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Abstract: The primary function of a mine hoist is the transportation of personnel and equipment,
serving as a crucial link between underground and surface systems. The proper functioning of
key components such as work braking and safety braking is essential for ensuring the safety of
both personnel and equipment, thereby playing a critical role in the safe operation of coal mines.
As coal mining operations extend to greater depths, they introduce heightened challenges for safe
transportation, compounded by increased equipment loss. Consequently, there is a pressing need
to enhance safety protocols to safeguard personnel and materials. Traditional maintenance and
repair methods, characterized by routine equipment inspections and scheduled downtime, often
fall short in addressing emerging issues promptly, leading to production delays and heightened
risks for maintenance personnel. This underscores the necessity of adopting predictive maintenance
strategies, leveraging digital twin models to anticipate and prevent potential faults in mine hoists.
In summary, the implementation of predictive maintenance techniques grounded in digital twin
technology represents a proactive and scientifically rigorous approach to ensuring the continued safe
operation of mine hoists amidst the evolving challenges of deepening coal mining operations. In
this study, we propose the integration of a CNN-LSTM algorithm within a digital twin framework
for predicting faults in mine hoist braking systems. Utilizing software such as AMESim 2019 and
MATLAB 2016b, we conduct joint simulations of the hoist braking digital twin system. Subsequently,
leveraging the simulation model, we establish a fault diagnosis platform for the hoist braking system.
Finally, employing the CNN-LSTM network model, we forecast failures in the mine hoist braking
system. Experimental findings demonstrate the effectiveness of our proposed algorithm, achieving
a prediction accuracy of 95.35%. Comparative analysis against alternative algorithms confirms the
superior performance of our approach.

Keywords: digital twin; brake system; fault diagnosis platform; CNN-LSTM

1. Introduction

The concept of the digital twin, pioneered by Michael Grieves during a product lifecy-
cle management course at the University of Michigan, has undergone significant evolution
since its inception. Initially confined to military and aerospace applications, digital twins
are now experiencing a surge in development across various sectors [1]. Drawing inspira-
tion from their successful implementation in aerospace, the manufacturing industry has
embraced digital twin technology with enthusiasm, deploying it in diverse applications
such as computer numerically controlled machine tools, industrial robotics, and semi-
conductor manufacturing [2]. As mining operations become increasingly sophisticated,
the integration of digital twins is driving advancements in mine intelligence. Notably,
intelligent maintenance protocols for coal mine electromechanical equipment represent a
pivotal component of this intelligence. As diagnostic and predictive maintenance technolo-
gies, including condition monitoring and predictive maintenance, continue to mature, the
demand for effective equipment overhauls escalates correspondingly [3,4]. Consequently,
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digital twin technology, characterized by its real-time synchronization, precise mapping,
and high fidelity, has emerged as a focal point of research in equipment failure preven-
tion. By facilitating seamless interaction and integration between the physical and digital
realms [5,6], digital twins have garnered significant attention and interest within academic
circles.

To enable intelligent prediction, the proposition of establishing a digital twin model
serves as a foundation for constructing a fault monitoring and warning system. By com-
paring measured data with twin data, the model’s high correlation with reality is veri-
fied [7]. This process further elucidates the digital twin’s framework structure, system
characteristics, and its varied application scenarios such as aerospace, manufacturing,
complex measurement and control systems, communication drives, and fusion assem-
blies [8–11]. These applications facilitate precise decision-making through the fusion of
virtual and physical spaces [12]. Digital twin technology stands as a cornerstone in achiev-
ing information–physical system integration, featuring real-time device communication,
virtual space creation, and interactive virtual reality experiences. This technology pro-
vides invaluable guidance for monitoring and evaluating equipment in manufacturing
and experimental contexts [13]. However, challenges persist due to the actual system’s
complexity, data acquisition hurdles, and the current limitations of modeling accuracy [14].
These shortcomings manifest in the model’s limited generalization capabilities during
migration and its tendency to mask weak fault characteristics with stronger ones, leading
to incomplete fault information extraction [15]. Moreover, the intricate nature of braking
system structures, encompassing electrical, hydraulic, and other components, significantly
influences fault diagnosis [16–18]. Considering the correlation between the fault samples
and the attributes of each sample data, the improved algorithm is used to train the sample
data to obtain the decision tree classification model. Finally, the fault samples of the hoist
braking system are trained to obtain the algorithm model, which in turn generates the fault
diagnosis rules. A new approach to address the challenge of determining the state of the
braking system by classifying the data [19] is to construct a human digital twin [20]. By
investigating deep reinforcement learning and its application in intelligent decision-making
models, digital twins are constructed to improve intelligent decision-making in their man-
ufacturing and processing [21]. The rapid development of deep learning has also been
applied to computer engineering, mechanical engineering, civil engineering, power grid
engineering, medicine [22–28] and other fields. High-fidelity and evolvable virtual models
will be the key to the implementation of digital twins in the manufacturing field [29].

