
Citation: Huang, C.; Yang, Y.; Li, Y.;

Jiang, S.; Yang, L.; Li, R.; She, X. A

CsPbI3/PCBM Phototransistor with

Low Dark Current by Suppressing Ion

Migration. Photonics 2024, 11, 362.

https://doi.org/10.3390/

photonics11040362

Received: 22 March 2024

Revised: 8 April 2024

Accepted: 9 April 2024

Published: 12 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Communication

A CsPbI3/PCBM Phototransistor with Low Dark Current by
Suppressing Ion Migration
Chenbo Huang, Yichao Yang, Yujie Li, Shijie Jiang, Lurong Yang, Ruixiao Li and Xiaojian She *

School of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
* Correspondence: xjshe@zju.edu.cn

Abstract: Perovskite-based metal oxide phototransistors have emerged as promising photodetection
devices owing to the superior optoelectronic properties of perovskite materials and the high carrier
mobility of metal oxides. However, high dark current has been one major problem for this type of
device. Here, we studied the dark current behaviors of phototransistors fabricated based on the Indium
Gallium Zinc Oxide (IGZO) channel and different perovskite materials. We found that depositing
organic–inorganic hybrid perovskites materials (MAPbI3/FAPbI3/FA0.2MA0.8PbI3) on top of IGZO
transistor can increase dark current from ~10−6 mA to 1~10 mA. By contrast, we observed depositing
an inorganic perovskite material, CsPbI3, incorporated with PCBM additive can suppress the dark
current down to ~10−6 mA. Our study of ion migration reveals that ion migration is pronounced in
organic–inorganic perovskite films but is suppressed in CsPbI3, particularly in CsPbI3 mixed with PCBM
additive. This study shows that ion migration suppression by the exclusion of organic halide and the
incorporation of PCBM additive can benefit low dark current in perovskite phototransistors.
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1. Introduction

Phototransistors have obtained an increasing amount of research attention owing to
their advantages of compatibility with transistor circuit manufacture and photodetection
gain effect [1–6]. Over recent years, perovskite semiconductors have been developed
remarkably, showing their high optoelectronic performance, such as quantum efficiency of
over 90% and carrier lifetime of over 1 µs [7–10]. Therefore, developing phototransistors
using perovskite light absorbers has been promoted as a promising solution for high-
performance photodetection technology and has gained more research attention [11–16].
Moreover, the phototransistor requires a channel layer of high carrier mobility, a wide band
gap for modulating a high on/off ratio for high detectivity, and good transparency and
chemical robustness for depositing the perovskite layer through solution reaction. These
requirements lead to the use of metal oxide semiconductors, which are known for mobility
over 40 cm2V−1s−1 [17–20], large band gap over 3.5 eV, which produces ideal transparency
to visible light, and reliable chemical stability and durability [21–24]. Therefore, developing
phototransistors based on perovskite as the light absorber and metal oxide as the channel
layer is an effective solution for pursuing high-detectivity photodetection.

In these reports of phototransistors based on perovskites and metal oxides [25–28], there
are observations of high dark current after depositing perovskites on top of a metal oxide
channel, leading to very poor photo detectivity. This is a major problem hindering the
development of perovskite phototransistors. Therefore, it is important to understand the
interplay between material property and the high dark current behavior in order to obtain
solutions. We investigated the dark current behavior on phototransistors based on a wide
range of perovskite materials, MAPbI3/FAPbI3/FA0.2MA0.8PbI3/CsPbI3 (MA and FA denote
CH3NH3 and CH4N2). Our results show that dark current rise is relevant to ion migrations
that are pronounced in perovskites of organic halides and are relatively suppressed in fully
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inorganic perovskites, CsPbI3. Moreover, we found that by using PCBM additive into the
CsPbI3 film, the ion migration is further reduced, and correspondingly, the CsPbI3/PCBM
phototransistor exhibits a dark current down below 10−6 mA. Our study provides an in-depth
understanding of the dark current behavior of perovskite phototransistors and an effective
device solution to obtain a low dark current for photodetection operation.

