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Abstract: In this study, the oils of açaí, passion fruit, pequi, and guava were submitted to physico-
chemical analysis to investigate their potential application in the food industry. Gas chromatography
associated with mass spectroscopy showed that oleic and linoleic acids are mainly responsible for
the nutritional quality of açaí, passion fruit, pequi, and guava oils, which exhibited 46.71%, 38.11%,
43.78%, and 35.69% of the former fatty acid, and 18.93%, 47.64%, 20.90%, and 44.72% of the latter,
respectively. The atherogenicity index of the oils varied from 0.11 to 0.65, while the thrombogenicity
index was 0.93 for açaí, 0.35 for guava, and 0.3 for passion fruit oils, but 1.39 for pequi oil, suggesting that
the use of the first three oils may lead to a low incidence of coronary heart disease. Thermogravimetry
showed that all tested oils were thermally stable above 180 ◦C; therefore, they can be considered resistant
to cooking and frying temperatures. In general, the results of this study highlight possible applications
of these oils in the food industry, either in natura or in typical food production processes.

Keywords: physicochemical properties; thermogravimetry; pequi oil; açaí oil; passion fruit oil;
guava oil

1. Introduction

The Brazilian territory is composed of five large biomes where a great diversity
of oil plant species can be found. Vegetable oils obtained from these species have a
unique chemical composition, which gives them interesting biological, nutritional, and
physical–chemical properties for application in various industrial sectors, in particular
the food industry [1–3]. The interest in vegetable oils lies mainly in their high content of
monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). Epidemio-
logical studies show the strong relationship between the PUFA and MUFA consumption
on the decrease in the occurrence of diseases such as cancer, diabetes, and coronary heart
disease. Unsaturated fatty acids perform vital organic functions in the human body, par-
ticipate in cell metabolism as precursors of various regulatory lipids, maintenance of cell
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membrane structure, fluidity, signaling, and cell-to-cell interaction. Because of these effects,
fatty acids influence human health, welfare, and disease risk [4–6].

MUFA (omega-9) and PUFA (omega-6, -3) have several benefits for human health.
However, it is important to have the adequate intake of omega-3 and 6, because the
excess of omega-6 acids in the diet prevents adequate absorption of omega-3 acids and
blocks the conversion of ALA (α-linolenic acid) to DHA/EPA. Recommendations for the
omega-6/omega-3 ratio in the diet, suggested in several countries, show a coverage range
of 4 to 5:1 [5,7]. In addition to biological benefits, MUFA are very important for the
physical stability of vegetable oils and products obtained from vegetable oils rich in MUFA.
Pereira et al. [1] stated that vegetable oils rich in oleic acid are good candidates for frying
foods, due to the thermal stability of oleic acid [5]. Besides the biological benefits, the
MUFA are so important to the physical stability of the vegetable oils and the products
obtained by vegetable oils rich in MUFA. Pereira et al. [1] stated that vegetable oils rich in
oleic acid are good candidates for fry-ing foods, due to the thermal stability of oleic acid.

Caryocar brasiliense (pequi), Euterpe oleraceae (açaí), Passiflora sp. (passion fruit), and
Psidium guajava (guava) are common oilseed species in the Brazilian territory, and present
great nutritional significance and economic importance in their regions of origin. Caryocar
brasiliense is a typical Cerrado species, a vegetation characteristic of the Brazilian Midwest,
also appearing in areas of the north and northeast. C. brasiliense belongs to the Cary-
ocaraceae family; this family contains plant species throughout Central and South America,
and in Brazil, this fruit is its main representative. C. brasiliense is popularly known as pequi,
a drupe with its kernels wrapped in a fleshy pulp and yellowish mesocarp, whose local
population uses it for the production of traditional dishes. It is a fruit rich in phenolic
compounds, carotenoids, vitamins, and mono- and polyunsaturated fatty acids. The fruits
of C. brasiliense are consumed after cooking, and the oil extracted from the fruits is used by
the local population for cooking and frying [8–10].