These aforementioned articles have conducted pertinent research on both braking
systems and digital twin technology. However, the digital twin model under study exhibits
limited flexibility, encountering issues such as system complexity and practical applica-
tion challenges. Addressing these technological dilemmas, this paper employs software
tools like AMESim and MATLAB to conduct a collaborative simulation of the hoisting
mechanism braking system. Subsequently, it constructs a fault diagnosis platform for the
said system based on the simulation model. Moreover, leveraging Convolutional Neural
Networks (CNNs), renowned for their superior feature extraction capabilities, and Long
Short-Term Memory Neural Networks (LSTMs), known for their adept memory retention,
a CNN-LSTM approach is adopted. This amalgamation effectively discerns fault diagnosis
features within the hoisting mechanism braking system, enhancing diagnostic efficiency
and simplifying system complexities. Lastly, the fusion of virtual and real data significantly
bolsters the accuracy of brake system fault prediction. The overall diagnosis process of this
paper is shown in Figure 1.
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braking, and the movement direction of the piston during the closing process is positive, 

Figure 1. Mine hoist digital twin five-dimensional mode.

2. Theoretical Foundation
2.1. Analysis of Forces on Disc Brakes

Adopting CITIC (CHN)Heavy Industry JKMD4.5 × 4 mine hoist E141A hydraulic
station. The force analysis of a disk brake piston in motion is shown in Figure 2. The piston
is pressurized by a disc spring f2. Pressure generated by the oil, f1; frictional resistance
during motion, f3; and the counterforce that gives positive pressure to the brake disk, N.
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Braking force: when the spring force is greater than the sum of the pressure of the
hydraulic fluid on the piston and the friction force, a positive pressure is generated between
the brake shoe and the brake disc N, the value of which ignores the deformation of the
brake shoe and the brake disc:

N =

{
f2 − f1 ± f3 ± m d2x

dt2 δ = 0
0 δ > 0

(1)

The plus or minus sign in the formula indicates whether the direction of piston
movement is the opposite or the same as the direction of spring force, and δ is the brake
opening clearance.

2.2. Equation of State for Disc Brakes

According to the working principle of the brake, the movement of the brake can be
divided into the opening process, closing process, critical contact, and braking process.

The movement of the brake starts from the maximum opening clearance when braking,
and the movement direction of the piston during the closing process is positive, ignoring
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the elastic deformation of the brake tile and brake disc, so the equation of motion of the
piston is:

f2 − f1 − f3 − N = m
d2x
dt2 (2)

Equation of state for the operation of the brake (3):{ .
x1 = x2.
x2 = 1

m
[
K(xmax − x1)− N − Ap + B

.
x1
] (3)

The variables used in this equation are: x1 for brake piston displacement, x2 for brake
piston speed, xmax for the maximum compression of the disc spring, xmax = x0 + δ. m for
the mass of the brake piston and brake tile, K for brake spring stiffness, B for the coefficient
of viscous friction of the piston movement, N for positive pressure between the brake tile
and the brake disc, and A for the effective action area of the piston cavity.

2.3. Modelling Analysis of Constant Deceleration Braking System

Based on the principle of constant deceleration braking, the control principle block
diagram for the hoist braking system is shown in Figure 3.
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2.4. Proportional Directional Valve Modelling

The transfer function for the voltage displacement of the proportional directional
valve is (4), where Kb represents the current of the electromagnetic proportional directional
valve, ωm f represents the displacement gain, ξm f represents the intrinsic frequency of
the electromagnetic proportional directional valve, and E represents the dimensionless
damping ratio of the electromagnetic proportional directional valve.