2. Materials and Methods

As shown in Figure 1, a Si/SiO2 wafer was cut into 15 mm × 15 mm substrates using
a laser fragment system, with the highly doped silicon layer and the SiO2 layer (300 nm)
serving as the gate electrode and the dielectric layer, respectively. First, the substrates
were cleaned with an ultrasonic bath in Decon 90 (with deionized water), deionized water,
acetone, and isopropanol for 10 min each. Then, the substrates were dried using a nitrogen
gun and treated with oxygen plasma for 5 min. After that, the substrates were again cleaned
with isopropanol for 5 min. IGZO material was sputtered onto the substrate through a
shadow mask under a high vacuum (8 × 10−4 Pa) as the active layer. On this basis, LOR
5B and S1813 photoresist were spin-coated at a speed of 6000 rpm, pre-baked for 5 min
and 2 min, respectively, and then developed after photolithography to pattern the source
and drain electrodes, followed by the deposition of gold onto the substrate to a thickness
of 30 nm at a rate of 1~2 Å/s through thermal evaporation. By weighing 1.5 mmol of
the perovskite precursor, a 2 mL solution of 0.75 mol/L perovskite was prepared using
N,N-Dimethylformamide (DMF): Dimethyl sulfoxide (DMSO) = 9:1(V:V) as the solvent.
Then, 80 µL of the perovskite solution was dropped onto the substrate surface, followed by
an immediate spin-coating at 5000 rpm for 15 s. Afterward, the sample was annealed at
100 ◦C for 10 min in a nitrogen atmosphere.
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Figure 1. (a)–(e) Schematic diagram of the device fabrication process; (a) cleaning the substrate;
(b) sputtering IGZO; (c) depositing the electrode after lithography; (d) spinning perovskite so-
lution; (e) annealing to form a film; (f) schematic diagram of the perovskite film; (g) electrical
measurement schematic.

Electrical measurements were conducted at room temperature in a vacuum probe
station, as shown in Figure 1g. All transfer and output characteristics were measured using
a Keithley 2636B semiconductor analyzer and kickstart-2 software. The ion migration in
the device is reflected by the timing change of the source-drain current at a fixed bias



Photonics 2024, 11, 362 3 of 9

voltage. We measured the current changing over a 30-s period under a bias of VD = 5 V and
VG = 5 V. Illumination was provided by a 650 nm wavelength laser diode with different
light intensities. The light source illuminates the equipment through optical fibers in the
probe station while the equipment is in a vacuum state inside the probe station. The
scanning electron microscopy (SEM) used in the experiment is Zeiss Sigma 300, with
secondary electronic resolution ≤1.0 nm@15 kV, ≤1.6 nm@1 kV, electron beam acceleration
voltage 0.02 kV ~ 30 kV, step by 10 V, and continuous adjustable.

3. Results and Discussion

Figure 2 shows the transfer curve characteristics and the output characteristics curve
of the IGZO transistor, both of which were measured under dark conditions. From the
transfer curve (Figure 2a), we obtain high carrier mobility with the linear region one of
28.1 cm2V−1s−1 and saturation region one of 41.6 cm2V−1s−1, respectively. In addition, a
small threshold voltage (VTH = −1 V) is extracted from the transfer curve, indicating the
fabricated IGZO transistors are of small contact resistance that is consistent with the output
characteristics (Figure 2b). This result confirms that our fabricated IGZO transistor is of
standard high performance.
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Figure 2. IGZO device electrical performance, (a) transfer curve characteristic data, (b)output
characteristic data.

On top of the surface of the IGZO transistor, we spin-coated perovskite layers to
fabricate phototransistors. Here, we studied eight types of phototransistors based on four
perovskite compositions and PCBM additive added to each composition. The eight devices
are phototransistors of CsPbI3, CsPbI3-PCBM, FA0.2MA0.8PbI3, FA0.2MA0.8PbI3-PCBM,
FAPbI3, FAPbI3-PCBM, MAPbI3, and MAPbI3-PCBM, respectively. We studied the dark
current of these devices, and the transfer curve characteristics of all devices measured
under dark conditions are shown in Figure 3. The red curve and the blue curve in Figure 3
represent the transfer characteristic curves measured of perovskite phototransistors without
PCBM and perovskite phototransistors with PCBM, respectively.
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and FAPbI3; (d) MAPbI3−PCBM and MAPbI3.

For comparison, we examine the dark current at the gate voltage where the minimal
dark current is obtained for all devices, which is shown in Table 1.

Table 1. Dark current and γ of phototransistors with different materials.

Materials CsPbI3 CsPbI3-PCBM FA0.2MA0.8PbI3 FA0.2MA0.8PbI3-PCBM

dark current (mA) 2.64 × 10−5 6.10 × 10−6 3.62 × 10−2 7.48 × 10−3

γ = Imax/Iinitial 1.28 1.16 1.36 1.51

Materials FAPbI3 FAPbI3-PCBM MAPbI3 MAPbI3-PCBM

dark current (mA) 3.82 3.61 8.78 8.52
γ = Imax/Iinitial 1.30 1.25 1.24 1.20

From the results, we conclude the following three trends. Firstly, the application of
organic–inorganic hybrid perovskite (FA0.2MA0.8PbI3, FAPbI3, MAPbI3) on the top of IGZO
surface can largely increase the dark current by several orders of magnitude (compared
with the IGZO transistor without depositing perovskite layer), while the deposition of
inorganic perovskite (CsPbI3) can still allow low dark current. Secondly, the application
of PCBM additive into all perovskites can suppress the enlargement of dark current in
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their perovskite phototransistors, but not to a satisfactory level. Thirdly, the minimal dark
current is observed in the CsPbI3-PCBM phototransistors.

