasets. Performance is sensitive to

noise and outliers. The choice of
neighbors can significantly affect

the results.

UMAP [16]
Good at preserving both local and global
data structures. Faster and scales better to

larger datasets than t-SNE.

Hyperparameters can significantly affect
the results. Less intuitive to understand

and interpret compared to others.

Autoencoders [21]
Flexible, nonlinear dimensionality

reduction. Can learn complex
data structures.

Requires significant computational
resources for training. Risk of overfitting
to the training data. Model architecture

and hyperparameters need
careful tuning.

3. Research Design

This section presents a proposed dimensionality reduction-based visualization frame-
work for multidimensional embeddings derived from deep neural networks to improve
decision making for better data comprehension in solving complex problems where simi-
larities and dissimilarities between data samples need to be revealed. The transformation
of tabular data into images is described. Dimensionality reduction-based visualization of
the multidimensional embeddings obtained by a Siamese neural network with triplet loss
is discussed.

3.1. Decision Support Using Multidimensional Embeddings and Visualization Techniques

The visualization process comprises several stages (see Figure 3), each with a specific
purpose, to ensure that the data are accurately represented in a lower-dimensional space,
facilitating analysis and decision making. An expanded and detailed description of the
process follows:

• Data Pre-Processing. The raw multidimensional tabular data are initially pre-processed,
which involves data cleaning, filtering, normalization, and balancing. Incorporating
these pre-processing steps improves the quality of the raw data, which is a critical
factor in the decision-making process. The process of data cleaning, normalizing, and
balancing is more likely to produce clear and distinguishable patterns in visualization,
especially when classification or prediction accuracy is of primary importance.

• Data Transformation. The tabular or non-image data are transformed into image
data that a CNN can use to exploit feature relationships to improve prediction or
classification accuracy. A number of methods can be used to transform tabular data
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into images, such as the Gramian Angular Summation Field (GASF), the Gramian
Angular Difference Field (GADF), and recurrence plots [26,27].

• Deep Neural Network Training. The Siamese neural network with a triplet loss
function is used. The transformed data are passed through a Siamese neural network
with CNN branches. The network processes the data in triplets: anchor, positive
(similar to the anchor), and negative (dissimilar to the anchor) samples. The goal
is to train the network to obtain embeddings such that the distance between the
anchor and positive samples is minimized and the distance between the anchor and
negative samples is maximized in the latent embedding space. The network outputs
are multidimensional embeddings of the data analyzed. These embeddings represent
the similarities and dissimilarities between the data samples. In this way, each data
sample is converted to a point in the embedding space.

• Dimensionality Reduction-Based Visualization. The multidimensional embeddings
are projected into a two-dimensional space for visualization purposes using various
dimensionality reduction techniques. Techniques such as PCA, t-SNE, LLE, and UMAP
are used to preserve the significant structures of the multidimensional data in the
lower-dimensional space. The choice of these methods can provide a comprehensive
view of the multidimensional data structure. PCA offers a quick way to look at the
variance and potential linear relationships, while t-SNE and UMAP can reveal more
information on data groupings and structures that PCA might miss. LLE provides
insights into the manifold’s local geometries. The use of these techniques can provide
a reliable disclosure of the internal structure and relationships of the data (e.g., outliers,
clusters, noise, and other patterns), which is essential for decision support systems
where an accurate and clear explanation of the data is critical.

• Decision Support Based on Visualization. Decision-making often involves making
sense of complex, multidimensional data. Dimensionality reduction simplifies these
data without sacrificing important information, allowing decision makers to draw
conclusions based on more comprehensible information. The resulting visualization
can help identify patterns, trends, and anomalies that may not be evident in the raw
data, enabling more informed decisions to be made faster.

This framework is a novel approach that combines Siamese neural networks with
dimensionality reduction techniques such as PCA, t-SNE, LLE, and UMAP. This hybrid
method leverages the strengths of both deep learning and traditional data analysis tech-
niques. This solution provides a different perspective on multidimensional data visual-
ization, where the multidimensional embeddings generated by Siamese neural networks
become interpretable through enhanced dimensionality reduction, which is a novel ap-
proach in the field of decision support systems. By simplifying the visualization of complex
data, the framework enables informed decision-making based on patterns in data that
would otherwise be difficult to interpret. It enhances the ability to identify anomalies and
outliers, which is critical for risk management, fraud detection, and user authentication.
The approach can be generalized and applied to various fields that require sophisticated
data analysis, such as bioinformatics, finance, cybersecurity (especially in user authenti-
cation and anomaly detection), and customer behavior analysis. In healthcare, it can be
used to analyze complex patient data to identify patterns that contribute to specific health
outcomes. In business intelligence, it can help understand customer segments and market
trends by visualizing complex customer data.

