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Abstract: In this paper, a polarization selective broad/triple-band metamaterial absorber based on
SiO2 all-dielectric is designed and studied. The absorber works in a long infrared band (8–14 µm). It is
composed of cuboid and trapezoidal silica structures in the upper layer and metal plates in the lower
layer. We calculate the absorption results of the metamaterial absorber at different polarization angles
as the polarization angle of incident light increases from 0◦ to 90◦; that is, the light changes from Ex
polarization to Ey polarization. The results show that the absorption rate of the structure is more than
90% in the range of 8.16 to 9.61 µm when the polarization angle is 0◦. When the polarization angle of
the incident light is less than 45◦, the absorption result of the absorber does not change significantly.
When the polarization angle of the incident light is greater than 45◦, three absorption peaks appear
in the long infrared band, realizing the selectivity of the polarization of the incident light. When
the polarization angle increases to 90◦, the absorptivity of the two absorption peaks at λ = 9.7 µm
and 12.3 µm reaches more than 85%. In addition, the sensitivity analysis of the length, width, and
thickness of the all-dielectric metamaterial absorber and the calculation of the electric field of this
structure are also carried out. The designed all-dielectric metamaterial absorber has polarization
selection and perfect absorption characteristics and has a broad application prospect.

Keywords: polarization selective; absorber; all-dielectric metamaterials; long infrared regime

1. Introduction

A metamaterial is a kind of structural material composed of artificially designed sub-
wavelength structural elements arranged periodically. It has some unusual electromagnetic
properties that natural materials do not have, such as a negative refractive index [1,2], elec-
tromagnetic stealth [3], and a superlens effect [4,5]. The wavelength, phase, polarization
state, angular momentum, and propagation direction of electromagnetic waves can be
flexibly and effectively controlled by metamaterials. A metamaterial absorber is a kind of
artificial device that can adjust electromagnetic parameters by shape, structure, and size,
and then achieve a high absorption rate of electromagnetic waves in a specific frequency
range [6–8]. It has the advantages of wide bandwidth, polarization selection, versatility,
and so on. It has good applications and great prospects in stealth technology, polarization
deflection, thermal imaging, perfect lenses, and other fields [9–11]. The concept of a perfect
absorber was first proposed by Landy et al. in 2008 [6]. From the point of view of the
absorption effect, perfect absorbers can be divided into narrowband [6], broadband [12],
dual-band [13], multi-band [14,15] perfect absorbers, and polarization-insensitive [16] per-
fect absorbers. At present, most tunable metamaterial absorbers are based on graphene
and alum. The tunable metamaterial absorber is designed by exploiting the sensitivity of
graphene to external electric fields. The electromagnetic parameters of the metamaterial
absorber are tuned by applying different voltages to graphene to change the Fermi level
of graphene. The different states of alum before and after the phase transition, especially
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the metal state after the phase transition, were used to realize the tuning characteristics
of the metamaterial absorber. Tunable metamaterial absorbers, which can adjust the per-
formance of metamaterial absorbers by changing the external field, have received much
attention [17–19]. In addition to changing the external field, the electromagnetic character-
istics of the metamaterial absorber can be adjusted by changing the polarization direction
of the incident electromagnetic wave, so that the metamaterial absorber can absorb the inci-
dent electromagnetic wave in different frequency ranges at different polarization directions
and then achieve the selective absorption of the incident wave in a specific polarization
direction, showing the polarization selective absorption phenomenon. Polarization selec-
tive absorption plays an important role in communication [20–22], radar [23], imaging
systems [5,24], etc.