Xv(s)
Us(s)

=
Kb
s2

ω2
m f +

2ξm f
ωm f

s2+1

(4)

2.5. Proportional Directional Valve Controlled Brake Modelling

(1) The linearized flow equation for the solenoid proportional directional valve is
(5), where QL is the load flow rate of the solenoid proportional directional valve, Xv is
the spool displacement of the solenoid proportional directional valve, Kqs is the solenoid
proportional directional valve flow–displacement gain, Kv is the solenoid proportional
directional valve flow–pressure coefficient, and Pl is the load pressure Pa.

QL = KqsXv + KvPl (5)

(2) The force equation of the brake piston is (6), where Ap is the effective working area
of the piston, pl is the pressure in the hydraulic chamber, mt is the mass of the working
part driven by the piston, xp is the piston displacement, x0 is the pre-compressed length of
the spring, Bt is the viscous damping coefficient, and Km is the spring stiffness

pl = mt
d2xp

d2t
+ Bt

dxp

dt
+ Kmxp + Kmx0 (6)
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(3) The flow continuity equation in the hydraulic cylinder of the brake is (7), where
Ci is the piston leakage coefficient, Vt is the volume of oil in the working chamber of
the hydraulic cylinder and the inlet line, and βe is the bulk modulus of the oil. Taking
increments to Equations (5)–(7) and performing the Laplace transform yields the following
equations:

QL = Ap
dxp

dt
+ Ci pt +

Vt

βe

dpl
dt

(7)

QL = KqsXv + KvPl (8)

ApPl = mtXps2 + BtXps + KmXpn (9)

QL = AlsXp + CiPl +
Vt

βe
Pls (10)

The block diagram of the proportional valve brake transfer function is shown in
Figure 4 from Equations (8)–(10).
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According to the algorithm of the block diagram, the transfer function with pro-
portional directional valve spool displacement xv as input and brake oil-filled chamber
pressure pl as output is (11)

Pl
Xv

=
Kqs

(
mts2 + Bts + Km

)(
Kce +

Vt
4βe

s
)
(mts2 + Bts + Km) + A2

ps
=

Kqs

A2
p

(
mts2 + Bts + Km

)
Vmt

4βe A2
p
s3 +

(
Kcemt

A2
p

+ BtVt
4βe A2

p

)
s2 +

(
1 + BtKce

A2
p

+ KmVt
4βe A2

p

)
s + KceKm

A2
p

(11)

where Kce is the total flow pressure coefficient. Kce = Kv + Ci.

Since the system satisfies the three conditions, BtKce
A2

p
≪ 1, Km

Kh
≪ 1 and

(
Kce
√

Kmm f

A2
p

)2
≪ 1,

Equation (11) can thus be simplified as:

Pl
Xv

=

KqsXv
KceKm

(
ms2 + Bts + Km

)
(

s
ωr

+ 1
)(

s2

ω2
h
+ 2ξh

ωh
+ 1

) (12)

where ωr is the inertia link turning frequency, ωr = KmKce
Ap

2 , rad/s; ωh is the intrinsic

frequency of the valve control cylinder, ωh =

√
4βe A2

p
Vt

=
√

Kh
mt

, rad/s; Kh is the hydraulic

spring stiffness of the hydraulic cylinder, Kh =
4βe Ap

2

Vt , rad/s; and ξh is the damping ratio

of the valve control cylinder. ξh = Kce
Ap

√
βt
Vt

+ Bt
4Ap

√
Vt

βemt
.

Modeling of hoist deceleration:

a
P1

=
−ApµRz

∑ mRj
(13)
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In transmitter and amplifier modeling, with brake pressure Pl as input and pressure
comparator feedback current Ir as output, the transfer function is a proportional link.

Ir

Pl
= Kp (14)

An amplifier with deceleration deviation aerr as input and control current le as output
can be considered a proportional link.

le
aerr

= Kb (15)

An amplifier that takes current deviation Ierr as input and controls current I output
can be considered a proportional link.