The integration of different dimensionality reduction techniques ensures that the
approach can be adapted to specific data characteristics, thereby increasing its applicability
to different datasets and use cases. This approach is suitable for analyzing particularly
large datasets because each sample, regardless of its complexity, is represented as a point in
the embedding space independently of other data samples. The solution can be used to
efficiently process and analyze large amounts of data.
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Figure 3. The visualization framework based on dimensionality reduction for multidimensional
embedding analysis in decision support.

3.2. Use Case Analysis Based on Keystroke Dynamics to User Authentication

To demonstrate, validate, and evaluate the effectiveness of the new framework pro-
posed in this paper, the relevant problem of static user authentication was chosen. During
the authentication process, the person’s typing style is analyzed when they enter a prede-
fined text. When a person types, the keystroke pattern is captured, and the collected data are
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used to create a unique keystroke dynamics profile to authenticate the user. The Carnegie
Mellon University (CMU) dataset [28] was used as a basis for demonstrating the new ap-
proach. When the password ”.tie5roanl” is entered, the keyboard generates 31 features
of time series corresponding to the keystroke dynamics of the password. Fifty-one users
participated in the typing task. Each user typed the password 400 times. The CMU dataset
containes multidimensional data Xi = (xi1, . . . , xin), i = 1, . . . , m, corresponding to a set of
time series that capture the patterns of typing behavior across different users, where n = 31,
m = 20, 400. Each dimension represents a distinct aspect of the keystroke pattern, such as
latency, duration, and pressure, recorded over time as users type the predefined text.

The multidimensional nature of these data makes it difficult to make appropriate
decisions. Therefore, it makes sense to reduce their dimensionality in order to visualize
them for convenient and fast decision-making. Dimensionality reduction techniques play a
key role in uncovering meaningful patterns hidden in keystroke dynamics data that would
otherwise be missed in multidimensional space. However, conventional dimensionality
reduction-based visualization methods do not always reveal the structures of the data to
be analyzed, especially when the data are large (see Figure 4). Such visualization results
are not sufficient to provide a suitable solution to identify illegal users. In this and the
following figures, we do not show the labels and units for both axes when presenting the
visualization results, since we are only interested in observing the interlocations of points
in 2D space.

(a) PCA (b) LLE

(c) UMAP (d) t-SNE
Figure 4. Multidimensional data visualizations by using different dimensionality reduction tech-
niques: (a) PCA, (b) LLE, (c) UMAP, (d) t-SNE. Each color corresponds to a different user in the
CMU dataset.
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3.3. Data Transformation

In order to exploit the potential of deep neural networks and dimensionality reduction
techniques, this paper explores the integration of these solutions. A crucial preliminary step
in this integration is the transformation of time series (or tabular data) into a visual format.
As an example, the data described in Section 3.2 will be used to illustrate the data analysis
process. This conversion facilitates the process of feature extraction by the neural network,
allowing it to identify important patterns more efficiently than with textual or numerical
data. By utilizing the image processing strengths of neural networks, this approach can
significantly improve the extraction of relevant features to identify and authenticate users
based on their unique keystroke dynamics. Thus, each sample of tabular data is converted
into an image where features and their values are represented as pixels and their intensities.

There are several methods for encoding numerical or non-image data into images.
Among the notable techniques are the Gramian angular summation field and the Gramian
angular difference field, both of which are derived from the Gramian angular field-encoding
approach [26]. These methods encode the time series data into polar coordinates, effectively
capturing the temporal relationships within the time series data. The Markov transition field
technique represents sequential data, such as time series, as images by transforming data
points into a matrix where each element indicates transition probabilities, thus capturing
sequence dynamics [29], while recurrence plots convert time-series data into images to
display similarities between data points [27]. Each of these methods has its own unique
advantages when encoding time series data for deep neural network training. The choice
of one method over another is primarily determined by the characteristics of the available
data and the specific requirements of the task.