At present, most metamaterial absorbers contain metal materials [25], and the design
structure of such metamaterial absorbers is mostly a sandwich structure. The upper layer
of the structure is a subwavelength metal structure designed manually, the middle is a
dielectric layer, and the bottom is a metal layer. H. Tao [26] et al. used a metal ring resonant
structure, a dielectric layer, and a metal film to achieve a narrowband perfect absorption
rate of up to 97% at 1.6 THz. In 2018, Li et al. designed a dual-band absorber [27], which
uses composite layers composed of germanium and gold to form a trapezoidal structure,
and the structure achieves more than 80% absorption at 4~6.3 µm. The design idea of such
metal structures is widely used [28,29]. However, metamaterial absorbers containing metal
structures are difficult to use in large areas due to their narrow bandwidth, high ohmic loss,
low melting point, difficulty in preparation, and high price. The use of dielectric materials
to design the structure of the all-dielectric metamaterial absorber can minimize the loss of
the dielectric material to the incident electromagnetic wave. With the gradually mature
medium manufacturing process and relatively low price, the all-dielectric metamaterial
absorber has received widespread attention [30–33]. In 2020, Si [34] et al. designed a
broadband perfect absorber based on all-dielectric silicon, which achieved more than 95%
perfect absorption between 564 nm and 584 nm, and more than 85% absorption results
can also be obtained through experimental fabrication. Compared with metal absorbers,
all-dielectric metamaterials are easier to broaden the absorption bandwidth and are more
resistant to high temperatures [35–37], so they have broad application prospects.

In this paper, an all-dielectric polarization selective metamaterial absorber based on
silicon dioxide is designed to achieve perfect absorption of the incident wave in a specific
broadband. The absorption results of the metamaterial absorber at different polarization
angles are calculated when the polarization angle of incident light increases from 0◦ to 90◦;
that is, the light changes from Ex polarization to Ey polarization. The calculated results
show that the absorption rate of the structure is more than 90% between 8.16 µm and
9.61 µm when the polarization angle is 0◦. At the resonance wavelength λ = 8.5 µm, the
highest absorption rate reaches 99.5%. In addition, the structure has strong polarization
angle selectivity of the incident light. When the polarization angle of the incident light is
less than 45◦, the absorption result of the absorber does not change significantly. When the
polarization angle of the incident light is greater than 45◦, three absorption peaks appear
in the long infrared band. When the polarization angle is increased to 90◦, the absorption
rates of the two absorption peaks at λ = 9.7 µm and λ = 12.3 µm both reach more than
85%. The proposed all-dielectric metamaterial absorber works in a long infrared regime
and can achieve almost perfect absorption in a specific wavelength range, which can be
used to manufacture infrared stealth materials [9]. All-dielectric polarization-selective
absorbers can be used to selectively absorb light in the polarization direction in infrared
optical imaging to obtain clearer and high-resolution images. It is widely used in practical
imaging equipment such as thermal imagers and infrared cameras [38]. In addition, this
research can also be applied to optical communication [39], optical sensors, solar cells, and
other fields, providing new possibilities for research in these fields.
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2. Design of Broadband Absorber Based on All-Dielectric

The structure of the all-dielectric metamaterial absorber is shown in Figure 1. We
combined the trapezoidal SiO2 structure with the cuboid SiO2 structure and placed them
on the bottom metal plate to form a structural unit. The bottom length of the trapezoid
SiO2 structure l2 is 1 µm, the top length l3 is 0.6 µm, and the height h2 is 1.3 µm. The length
of the upper and lower sides of the cuboid arranged on the left side l4 is 0.6 µm, the height
of the cuboid h1 is 2.5 µm, and the length of the two SiO2 structures is 2 µm. Both structures
were placed on a metal plate with a period l1 of 1.6 µm, and the thickness of the metal plate
was 100 nm, which can completely prevent light from penetrating through the absorber.
The permittivity of SiO2 and Au in the structural calculation were selected from Palik’s
work [40].
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Figure 1. (a) Broadband absorber structure based on SiO2, (b) side view.