I
Ierr

= Ke (16)

3. Brake System Stuck Cylinder Simulation
3.1. Model Building

The overall framework of the joint simulation is to establish the digital twin physical
model. The modeling process adopts a top-down approach, commencing from the equip-
ment’s composition and its motion laws. For instance, the braking system is segmented
into disc brake, hydraulic station, brake disc, and other components. Field visits to the
mine hoist test bench yield data on its design dimensions and model degradation over
time, informing the physical modeling process. CAD drawings guide the creation of the
digital model, with meticulous attention paid to setting up motion coordinate systems and
applying motion subroutines to components. The assembly process steps are mapped out,
and material types are assigned to ensure the model’s stiffness and strength, preventing
excessive deformation during simulation due to slewing or collisions. Forces and moments
are applied to generate a cohesive joint model, with considerations for component move-
ment and wear derived from field data. Motion constraints are then imposed to produce
the final digital twin model of the hoist.

In the construction of the joint simulation environment, first of all, note that the
AMESim corresponding version of the software version can support MATLAB, paying
attention to the establishment of the two software interfaces as well as setting the corre-
sponding user environment variables. Set the system environment variables in the joint
simulation host. In AMESim, the operation process does not exist in the wire rope on the
drum friction torque changes, so the hoist braking speed reduction is proportional to the
given braking speed reduction. The model of the constant deceleration braking system in
AMESim is shown in Figure 5.

During the joint simulation stage, the hydraulic valve control is managed by the Signal
Builder module in Simulink. The joint simulation module encapsulates the signal interface
between the electro-hydraulic valve and the relief valve as the input, and the braking
deceleration speed of the hoist drum as the output. Figure 6 illustrates the control signals
and the interface module in Simulink.

Figure 7 illustrates the AMESim–Simulink co-simulation program, which outputs the
given deceleration and drum deceleration to the workspace using the simout module.
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3.2. Simulation Results

In order to detect the change in deceleration in the braking process, the relationship
between the pressure and deceleration of the braking system is finally obtained by measur-
ing the disc brake oil pressure and calculating the angular acceleration of the drum. The
simulation settings of the hoist are shown in Table 1, and the simulation results are shown
in Figure 8.

Table 1. Elevator simulation process.

Times Hoist Action

0~2 s Air accumulator charging
2~5 s Brake opening
5~8 s Safety brake
8~10 s Elevator stop
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Simulation results analysis: the initial speed of the equipment running at constant
deceleration braking is 5.1 m/s−2, and then it decreases to 1.4 m/s−2; the initial stage of
constant deceleration braking has a slow change in speed, and then it decreases according
to a certain deceleration. The reason is that there is a process of brake closing, applying
the gate, and regulating the pressure during the application of the gate, during which
the deceleration of the elevator rises to the set deceleration, and then the deceleration is
maintained at a constant level, and as the brake oil chamber pressure decreases, the brake
goes through the process of closing and applying the gate, and then it tends to stabilize for
a period of time. The brake oil cavity pressure decreases, the brake undergoes the process
of closing and applying the brake, the brake deceleration rises from 1.4 m/s−2 to about 3.7
m/s−2, and then tends to be stable for a period of time; the brake system pressure obtained
by the simulation decreases from the opening pressure of 11.5 MPa to 3.9 MPa, and then
fluctuates in the interval, and then tends to be stable, and the results verify the reliability of
the simulation platform.

4. Experimental Validation

The sensor design for the hoist experimental platform primarily focuses on monitoring
the clearance between the brake discs, necessitating placement on the end cover of the
disc brake. Pressure sensors are strategically installed within the outlet oil circuit of the
hydraulic station and securely fastened using threaded holes. Additionally, the pressure
sensor for the accumulator is securely sealed with an additional sealing ring within the
inlet oil circuit block. The experimental process involves gathering data from five sets of
acceleration times during braking deceleration, along with five sets of data from normal
safe braking scenarios and instances where the pressure of the relief valve gradually
decreases. These data sets are illustrated in Figures 9 and 10. Figure 9 depicts the test
results showcasing the performance of the relief valve during braking deceleration, while
Figure 10 exhibits the test results focusing on the relief valve performance and the pressure
within the braking system.
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By adjusting the pressure of the relief valve, we can simulate the decline in its per-
formance and its ability to stabilize pressure. In this study, we tested the relief valve
under varying conditions within a constant deceleration braking system. Initially, the relief
valve operated at a pressure of 7 MPa. Subsequently, we systematically reduced the relief
valve pressure. As shown in Figure 9, as the relief valve pressure decreases, the rate of
deceleration in constant motion also decreases. Simultaneously, as depicted in Figure 10,
the reduced pressure corresponds to a decrease in safety braking effectiveness.