3.4. Deep Neural Network: Siamese Neural Network with Triplet Loss

Recently, Siamese neural networks with a triplet loss function have gained attention
due to their efficiency in comparing and identifying similarities between data samples,
making them suitable for tasks where data are not classified into predefined classes but
where it is necessary to determine the similarity or dissimilarity of the data being analyzed.
The scheme presented in Figure 3 utilizes a deep neural network, specifically the Siamese
architecture, known for its effectiveness in learning fine distinctions within the data, to
obtain multidimensional embeddings. While the approach leverages the strengths of the
Siamese network, it is important to note the flexibility of the framework, which can be
easily adapted to other neural network architectures. This adaptability allows us to explore
different models to solve specific problems.

A Siamese neural network is a type of deep neural network that typically consists of
two or three parallel branches that share the same architecture and weighting parameters.
The network processes input data samples in each branch to measure and evaluate the
similarity or dissimilarity of these samples [30,31]. This general architecture allows the
Siamese neural network to acquire informative representations of the input data, enabling
it to make accurate comparisons and successfully perform decision-making tasks. More
details on the architecture, hyperparameters, and their tuning can be found in our previous
research [27,32,33].

As a result of processing the raw data on keystroke dynamics transformed into im-
ages using a Siamese neural network with triplet loss, multidimensional embeddings are
extracted. These embeddings, denoted as Ei = (ei1, . . . , eip), i = 1, . . . , m, represent the
keystroke patterns of each user in p-dimensional space, where p ⩾ 2. Each embedding
Ei includes distinctive characteristics of the keystroke dynamics, embedding the typing
behavior in the p-dimensional feature space.

3.5. Visualization of Multidimensional Embeddings

In solving the dimensionality reduction problem, we seek a final transformation that
maps multidimensional embeddings Ei ∈ Rp to a set of points Yi = (yi1, . . . , yid), where
i = 1, . . . , m and d < p, in a lower-dimensional space. This process is very important
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for interpreting embeddings, as it transforms complex keystroke patterns into a more
convenient and visually interpretable format. By setting d ⩽ 3, we provide a graphical
representation of the data, which is very important for decision support, in this case, for user
authentication. Visualizing these reduced embeddings in two or three dimensions provides
an intuitive view of the underlying structures and variations in keystroke dynamics, thus
helping to identify genuine users and potentially illegitimate users.

4. Results

This section describes the results obtained with the proposed framework, which
demonstrate the framework’s ability to extract the necessary features and visualize complex,
multidimensional data representing keystroke dynamics. The CMU dataset [28] described
in Section 3.2 was used in the experimental investigation. Since the data did not require
any additional pre-processing, they were directly encoded into the images needed to train
the deep neural network by using the GADF method. The decision to employ the GADF
method was based on a thorough analysis of various non-image to image transformation
techniques [32]. This analysis considered several key factors, including the ability to
preserve time series characteristics and compatibility with CNN architectures. After data
transformation, the Siamese neural network processed the obtained images, and training
resulted in embeddings that summarized the specific typing style of each user in the
multidimensional embedding space.

The experiments were conducted using public Python libraries and frameworks such
as TensorFlow, Numpy, and Pandas, which are extensively employed for large-scale anal-
ysis and machine learning tasks. The computational experiments were carried out on an
Apple MacBook Pro equipped with an M1 Pro chip, featuring a 10-core CPU and a 16-core
GPU. While the specific duration of each experiment varied depending on the complexity
of the tasks, we ensured that all experiments were conducted under controlled conditions
to provide a fair comparison of the different methods evaluated.

The results depicted in Figure 5 show the visualizations after applying different
dimensionality reduction techniques to the embeddings obtained from the CMU dataset.
Each color corresponds to a different user in the CMU dataset and represents individual
behavioral profiles. This can be used to detect anomalies that may indicate unauthorized
access attempts. PCA shows a wide spread of points but does not provide a clear view
of the discrete clusters. LLE reveals some structure, but with a high degree of distortion.
In the case of UMAP, it is possible to observe certain clusters, but the distinction between
them is not sufficiently clear and obvious, which complicates the decision making and
does not allow for making appropriate and reliable decisions. In contrast, t-SNE allows for
a clear distinction between clusters and specifies the unique typing patterns of different
users.