3. Results and Discussion
3.1. Results of Broadband Absorber

The electromagnetic wave absorption rates of the two components of the above broad-
band absorber structure are calculated under the condition that the polarization direction
of the incident light is along the Ex direction and the normal incident direction, and the
calculation results are shown in Figure 2. The black solid line represents the absorption
result of a single trapezoidal structure absorber, and the black dotted line represents the
absorption result of a single rectangular structure absorber. It can be seen that in the band of
7~11 µm, these two structures have certain absorption phenomena. The bandwidth of the
trapezoidal structure is narrow and approximately between 9 and 10 µm. The absorption
rate of the absorption line of the rectangular structure is low and tends to be in the range
of 8–9 µm. The combination of these two absorber structures can superpose these two
continuous peaks to form a relatively complete broadband absorption peak, as shown in
Figure 2, with the red solid line. The width of more than 90% absorption rate (8.16–9.61 µm)
is about 1.45 µm. At the resonance wavelength λ = 8.5 µm, the maximum absorption rate is
more than 99.5%, which has a good absorption performance. The FWHM of the structure is
2.26 µm.

In order to better study the electromagnetic wave absorption mechanism of the broad-
band absorber, we have carried out the electric field calculation of this structure at the
polarization angle of the incident light of 0◦, as shown in Figure 3:
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The electric field E distributions at 7.5 µm, 8 µm, 8.6 µm, and 9.7 µm bands were
selected for analysis. Figure 3a shows the electric field distribution at a wavelength of
7.5 µm. Compared with the electric field distribution at a wavelength of 9.7 µm in Figure 3d,
the electric field intensity is only half, and the absorption rate is increased from 16% at
7.5 µm to 86% at 9.7 µm. As can be seen from the electric field distribution in Figure 3b,
the electric field at the wavelength of 8 µm is mainly distributed inside the top of the
rectangular absorber. As can be seen from the electric field distribution in Figure 3c, when
the wavelength is redshifted to 8.6 µm, the electric field intensity inside the rectangular
absorber decreases, and the electric field appears on the top of the trapezoidal absorber. At
the same time, the coupling between the rectangular absorber and the trapezoidal absorber
occurs, so that the absorption rate reaches the highest value of 99.5%. When the wavelength
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is redshifted to 9.7 µm, as shown in Figure 3d, the electric field is mainly distributed on
both sides of the trapezoidal absorber, and there is no electric field distribution on the top
of the rectangular absorber, so the absorption rate drops to 86%.

3.2. Polarization Direction Analysis of Incident Light in Perfect Absorber

Figure 4 shows the comparison of absorption spectra under different polarized light
vertical incidences. When the polarization angle of light increases from 0◦ to 90◦, that
is, the light changes from Ex polarization to Ey polarization, we can see that with the
increasing polarization angle, three modes of absorption peaks appear in the band of
6~15 µm: The corresponding bands of λ1, λ2, and λ3 are 8.5 µm, 9.7 µm, and 12.3 µm,
respectively. In the band of 6~15 µm, the absorption peak has a certain redshift with the
increase in the polarization angle. At the same time, the wide absorption peak between
8 µm and 10 µm is divided into two absorption peaks λ1 and λ2 with narrow FWHM due
to the interference effect caused by light excitation at different wavelengths in the medium.
When the polarization angle of the incident light is greater than 45◦, a gradually enhanced
absorption peak (mode λ3) appears in the near ultra-far infrared band.
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It can be seen from Figure 4 that the absorption spectrum of the all-dielectric metama-
terial absorber approximately takes the polarization angle of 45◦ as the selection dividing
line. When the polarization angle of the incident light is less than 45◦, the absorption results
of the absorber do not change significantly. When the polarization angle of the incident
light is greater than 45◦, three absorption peaks appear in the long infrared band. When
the polarization angle is increased to 90◦, the absorption rates of the two absorption peaks
at λ = 9.7 µm and λ = 12.3 µm both reach more than 85%, as shown in Figure 5.

3.3. Comparison of Different Parameters of Broadband Absorber

In the actual production, due to technical reasons, the actual value of the produced
structure is generally different from the theoretical value. In order to consider the influence
of various parameters on the final result, we carry out the sensitivity analysis of various
parameters of the broadband absorber when the polarization angle of the incident light is
0◦ and 90◦, including: the top of the trapezoid l3, the bottom of the trapezoid l2, the width
of the rectangle l4, the height of the trapezoid h2, and the height of the rectangle h1.
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Figure 5. Absorption curves at an incidence angle of 90◦.