E. oleraceae, belonging to the Arecaceae family, is a typical fruit of the Amazon region,
where it is known as açaí. The açaí is a globose drupe with a purple or green epicarp;
depending on the maturation, it has a pulpy mesocarp and a rounded epicarp that forms
the fruit. In its region of origin, it is widely consumed in the form of juices, pulps, sweets,
and ice creams, and plays an essential role in feeding the local population. It is a fruit rich
in phenolic acids, flavonoids, essential fatty acids, and other nutrients and is considered
a “superfruit” because of its high nutritional value. From the pulp the fixed açaí oil is
extracted, which represents 50% of the total dry matter of the pulp. Açaí oil presents itself as
a valuable product given its sensory properties and its potential health benefits, and it has
been used by the cosmetic industry to produce soaps, shampoos, and moisturizers [11–14].

Passiflora sp. has 525 species, only 25 of which do not appear in the Americas. Brazil
and Colombia have the greatest diversity of wild and commercial species of Passiflora sp.;
usually, the fruits of these species receive the popular name of passion fruit. The root and
aerial parts of passion fruit are used in many countries as anxiolytic, sedative, diuretic,
and many other biological effects. The oil extracted from its seeds has great skin hydration
power and is therefore widely used in the cosmetic industry. The pulp is rich in minerals
such as iron, zinc, magnesium, phosphorus, and essential fatty acids, and bioactive com-
pounds such as flavonoids, phenolic acids, and protocyanidins, which give it antioxidant
activity [15–18].

Finally, the Psidium guajava, from the Myrtaceae family, popularly known as guava,
is widely cultivated in Asia, Africa, and Central and South America. It is a fruit of great
commercial importance because of its aroma and taste, being consumed in natura or pro-
cessed in the form of juice, sweets, and ice cream. It is a nutritionally important fruit, a
source of vitamin C, niacin, riboflavin, vitamin A, β-carotene, and lycopene. The seeds,
by dry weight, contain 14% oil, 15% protein, and 13% amide, compounds, and flavonoids,
including quercetin-3-O-β-D-(2′′-O-galloyl-glucoside)-4′-O-vinylpropionate [19–21].

The use of these species as a source of mono- and polyunsaturated fatty acids is
subject to physical and chemical characterization studies of the oils extracted from them.
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Techniques such as thermogravimetry, gas chromatography, and Rancimat, among others,
allow researchers to obtain information on thermal stability of oils, fatty acid profile, and
oxidative stability, respectively [2,22,23]. Therefore, in this research, we propose to study
the physical and chemical characteristics of oils obtained from the species of C. brasilienses,
E. oleracea, Passiflora sp., and P. guava, to study the potentiality of these oils for use in the
food industry, whether in natura or processed.

2. Materials and Methods
2.1. Materials

The oils were extracted by the mechanical method of cold pressing at room tempera-
ture, where the pulps of the açaí and pequi fruits, as well as the guava and passion fruit
seeds, were crushed without applying heat, meaning that their nutrients suffered minimal
damage oxidation and loss due to heating and friction. Furthermore, the oil extraction
was performed with the use of oil press (LDS R 135/2008, São Paulo, Brazil, 240 kg h−1).
Three samples from different lots of crude açaí, guava, passion fruit, and pequi oil without
addition of any preservative were provided by Amazon Oil Industry (Ananindeua, Pará,
Brazil—https://amazonoil.com.br/), accessed on 30 January 2024.

2.2. Fatty Acid and Triacylglycerol Compositions

Fatty acid profile of samples was obtained by gas chromatography coupled to mass
spectrometer (Gas chromatograph mass spectrometer ultra, CGMS-QP2010, Shimadzu,
Japan). Conversion of triglycerides to methyl esters was performed via saponification
and esterification with potassium hydroxide in methanol (0.1 M) and hydrochloric acid
in methanol (0.12 M) [24]. Fatty acid profile was conducted according to the following
specifications: column used SH-Rtx-5 30 m × 0.25 mm; entrainment gas: helium with flow
of 1.5 mL/min; injection volume of 1 µL (split at 1:50 ratio); temperature gradient used was
a heating ramp of 2 min at 60 ◦C; heating to 200 ◦C at the rate of 10 ◦C/min; heating to
240 ◦C at the rate of 2 ◦C/min and kept at that temperature for 24 min. Detector operated
at temperature of 250 ◦C. Fatty acid peaks were identified from NIST 2008 mass spectral
library database software (Shimadzu Inc., Kyoto, Japan) of QP2010 ULTRA mass detector.
The fatty acid profile was performed in triplicate for each sample.