In this paper, in AMEsim, by changing the pressure of the relief valve, the simulation
is achieved to produce a decline in the performance of the relief valve. The pressure
stabilization capability degradation simulation guides the basis of the experiments, and
the experimental results are shown in Figure 10. As shown in Figure 10, the relief valve
braking acceleration rose from 1.4 ms−2 to 5.1 ms−2 and finally stabilized at about 4.0 ms−2.
Not only that, but the braking system pressure dropped from 12 MPa to 0 MPa and then
rose to 3 MPa to stabilize, which corresponds to the simulation results, and both of them
were mutually verified with a certain degree of reliability.

5. Brake System Failure Prediction Based on CNN-LSTM Algorithm
5.1. Principles of CNN-LSTM

Since the data obtained from the dynamic system of the lifting mechanism follow
a periodic behavioral pattern, it is appropriate to apply the time series method for pre-
processing. A CNN is a type of multilayered neural network that utilizes a feed-forward
architecture. It optimizes the size of the convolution kernel, the number of kernels, and
the operation step using the gradient descent method of bi-directional propagation. The
network’s processing of signals involves two main steps. Firstly, it performs an initial
screening of the incoming data, reducing noise signals by limiting their magnitude. Sec-
ondly, it extracts feature signals from the preprocessed data. The second step involves
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extracting feature signals, which involves automatically condensing the feature parameters
that are appropriate for use as training data, ultimately resulting in the completion of fault
prediction.

In this paper, when constructing the convolutional neural network, based on its main
data for time series data, a one-dimensional convolutional neural network model is used.
Set each convolutional layer after selecting the appropriate nonlinear activation function,
then process them through the average pooling layer, maximize the soft output layer, and
finally output the fault type through the fully connected layer. The convolutional neural
network composition is shown in Figure 11.
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In the data selection session, intercept a fixed period for the sample set, selecting
p ∗ 2m sampling points as the sample set, and then assign the training set, sample set, and
validation set with more randomness (where p and m are positive integers).

Recurrent neural networks (RNNs) indeed exhibit inherent limitations, including the
rapid vanishing or explosion of gradients, often attributed to the exponential growth in
multiplicative computations. In contrast, long short-term memory networks (LSTMs),
serving as an enhanced variant of convolutional networks, have demonstrated efficacy,
particularly in fault recognition domains. LSTMs offer accelerated computational speeds,
effectively addressing issues related to excessively high gradients and gradient vanishing.
Consequently, this study leverages a hybrid architecture combining LSTM and convo-
lutional neural network (CNN) methodologies for predicting brake system faults. The
operational workflow of the LSTM unit, as depicted in Figure 12, involves the computation
of input, output, and forget gates. Leveraging the state from the previous time step along-
side the current input, these gates regulate information flow while concurrently updating
the memory unit. The amalgamation of input and forget gate states with the memory
unit facilitates the transfer of internal states to the external environment. This approach
enhances fault prediction accuracy by dynamically adjusting the network’s internal states,
thereby augmenting the model’s adaptability and performance.

Long short-term memory networks are designed to address challenges such as ex-
ploding and vanishing gradients, which commonly affect the training of traditional neural
networks. LSTMs facilitate the retention and integration of information over extended
periods, making them particularly suited for processing time series data. In practical
applications, LSTMs have been effectively employed for tasks like predictive maintenance,
where they can leverage transfer learning techniques to adapt pre-trained models to new
domains, such as monitoring the performance of motorized systems in mining operations.
LSTMs incorporate sophisticated mechanisms such as gating units—which regulate in-
formation flow—and memory cells, which store historical data critical for understanding
temporal dependencies. These features enable the models to update their parameters more
effectively through backpropagation over time. Despite their capabilities, the inherent com-
plexity of LSTMs often requires significant computational resources. They are composed
of multiple layers with numerous parameters, necessitating extensive training datasets to
prevent overfitting. Additionally, LSTMs maintain a sequence-dependent computational
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process, which challenges their parallelization and can slow down training, particularly on
large datasets. Each parameter update within the network takes into account not only the
current input but also the previously accumulated state, which is crucial for its memory
function but computationally demanding. Thus, while LSTMs offer substantial advantages
in handling long-term dependencies, they also come with computational trade-offs that
can impact their efficiency and scalability.