Figure 5 demonstrates the visualization results for embeddings with an initial di-
mensionality of 256. In order to test the hypothesis that the generation of multidimen-
sional embeddings makes sense when their dimensionality is significantly higher than two
(p ≫ 2), it was decided to visualize the two-dimensional embeddings without applying
any dimensionality reduction technique and to compare the resulting visualizations. The
number of dimensions represents the number of outputs of the Siamese neural network.
The results can be seen in Figure 6. Here, the points corresponding to the users are scattered
widely, and there are no distinct clusters. A comparison of Figures 5 and 6 justifies that
embedding the data in a higher dimensional space using Siamese networks and visualizing
the embeddings by dimensionality reduction techniques is meaningful.
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(a) PCA (b) LLE

(c) UMAP (d) t-SNE
Figure 5. Visualization of multidimensional embeddings obtained by Siamese neural network using
different dimensionality reduction techniques (p = 256): (a) PCA, (b) LLE, (c) UMAP, (d) t-SNE. Each
color corresponds to a different user in the CMU dataset.

Figure 6. Visualization of two-dimensional embeddings (p = 2) obtained by Siamese neural network.

In order to illustrate the performance of the proposed framework (see Section 3.1),
it is meaningful to compare the visualization results of the raw multidimensional data
(see Figure 4) and the multidimensional embeddings obtained by Siamese neural networks
(see Figure 5). The comparison results illustrate that multidimensional embedding visual-
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ization is more suitable for decision making, as clusters corresponding to users’ keystroke
dynamics patterns are better separated and more clearly visible (see Figure 5). As previ-
ously demonstrated, the employment of the t-SNE technique better reveals the structure
of the patterns analyzed. Figure 4d represents the visualization of the raw keystroke
dynamics data using t-SNE. The clusters appear to be slightly more diffused, with some
overlapping between different colors, indicating that while distinct user patterns can be
observed, the separation is not as clear-cut. This poses a challenge for decision making in
user authentication, as the decision boundary between different users is not clear. As a
result, a decision support system may have a higher rate of misclassification, leading to
potential security vulnerabilities. Figure 5d shows the visualization of multidimensional
embeddings extracted by the Siamese neural network using t-SNE. The clusters in this
visualization are generally more distinct and separated from each other, with less overlap
between colors. This suggests that the embeddings from the Siamese neural network
provide a more refined and discriminative representation of keystroke dynamics and im-
prove the separation between different users. Such visualization results contribute to more
confident authentication decisions.

Furthermore, it is important to quantitatively evaluate how well the data in the
lower-dimensional space represent the original data structure and relationships. After
dimensionality reduction, data points are often clustered. The silhouette score [34] helps
determine how internally cohesive and externally separated the clusters are (see Figure 7).
This is important for understanding the effectiveness of the dimensionality reduction
process. It provides insights into how well the data of the reduced dimensionality maintains
the intrinsic clustering characteristics of the raw data, thereby helping to quantitatively
assess the impact of the framework on the data structure.

As we can see in Figure 7, the lowest silhouette score of 0.01 is obtained for raw
multidimensional data. It suggests that the raw data does not naturally form well-defined
clusters. This could be due to high dimensionality or inherent noise and variability in the
data. Applying t-SNE to the raw data results in a higher silhouette score of 0.064. This
improvement indicates that t-SNE helps in revealing the some underlying structure of the
data, making the clusters more distinct than in the raw data. When the raw data are trans-
formed into images, and the resulting images are used to train a Siamese neural network,
the silhouette score for the multidimensional embeddings obtained at the network outputs
is 0.153, which is a significant improvement over the raw data. This suggests that the
embedding process effectively captures the essential features, leading to better clustering.
The highest silhouette score is observed when t-SNE is applied to the multidimensional
embeddings, reaching 0.190. This indicates that the combination of embedding techniques
with t-SNE results in the most distinct and well-separated clusters of all analyzed data.