The fatty acid composition was used to predict the groups of TAGs in the non-
interesterified sample with PrÓleos software 1.0 (Goias, Brazil), which uses a mathe-
matical algorithm that describes the distribution of fatty acids in TAG molecules (Anon.,
2015 https://projetos.extras.ufg.br/plames/#main, accessed on 25 February 2019) [25].
For the prediction, the average values of fatty acids with more than 1% of the total com-
position were used, and TAGs at predicted levels below 0.5% of the total were excluded.
The composition of TAGs present in interesterified lipids was analyzed according to the
1,3-random, 2-random theory (non-random redistribution), and the 1,2,3-random theory
(random redistribution), based on the analysis of region-specific distribution [1,25].

2.3. Atherogenicity and Thrombogenicity Indexes

FA compositions were used to evaluate the lipids’ nutritional quality through the
atherogenicity (AI) and thrombogenicity indexes (TI) [26,27] defined in Equations (1) and (2),
respectively:

AI =
C12 : 0 + 4 × C14 : 0 + C16 : 0
∑ MUFA + ∑ FAω6 + ∑ ω3

(1)

TI =
C14 : 0 + C16 : 0 + C18 : 0

0.5 × ∑ MUFA + 0.5 × ∑ FAω6 + 3 × ∑ FAω3
(2)

where C12:0, C14:0, C16:0, and C18:0 are the relative percentage masses of lauric, myristic,
palmitic, and stearic acids, respectively, MUFA is the relative percentage mass of monoun-
saturated fatty acids, and FAω6 and FAω3 are the relative percentage masses of omega-3
and omega-6 fatty acids, respectively.

https://amazonoil.com.br/
https://projetos.extras.ufg.br/plames/#main


Foods 2024, 13, 1565 4 of 13

These indexes indirectly indicate the ability of a substance to prevent the appearance
of micro- and macro-coronary diseases and the tendency to form clots in the blood vessels,
respectively. Particularly, the lower the AI and TI values, the better the food from the
nutritional viewpoint of the lipid fraction.

2.4. Oil Quality Parameters

The physicochemical characterization of the oils was performed according to the official
methods of the American Oil Chemists’ Society [28]. The acid, peroxide, and refractive in-
dexes were evaluated according to the AOCS Cd3d-63, Cd 8b156 90, and Cc7-25 protocols,
respectively, while the saponification and iodine indexes were determined by the recom-
mended practices Cd 1c-85 and Cd 3a-94, respectively. The oxidative stability index (OSI) was
evaluated by the Rancimat 743 (Metrohm, Herisau, Switzerland) equipment at 110 ◦C, under
an air flow of 10 L/h using 5 g of oil, following the AOCS method Cd 12b-92 [28]. Oil vis-
cosity was measured in a rotational viscometer (model Ct52, Schott-Gerate GmbH, Mainz,
Germany). The kinematic viscosity was measured at a temperature of 40 ◦C [1]. Experimen-
tal analyses were performed in triplicate, and the results presented as means ± standard
deviations. All the analyses were performed in triplicate for each sample.

2.5. FTIR-ATR

Absorption spectroscopy in the infrared region of samples was performed in a Fourier
transform infrared (FTIR) spectrophotometer (IRPrestige-21, Shimadzu, Kyoto, Japan) with
attenuated total reflection (ATR) coupled accessory, in the spectral region from 4000 to
600 cm−1 with a resolution of 4 cm−1 and 32 scans [12].

2.6. Thermogravimetry

Thermogravimetry (TG) was performed on a TGA analyzer (model 50/50H, Shimadzu,
Kyoto, Japan). Briefly, 5 to 10 mg of the sample was weighed in a platinum crucible and
heated from room temperature to 600 ◦C at a heating rate of 10 ◦C/min. The analyses were
performed in synthetic air and nitrogen atmosphere [23].