Processes 2024, 12, x FOR PEER REVIEW 11 of 18 
 

 

vanishing. Consequently, this study leverages a hybrid architecture combining LSTM 
and convolutional neural network (CNN) methodologies for predicting brake system 
faults. The operational workflow of the LSTM unit, as depicted in Figure 12, involves the 
computation of input, output, and forget gates. Leveraging the state from the previous 
time step alongside the current input, these gates regulate information flow while con-
currently updating the memory unit. The amalgamation of input and forget gate states 
with the memory unit facilitates the transfer of internal states to the external environ-
ment. This approach enhances fault prediction accuracy by dynamically adjusting the 
network’s internal states, thereby augmenting the model’s adaptability and performance. 

Long short-term memory networks are designed to address challenges such as ex-
ploding and vanishing gradients, which commonly affect the training of traditional neu-
ral networks. LSTMs facilitate the retention and integration of information over extend-
ed periods, making them particularly suited for processing time series data. In practical 
applications, LSTMs have been effectively employed for tasks like predictive mainte-
nance, where they can leverage transfer learning techniques to adapt pre-trained models 
to new domains, such as monitoring the performance of motorized systems in mining 
operations. LSTMs incorporate sophisticated mechanisms such as gating units—which 
regulate information flow—and memory cells, which store historical data critical for un-
derstanding temporal dependencies. These features enable the models to update their 
parameters more effectively through backpropagation over time. Despite their capabili-
ties, the inherent complexity of LSTMs often requires significant computational re-
sources. They are composed of multiple layers with numerous parameters, necessitating 
extensive training datasets to prevent overfitting. Additionally, LSTMs maintain a se-
quence-dependent computational process, which challenges their parallelization and can 
slow down training, particularly on large datasets. Each parameter update within the 
network takes into account not only the current input but also the previously accumu-
lated state, which is crucial for its memory function but computationally demanding. 
Thus, while LSTMs offer substantial advantages in handling long-term dependencies, 
they also come with computational trade-offs that can impact their efficiency and scala-
bility. 

The LSTM networks devised in this study create a sequential constructor by speci-
fying the desired number of neurons, setting the number of iterations, and defining the 
data size. The size of the validation set is determined by the segmentation training test 
validation procedure. To mitigate overfitting, incorporate a dropout layer to regulate the 
weights and choose a non-linear activation function. After performing a comparison, 
choose the optimizer and the loss function. Utilize the flattening layer to expand the da-
ta. Specify the number of outputs for the fully connected layer and employ the soft-max 
function to generate the recognition results. 

 
Figure 12. Computing process of the LSTM model. Figure 12. Computing process of the LSTM model.

The LSTM networks devised in this study create a sequential constructor by specifying
the desired number of neurons, setting the number of iterations, and defining the data size.
The size of the validation set is determined by the segmentation training test validation
procedure. To mitigate overfitting, incorporate a dropout layer to regulate the weights
and choose a non-linear activation function. After performing a comparison, choose the
optimizer and the loss function. Utilize the flattening layer to expand the data. Specify
the number of outputs for the fully connected layer and employ the soft-max function to
generate the recognition results.

Assuming that the features from the operation of the hoist are F = ( f1, f2, · · · , fn) and
these features are labeled as L = (l1, l2, · · · ln), they are divided into batches by the number
of sampling points mentioned above, and the features and labels of each batch are:

( f1, f2, · · · fm), lm
( f2, f3, · · · fm+1), lm+1
...
( fn−m+1, fn−m+2, · · · fn), ln

(17)