Figure 7. Silhouette scores before and after applying t-SNE on raw multidimensional data and
their embeddings.
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To evaluate the suitability of the proposed framework for decision making and to
distinguish legitimate users from illegitimate users according to their typing behavior, we
illustrate the application of this visualization process on two different examples, each repre-
senting a separate user from the CMU dataset. In each case, we visualize all the keystroke
data samples of one user and compare them with 400 randomly selected samples of other
users. In Figure 8, the clusters of blue points represent the multiple password attempts of
the selected user, while the multicolored points represent the randomly selected attempts
of other users. This separation shows the similar password behavior of the selected user,
whose pattern is clearly different from the other users. The same visualization approach is
applied to the second example (the green cluster). Here, the user’s data samples also form
a separate cluster that is distinguishable from the other users’ samples. The consistency
of the results in both examples confirms the validity of the multidimensional data visual-
ization process. The silhouette scores of 0.690 (Figure 8, on the left) and 0.645 (Figure 8,
on the right) justify the effectiveness of the visualization framework for distinguishing
between legitimate and illegitimate users based on their typing patterns using the CMU
keystroke dynamics dataset. This fairly clear distinction highlights the potential of using
the framework to define and visualize individual typing behavior, a critical capability for
detecting unauthorized access attempts.

Figure 8. Examples of visualizations that show password typing patterns of the same user and the
other randomly selected users.

5. Discussion and Conclusions

This paper presents a study of dimensionality reduction-based visualization tech-
niques that embrace complex multidimensional data representations and are useful for
inferences in decision support systems, such as static user authentication. We present
a novel framework that uses deep neural networks to analyze multidimensional data
encoded into images, transforming this data into multidimensional embeddings. The
proposed framework, which combines Siamese neural networks with a triplet loss function
and advanced dimensionality reduction techniques, has been successfully evaluated on the
CMU dataset of keystroke dynamics. The results confirm that the framework is capable of
efficiently processing and visualizing complex, high-dimensional data. By transforming
tabular data into a visual format, the Siamese neural network is able to extract distinctive
features by converting them into multidimensional embeddings.
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By applying dimensionality reduction techniques such as PCA, LLE, UMAP, and t-SNE,
multidimensional embeddings can be represented in 2D space. This representation helps to
identify patterns and anomalies that may not be obvious in high-dimensional space. It also
allows us to explore the relationships and clusters formed by the embeddings. Additionally,
the silhouette score was used to quantitatively evaluate how well the data in the lower
dimensional space represents the original data structure. The results show that the higher
silhouette scores obtained when multidimensional embeddings are visualized using t-SNE
as compared to the raw data highlight the importance of the proposed data visualization
framework for revealing patterns and structures in complex multidimensional data.

The resulting visualizations of multidimensional embeddings have greatly enhanced
the decision support capabilities in the context of user authentication using keystroke
dynamics. The clearer distinction between clusters of users, provided by the proposed
dimensionality reduction-based visualization of embeddings obtained through a deep
neural network, allows for easier detection of anomalous behavior indicative of potential
unauthorized access attempts, as compared to the classical visualization of raw multidimen-
sional data. In addition, the integration of deep neural networks enables the visualization
of new data without the need to retrain the network. This solution proves advantageous in
efficiently processing and analyzing large amounts of data.

While this study has shown promising capabilities to simplify complex data anal-
ysis and increase the efficiency of decision support systems, we face several limitations
related to the study. One of the main limitations is that only one specific dataset was
used to validate the proposed framework. This focus may limit the generalizability of the
findings to different types of multidimensional data and applications. Another limitation
relates to the evaluation of the visualization results in terms of the clusters formed. The
silhouette score was chosen for its capability to measure the quality of clustering, which
was considered appropriate for the initial research on the effectiveness of the proposed
dimensionality reduction methods. However, this metric alone may not fully reflect the
superiority of different algorithms, especially in the presence of complex, multidimensional
data, where many factors determine performance. Addressing these limitations provides
several directions for future research. To increase the generality and applicability of the
proposed solution, its validation needs to be extended to more datasets and application
domains. Although the proposed framework has been successfully employed in the anal-
ysis of keystroke dynamics, its application potential extends to other domains where the
visualization and interpretation of multidimensional data are of key importance in complex
data analysis. Future research will aim to incorporate additional metrics to provide a
more comprehensive evaluation of multidimensional embedding visualization based on
dimensionality reduction.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
CMU Carnegie Mellon University
GADF Gramian Angular Difference Field
GASF Gramian Angular Summation Field
LLE Local Linear Embedding
MDS Multidimensional Scaling
PCA Principal Component Analysis
t-SNE t-Distributed Stochastic Neighbour Embedding
UMAP Uniform Manifold Approximation and Projection
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