3. Results and Discussion
3.1. Fatty Acid Composition, Nutritional Quality Indexes and Triacylglycerol Profile

The fatty acids (FAs) in vegetable oils are classified as saturated or unsaturated fatty acids.
Gas chromatography associated with mass spectroscopy (GC/MS) made it possible to separate,
quantify, and identify FAs present in açaí, guava, passion fruit, and pequi oils (Table 1). Açaí
and pequi oils were mostly composed of oleic acid (46.72% and 38.80%, respectively), which
was also found in high amounts (>37%) in the other oils (Table 1). On the other hand, passion
fruit and guava oils were mostly composed of linoleic acid (47.63% and 44.72%, respectively),
whose content in açaí and pequi oils was 18.83% and 19.39%, respectively (Table 1).

Table 1. Fatty acid compositions (%), atherogenicity (AI), and thrombogenicity (TI) indexes of açaí,
guava, passion fruit, and pequi oils.

Fatty Acid Açaí Guava Passion Fruit Pequi

Caprylic acid (C 8:0) 0.06 ± 0.01 0.03 ± 0.01 - -
Capric acid (C 10:0) 0.03 ± 0.00 - - -
Lauric acid (C 12:0) 1.45 ± 0.02 - - -

Myristic acid (C 14:0) 5.70 ± 0.05 0.05 ± 0.02 - 0.16 ± 0.04
Palmitic acid (C 16:0) 18.52 ± 0.12 9.93 ± 0.01 9.23 ± 0.02 37.59 ± 0.01

Palmitoleic acid (C 16:1) 1.53 ± 0.03 0.07 ± 0.04 - 0.68 ± 0.01
Stearic acid (C 18:0) 7.05 ± 0.01 4.84 ± 0.02 3.68 ± 0.04 3.08 ± 0.02
Oleic acid (C 18:1) 46.72 ± 0.02 37.90 ± 0.03 38.11 ± 0.31 38.80 ± 0.03

Linoleic acid (C18:2) 18.83 ± 0.03 44.72 ± 0.05 47.63 ± 0.04 19.39 ± 0.02
Linolenic acid (C18:3) - 0.19 ± 0.00 0.14 ± 0.01 -
Behenic acid (C22:0) - 0.29 ± 0.04 - -
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Table 1. Cont.

Fatty Acid Açaí Guava Passion Fruit Pequi

SFA 32.81 ± 0.20 15.14 ± 0.01 12.91 ± 0.08 40.83 ± 0.08
MUFA 48.25 ± 0.05 37.97 ± 0.01 38.11 ± 0.44 39.48 ± 0.04
PUFA 18.83 ± 0.03 44.91 ± 0.05 47.77 ± 0.06 19.39 ± 0.02

AI 0.65 0.12 0.11 0.65

TI 0.93 0.35 0.30 1.39

Note: SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty acids;
AI = atherogenicity index; TI = thrombogenicity index.

Vegetable oils rich in oleic acid are important for the food industry since their thermal
stability allows their use in frying and cooking food. In addition, high contents of oleic
and linoleic acids increase the shelf life and the nutritional value of foods. All the oil
samples considered in this study had a high oleic acid content, mainly the pequi and açaí
ones, in which it was (38.80% and 46.72%, respectively) higher than in 15–20% of grape
seed oil and sea buckthorn oil (15–20%), but lower than in olive oil (55–80%) [29]. Olive
oil is recommended for human consumption because it promotes health benefits, mainly
for the cardiovascular system, which are attributed precisely to oleic acid. Furthermore,
it is important to highlight that açaí, guava, passion fruit, and pequi oils are rich in
monounsaturated fatty acids, such as oleic acid, which can help reduce cholesterol levels
and even improve protection against cardiovascular diseases [29–31].