We presume that the underlying mechanism is associated with the ion migration effect,
which has been reported as one source of inducing extra current during the operation of
perovskite optoelectronic devices [27]. Therefore, we then study the ion migration behav-
ior within the perovskite layer of all devices. Figure 4 shows the results of ion migration
measurement. We probe the ion migration effect by inspecting the current evolution while
applying an external bias across the source-drain electrodes because ion migration towards
electrodes can increase the channel current by lowering the injection barrier and enhancing the
tunneling effect [14], as illustrated in Figure 4e,f. For comparison, we extract the proportion of
maximum current (Imax, the maximum current reached during the external bias period) over
initial current (Iinitial, the current at t = 0 s when external bias starts), as γ = Imax/Iinitial. We
obtain γ of all phototransistors with different materials and list them in Table 1. It shows that
ion migration is pronounced in organic–inorganic hybrid perovskite samples but is relatively
small in the CsPbI3 sample and particularly in the CsPbI3-PCBM sample.
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Figure 4. The graph of the source-drain current changing within 30 s under a bias of VD = 5 V
and VG = 5 V; (a) CsPbI3−PCBM and CsPbI3; (b) FA0.2MA0.8PbI3−PCBM and FA0.2MA0.8PbI3;
(c) FAPbI3−PCBM and FAPbI3; (d) MAPbI3−PCBM and MAPbI3; (e) Schematic diagram of ion
migration in perovskites; (f) Changes in energy levels caused by ion migration in perovskites.

To gain a deep insight, we inspected the microstructural characteristics of perovskite
films by SEM. The SEM images shown in Figure 5 reveal the crystalline nature of perovskite
grains is well preserved after the incorporation of the PCBM additive, suggesting that
the PCBM additive might only be resident in the grain boundaries. This suggests that
PCBM may suppress the ion transport between adjacent gains or lower the rate of ion
migration, thus suppressing ion migration throughout the film. We presume the reason
why CsPbI3-PCBM outperforms the candidates of organic–inorganic hybrid perovskite and



Photonics 2024, 11, 362 6 of 9

PCBM additive are that the organic halide in the hybrid perovskites might have a reaction
with the IGZO channel, as reported elsewhere [28], while CsPbI3 is of no organic halide.
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The above concludes that the dark current and ion migration are effectively reduced
in the CsPbI3-PCBM system. Therefore, we then probe the photodetection performance of
the CsPbI3-PCBM phototransistor. We measured both the static photoresponse performance
and the dynamic photoresponse performance, and the results are given in Figure 6. The
static photoresponse performance is probed by measuring the transfer curves under light
intensity (50~100 mW/cm2), as shown in Figure 6a. To evaluate the device’s photodetection
performance, we extract detectivity (D) and photoresponsivity (R) by the following equation:

R =
Iphoto

P
(1)

D =
R√

2qIdark
(2)

In the formula, Iphoto represents the photocurrent, P is the incident light power, q is the
elementary charge, and Idark represents the dark current. Figure 6c,d shows the obtained
data of D and R in dependence of VG extracted from the transfer curves under different
light intensities. The peak of detectivity is obtained at around VG = −13 V, where the
minimal dark current is reached. The maximum values of D and R are 3.00 × 1012 Jones
and 47.16 A/W, respectively. We further probe the dynamic photoresponse performance
of CsPbI3-PCBM phototransistors by measuring the device current of under light signal
switching on and off (5 s on and 5 s off), and the results are shown in the inset of Figure 6b.
It shows that photocurrent can respond instantly to changes in light intensity.
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4. Conclusions

In this work, we found that the high dark current in perovskite phototransistors is
owed to the ion migration within the perovskite layer, and this is particularly pronounced in
organic–inorganic hybrid perovskites. In addition, we found using an inorganic perovskite
CsPbI3 film incorporated with PCBM additive is an effective solution to reduce ion migra-
tion and achieve a low dark current for reliable photodetection performance. The insights
and the device solution in our work would be beneficial for pursuing high-performance
perovskite phototransistors.

Author Contributions: C.H. and Y.Y. conducted the experiment. Y.L. and S.J. conducted investigation.
L.Y. and R.L. analyzed the data. X.S. established the interpretation and supervised the work. All
authors wrote and revised the manuscript. All authors have read and agreed to the published version
of the manuscript.
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