The output is the labels of different feature batches, and each time, the result is the
result of all the previous feature training, as shown in Figure 13 for the feature labels.
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This work presents a combination of CNN and LSTM algorithms to leverage the
benefits of each for fault identification. The CNN utilizes the convolutional kernel to extract
features from the sample, whereas the LSTM is capable of accessing the long-term aspects of
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these features. By incorporating Rectified Linear Unit (ReLU) activation functions between
the convolutional and pooling layers, the convergence of the model is expedited. The
model utilizes fused features from a convolutional neural network to describe the data.
These data are then passed through a LSTMs. The data are reconstructed into inputs that
can be accepted by the LSTM. They are then screened for retention and abandonment using
the Sig mod activation function. This function selects important data to be preserved and
forgettable data to be discarded. The preserved data are continually updated by obtaining
data from the input gate. With the assistance of the information carried by the output gate,
the updated data are transferred to the next time step. The overall network structure is
depicted in Figure 14.
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5.2. Principles of CNN-LSTM

To underscore the superiority of the algorithm presented in this paper, we introduce a
convolutional neural network (CNN) and long short-term memory (LSTM) for comparative
analysis. The input layer neurons for the CNN, LSTM, and CNN-LSTM are set to 6, with
a maximum of 30 training rounds, and the training–test–validation set ratio is 8:1:1. The
results obtained are shown in Figures 15–20.
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RMSE, MAE, and MAPE were used as the main evaluation indicators, and the pre-

dicted and true values were, respectively:
ˆ
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{
ˆ

y1,
ˆ

y2, . . . ,
ˆ

yn

}
y = {y1, y2, . . . , yn}, The

range is [0,+∞), where n denotes the number of samples, yi denotes the true value, and
ˆ
yi

is the predicted value.
Root Mean Square Error (RMSE): The smaller the value of RMSE, the more accurate

the prediction of the model.

RMSE =

√
1
n∑n

i=1

(
ˆ
yi − yi

)2
(18)

Mean Absolute Error (MAE): When the predicted value precisely matches the true
value, as in the case of a perfect model, the error is zero. As the error increases, so does the
error value. Therefore, a smaller Mean Absolute Error (MAE) indicates higher accuracy in
the predictive model

MAE =
1
n∑n

i=1 |
ˆ
yi − yi| (19)

Mean Absolute Percentage Error (MAPE): A Mean Absolute Percentage Error (MAPE)
of 0% signifies a flawless model, while a MAPE exceeding 100% indicates a subpar model.
Generally, the lower the MAPE value, the higher the accuracy of the predictive model.

MAPE =
100%

n ∑n
i=1 |

ˆ
yi − yi

yi
| (20)

Table 2 shows the evaluation results of the main parameters of the three neural
networks after training using RMS, MAE, and MAPE as the main evaluation indexes. It can
be observed that the main evaluation parameter indicators of the test set after CNN-LSTM
training are better.

Table 2. Prediction model key evaluation index scores.

Training Models RMSE MAE MAPE

CNN-LSTM 6.0062 3.4943 7.0451
LSTM 16.0224 4.6422 8.3186
CNN 14.2554 3.9905 8.3948

In the constant deceleration braking simulation, the braking system operates under
three conditions: normal operation, oil pressure leakage, and air mixed with the cylinder.
Each condition comprises 128 sets of samples, with each sample containing 500 sets of
training data. In total, 80% of the training data are selected for model training, while 10%
are allocated for both testing and validation sets. The input layer consists of three neurons,
with nonlinear activation functions chosen as linear rectifiers. A maximum pooling layer of
(2, 2) is set up, followed by data flattening. To prevent overfitting and mitigate gradient
disappearance, stochastic deactivation weights are set to 0.3. The model is then trained
through two fully connected layers to output fault diagnosis classifications (Figure 21).



Processes 2024, 12, 837 15 of 17

Processes 2024, 12, x FOR PEER REVIEW 15 of 18 
 

 

subpar model. Generally, the lower the MAPE value, the higher the accuracy of the pre-
dictive model. 𝑀𝐴𝑃𝐸 ൌ ଵ଴଴%௡ ∑ |௡௜ୀଵ ௬̂೔ି௬೔௬೔ |  (20)

Table 2 shows the evaluation results of the main parameters of the three neural 
networks after training using RMS, MAE, and MAPE as the main evaluation indexes. It 
can be observed that the main evaluation parameter indicators of the test set after CNN-
LSTM training are better. 

Table 2. Prediction model key evaluation index scores. 