The use of vegetable oils in food preparation depends on their nutritional characteris-
tics, which are directly influenced by their fatty acid profile. The atherogenicity (AI) and
thrombogenicity (TI) indices proposed by [27] express the nutritional quality of vegetable
oils and fats. Table 1 and Figure 1 show that the AI ranged from 0.11 to 0.65 and the TI
ranged from 0.3 to 1.39. It is known that there are no AI and IT reference values for açaí,
guava, passion fruit, and pequi oils; in this study, it was observed that the values found
for passion fruit oil (AI: 011; IT: 0.3) and for guava oil (AI:0.12; IT: 0.35) are close to the
AI and TI values reported for traditional cooking oils, such as olive oil (AI: 0.12; TI: 0.32),
soybean (AI: 0.14; TI: 0.25), corn oils (AI: 0.17; TI: 0.37), sunflower (AI: 0.10; TI: 0.27), and
cotton (AI: 0.30; TI: 0.58), which are lower due to the low concentration of SFA [32,33].
However, the values found for pequi oil (AI: 0.65; TI: 1.39) and açaí oil (AI: 0.64; TI: 0.93)
are above the values reported for traditional cooking oils, but are in line with other studies
on vegetable oils and tropical oils that have a greater amount of saturated fatty acids—such
as palmitic acid—which guarantees greater stability of these oils, which are more resistant
to oxidation at high temperatures, which increases its shelf life and contributes to its use in
the food industry. Furthermore, these oils have levels that suggest a lower risk of causing
cardiovascular diseases due to the high amount of MUFA [32,33].

The profile of triacylglycerols (TAGs) in the oil samples under study was determined
by the method proposed by [25]. Table 2 shows that the most abundant TAGs were those
composed of oleic and linoleic acids, regardless of the type of oil. TAG composition in
açaí oil has already been described by Silva et al. [34], who found mainly triolein (OOO)
followed by linoleo-diolein (OLO) and palmito-diolein (POO). The TAG profile detected
in the present study for passion fruit oil, with lower content of trilinolein (LLL) than of
dioleolinolein (OLL), is opposite to the one reported by [35] using mass spectroscopy. This
difference may be related to intrinsic factors of the oil, such as the fruit maturation stage
and extraction method. Finally, [36], who determined the TAG profile of the pequi oil,
found that dioleopalmitin (POO) was its main constituent, which is consistent with the
highest palmito-linoleo-stearin (PLS)/POO pair content detected in this study (Table 2).
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Figure 1. Atherogenicity and thrombogenicity indices of vegetable oils.

Table 2. Triacylglycerol composition of açaí, guava, passion fruit, and pequi oils.

Identifier/Shorthand Açaí Guava Passion Fruit Pequi

LLL/54:6 - 10.201 11.424 0.942

MOO/50:2 5.350 - - -

OLL/54:5 7.179 25.716 27.191 5.896

OLO/54:4 17.740 21.608 - -

OOO/54:3 14.611 6.052 - -

PLL/52:4 - 6.630 6.585 4.254

PLO/52:3 - 11.142 10.449 17.743

PLP/50:2 - 1.436 1.265 6.401

PLS/52:2 - 1.422 - -

PLS-POO/52:2 - - 5.152 19.760

POO/52:2 17.270 4.681 - -

POP/50:1 6.805 - 1.004 13.350

POS/52:1 - - - 2.619

PPP/48:0 - - - 3.210

PSP/50:0 - - - 0.945

SLL/54:4 - 3.281 - -

SLL-OLO/54:4 - - 24.193 12.714

SLO/54:3 5.318 5.515 - -

SLO-OOO/54:3 - - 9.863 10.290

SLS-SOO/54:2 - - 1.849 1.877

SOO/54:2 6.570 2.317 - -

SOP/52:1 5.177 - - -

Note: L = linoleic acid; M = myristic acid; O = oleic acid; P = palmitic acid; S = stearic acid; - = values below the
detection limit.
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3.2. Oily Quality Parameters

The quality parameters of tested oils are listed in Table 3. Among them, the acidity
and peroxide indexes allow an assessment of the oxidation status of vegetable oils. Oils
of açaí and pequi had acidity index values (6.17 and 5.25 mgKOH/g, respectively) higher
than the maximum one (4 mg KOH/g) recommended by [37] for high-quality crude oils,
while those of guava and passion fruit oils were well below the quality limit. The hot and
humid climate of the Amazon region may have been responsible for the high acidity index
of the açaí oil [12], while that of pequi oil, as suggested by Ribeiro et al. [38], can be ascribed
to its extraction by mechanical press. On the other hand, all oils showed values of the
peroxide index below the maximum threshold value (15 meq/kg) reported by the Codex
Alimentarius for high-quality oils (Table 3).