Figure 6 shows the influence of changing the lower side length l2 of the trapezoid in
the absorber structure on the absorption results when the other parameter conditions are
unchanged. Figure 6a,b, respectively, show the changing absorption curves of the incident
light with different l2 lengths under Ex polarization and Ey polarization. In Figure 6a, it
can be seen that when the polarization angle of the incident light is 0◦, the width of the
absorption peak is slightly reduced and the absorption rate is gradually increased with the
gradual increase of l2 length. When the length of l2 is 0.6 µm, a small wave valley appears
at the wavelength of 9 µm. The overall absorption rate of the absorber can maintain above
80% during the change of l2. In Figure 6b, it can be seen that when the polarization angle of
the incident light is 90◦, the absorption of the first two absorption peaks does not change
significantly with the increase in the length of l2. The absorption peak at λ = 12.3 µm
gradually decreases, and the overall absorption frequency does not change.
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l2 under Ey polarization.

Figure 7 shows the influence of changing the upper side length l3 of the trapezoid
in the absorber structure on the absorption results when the other parameters remain
unchanged. Figure 7a,b, respectively, show the changing absorption curves of the incident
light with different l2 lengths under Ex polarization and Ey polarization. In Figure 7a, it
can be seen that the width of the absorption peak decreases gradually when l3 decreases
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from 0.6 µm, the width of the absorption peak exceeding the 80% absorption rate decreases
from 1.7 µm to 1 µm when l3 = 0.2 µm, and the absorption trough appears at 9 µm when l3
increases from 0.6 µm to 1.0 µm. The absorption rate decreased to 70%, and the width of
the absorption peak gradually increased. In Figure 7b, when the polarization angle is 90◦,
with the increase in l3 length, the absorption at λ = 12.3 µm has a slight increase. On the
whole, the absorption effect of changing l3 length has no obvious change.
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Figure 8 shows the influence of changing the height h2 of the trapezoid in the absorber
structure on the absorption results when the other parameter conditions are unchanged.
Figure 8a,b, respectively show the changing absorption curves of the incident light with
different h2 lengths under Ex polarization and Ey polarization. It can be seen from Figure 8a
that when the polarization angle of the incident light is 0◦, the trapezoid height h2 increases
or decreases with the standard of 1.3 µm, and a gradually enhanced trough appears at 9 µm,
and gradually redshifts with the increase of the height. When h2 increases from 1.3 µm
to 1.7 µm, the absorption rate decreases obviously, but it can be maintained at more than
85%. It can be seen from Figure 8b that when the polarization angle of incident light is 90◦,
the absorption rate in the far infrared band increases significantly with the increase of h2.
When the height of h2 decreases from 0.9 µm to 1.7 µm, the absorption rate at λ = 12.3 µm
increases from 80% to 90%.
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Figure 9 shows the influence of changing the height h1 of the rectangle in the absorber
structure on the absorption results under the condition of the other parameters unchanged.
Figure 9a,b, respectively, show the changing absorption curves of the incident light with
different h1 lengths under Ex and Ey polarization. It can be seen from Figure 9a that
when the polarization angle of incident light is 0◦, the trapezoidal height h1 increases or
decreases with the standard of 2.5 µm, and the absorption rate decreases. When h1 increases
from 2.5 µm to 2.9 µm, a gradually deeper trough appears. It can be seen from Figure 9b
that when the polarization angle of incident light is 0◦, the absorption rate also increases
significantly with the increase in h1.
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Figure 9. (a) Absorption curves of different h1 under Ex polarization; (b) absorption curves of
different h1 under Ey polarization.