Training Models RMSE MAE MAPE 
CNN-LSTM 6.0062 3.4943 7.0451 

LSTM 16.0224 4.6422 8.3186 
CNN 14.2554 3.9905 8.3948 

In the constant deceleration braking simulation, the braking system operates under 
three conditions: normal operation, oil pressure leakage, and air mixed with the cylin-
der. Each condition comprises 128 sets of samples, with each sample containing 500 sets 
of training data. In total, 80% of the training data are selected for model training, while 
10% are allocated for both testing and validation sets. The input layer consists of three 
neurons, with nonlinear activation functions chosen as linear rectifiers. A maximum 
pooling layer of (2, 2) is set up, followed by data flattening. To prevent overfitting and 
mitigate gradient disappearance, stochastic deactivation weights are set to 0.3. The mod-
el is then trained through two fully connected layers to output fault diagnosis classifica-
tions (Figure 21). 

 
Figure 21. Digital twin model training results. 

Figure 21 shows the digital twin model training results, the trained model is mi-
grated to the actual sensor data, using the same convolutional neural network layer as 
the model training, the sensor data training results are shown in Figure 22. 

Figure 21. Digital twin model training results.
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The predictive model underwent migration to integrate with real-time sensor data,
achieving a fault prediction accuracy of 95.35%. This advancement effectively bridges
the gap between model and data in predictive maintenance, enhancing the feasibility of
predictive maintenance strategies. Specifically, in the design of the maintenance scheme,
priority was given to the hydraulic system, brake discs, and brakes within the brake system.
Evaluation of the predictive maintenance efficacy was conducted using a fuzzy evaluation
method, confirming the effectiveness of the implemented predictive maintenance measures.

6. Conclusions

This study utilizes a data-driven methodology to determine the parameters of each
mathematical model for the processes. Subsequently, the data-driven mathematical model
is revised to the digital twin model. The study conducted a comparative analysis by
implementing CNN, LSTM, and CNN-LSTM models. The experimental results confirmed
that the CNN-LSTM predictive maintenance model is more accurate in predicting faults
and monitoring the health of the braking system during operation. Additionally, the study
verified the feasibility of using the digital twin model for predictive maintenance in the
braking system. The CNN and LSTM models were also compared with traditional fault
diagnosis methods. Based on the analysis, the following conclusions were drawn. In
addition, given the diverse array of mechanical failures and the imperative to integrate
numerous sensors, there exists ample opportunity for ongoing iterative refinement of
the constructed lifting mechanism system model. Future research endeavors will extend
towards employing real-time online updating techniques to continuously enhance the
accuracy and efficacy of the digital twin model.

A digital twin model of the mine hoist braking system was meticulously crafted,
employing advanced software tools such as AMESim and MATLAB for co-simulation. This
approach facilitated the emulation of real-world scenarios with remarkable accuracy. By
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harnessing the simulation capabilities of AMESim, intricate components of the physical
model were faithfully replicated within the digital realm. Furthermore, the inherent
complexity of reproducing fault scenarios was effectively addressed through the strategic
injection of faults into the twin model. This methodological fusion of digital and physical
realms not only enhances the precision of fault analysis but also streamlines the diagnostic
process, ultimately optimizing operational reliability and safety within the mine hoist
braking system.

Furthermore, the digital twin failure was experimented with. Adopting virtual–real
combination digital twin technology, based on the construction of a physical model, the
iterative updating of data-driven model parameters, data analysis, and fully considering
the changes in key parameters in the whole life cycle of the braking system, intelligent
prediction of the overall braking system of the hoisting machine is carried out, intelligent
diagnosis of the faults is carried out, and predictive maintenance is carried out for the faults
that may arise in the future, so as to reduce unplanned shutdowns and ensure that the
mine hoisting machine operation is safe.

Finally, the CNN-LSTM was used for fault prediction. The predictive maintenance
method of the digital twin model and data fusion was established, the fault prediction
process was established, the simulation data and the actual operation data of normal
operation and fault data were pre-processed by two filtering data, the feature parameters
were extracted, and after 30 rounds of Bayesian optimization, the accuracy of the CNN-
LSTM prediction algorithm was up to 95.35% relative to CNN and LSTM, which solves the
predictive maintenance classification prediction algorithm with poor accuracy.
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