Figure 10 shows the influence of changing the side length l4 of the rectangle in the
absorber structure on the absorption results when the other parameter conditions are
unchanged. Figure 10a,b, respectively, show the changing absorption curves of the incident
light with different l4 lengths under Ex polarization and Ey polarization. It can be seen
from Figure 10a that when the rectangular side length l4 gradually increased from 0.6 µm to
1.0 µm, the absorption rate in the 8–9 µm band decreased significantly, while there was no
significant change in the 9–11 µm band. It can be intuitively seen from Figure 10b that with
the gradual increase in the length of l4, the absorption peak at λ = 8.5 µm and λ = 12.3 µm
decreases, and the absorption peak at λ = 9.7 µm increases.
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In the table, we summarize the sensitivity of each parameter when the incident light is
Ex-polarized and Ey-polarized, and the results are shown in Table 1. When the polarization
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angle of the incident light is 0◦, we take the absorption width exceeding 1 µm when the
absorption rate exceeds 80% as the tolerance error for statistical analysis. It can be obtained
that the height h2 of the trapezoid is a non-sensitive parameter. The height of the rectangle
h1 is a non-sensitive parameter, and the error requirements can be met within 2.8 µm.
Similarly, the lower side length l2 of the trapezoid and the side length l4 of the rectangle
are both non-sensitive parameters. The upper side length l3 of the trapezoid is a sensitive
parameter, which can only achieve a width of more than 1 µm when the absorptivity
exceeds 80% within the error range of ±0.2 µm. When the polarization angle of the incident
light is 90◦, the absorption rate of more than 80% at λ = 12.3 µm is considered as an
acceptable error. The height of the trapezoid h2, the height of the rectangle h1, the length of
the upper side of the trapezoid l3, and the length of the lower side of the trapezoid l2 are all
non-sensitive parameters, and the length of the rectangle l4 is a sensitive parameter, which
can only meet the error requirements when the error is less than 0.6 µm.

Table 1. Sensitivity statistics of various parameters of broadband absorber during Ex and Ey polarization.

Parameters (µm) Ex (Error µm) Ey (Error µm)

The height of the trapezoid h2 1.3 Non-sensitive parameters
(≤2) Non-sensitive parameters (–)

The height of the rectangle h1 2.5 Non-sensitive parameters
(≤2.8) Non-sensitive parameters (–)

The upper side length of the
trapezoid l3

0.6 Sensitive parameters (±0.2) Non-sensitive parameters (–)

The lower side length of the
trapezoid l2

1 Non-sensitive parameters
(0.6 to 1.4) Non-sensitive parameters (≤1.4)

The width of the rectangle l4 0.6 Non-sensitive parameters
(≤1.0) Sensitive parameters (≤0.6)

4. Conclusions

In this paper, a polarization selective broadband metamaterial absorber structure
based on silica all-dielectric is proposed, which works in the long infrared band. The wide
wavelength absorber is realized by combining different silica absorbers, and the broadband
absorption in the long infrared band is realized. The calculated results show that the
perfect absorption rate of the structure is more than 90% between 8.16 µm and 9.61 µm.
We calculated the absorption results of the metamaterial absorber at different polarization
angles when the polarization angle of light increases from 0◦ to 90◦; that is, the light changes
from Ex polarization to Ey polarization. When the polarization angle of the incident light is
less than 45◦, the absorption results of the absorber do not change significantly. When the
polarization angle of the incident light is greater than 45◦, three absorption peaks appear
in the long infrared band, which realizes the selective characteristics of the incident light
polarization. When the polarization angle is increased to 90◦, the absorption rates of the
two absorption peaks at λ = 9.7 µm and λ = 12.3 µm both reach more than 85%. Through
the calculation and analysis of the changes of various parameters of the structure under
Ex polarization and Ey polarization, it can be found that most of the parameters are not
sensitive except for the upper side length of the trapezoid l3 under Ex polarization, and
except for the side length of the rectangle l4 under Ey polarization. The tolerance error range
is high, which is conducive to practical fabrication. These studies play a certain guiding role
in the further development of non-metallic dielectric materials in metamaterial absorbers.
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