Table 3. Quality parameters of açaí, guava, passion fruit, and pequi oils.

Property Açaí Guava Passion Fruit Pequi

Acidity index (mg KOH/g) 6.17 ± 0.03 2.12 ± 0.02 0.45 ± 0.01 5.25 ± 0.13
Peroxide index (meq/kg) 9.778 ± 0.005 11.567 ± 0.029 7.905 ± 0.002 9.600 ± 0.005

Saponification index (mg KOH/g) 184.50 191.01 181.26 184.54
Iodine index 114.13 134.25 121.76 110.02

Refractive index 1.463 ± 0.045 1.465 ± 0.005 1.464 ± 0.004 1.464 ± 0.045
Oxidative stability index (h) at 110 ◦C 15.24 ± 0.01 16.04 ± 0.01 10.05 ± 0.04 15.49 ± 0.02

Kinematic viscosity (mm2/s) * 43.0 ± 0.1 35.9 ± 0.1 32.8 ± 0.01 36.8 ± 0.02

Note: Values are expressed as mean ± SD of three replicates. * Measured at 40 ◦C.

The saponification, refractive, and iodine indexes allow us to identify the possible
changes in sample. The saponification index ranged from 181.26 mg KOH/g for passion
fruit oil to 191.01 mg KOH/g for guava oil. As observed by Pereira et al. [39], most of the
oils exhibit values of this parameter in the range of 180–200 mg KOH/g, which is indicative
of the presence of high molecular weight fatty acids in their composition.

As shown in Table 3, the refractive index, which grows with the increase in the
length of the fatty acid chain and/or the decrease in the degree of unsaturation, ranged
from 1.463 to 1.465, while the iodine index, which is directly proportional to the degree
of unsaturation, was high for all the tested oils, ranging from 110.02 in the pequi oil to
134.25 in the guava one.

The oxidative stability index, also called oxidative induction period (OSI), indicates
the development of lipid oxidative products and can be associated with oil deterioration
during storage and exposure to heating [39,40]; it ranged from 10.05 ± 0.04 h for the
passion fruit oil to 16.04 ± 0.01 h for the guava oil, with values around 15.49 ± 0.02 for
the pequi and 15.24 ± 0.01 h for the açaí. All these values are higher than those reported
for sunflower oil (6.21 h) [41] and within the range of those reported for almond oil
(10.2–24.2) [42]. Finally, the lowest and highest kinematic viscosities were detected in the
passion fruit oil (32.8 mm2/s) and açaí oil (43.0 mm2/s), consistent with their highest
contents of unsaturated fatty acids (MUFA + PUFA = 85.88%) and saturated fatty acids
(32.79%), respectively (Table 1).

3.3. FTIR-ATR

The FTIR-ATR spectra of all the tested oils illustrated in Figure 2 show the prevalence of
vibrational absorption bands in the region from 2850 to 3000 cm−1, corresponding to the C-
H bond stretching, while the intense absorption band in the region from 1735 to 1750 cm−1

refers to the elongation of the carbonyl group (C=O). The absorption ranges close to
1465 and 1375 cm−1 show bands of the symmetrical angular deformations of the C-H bond
of methylene (-CH2) [43] and terminal CH3 group, respectively, while the strong absorption
band close to 1170 cm−1 can be ascribed to the stretching of the C-O-C bond. Finally, the
medium-intensity absorption at 720 cm−1 is related to the asymmetric deformation of
the C-H bond of methylene [12]. All these bands, which have been constantly observed
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in vegetable oils, come from the triglyceride molecules. FTIR is useful to observe the
functional groups present in the sample. This observation is made by carefully analyzing
the characteristic absorption bands of each functional group. As oils are mainly made up of
triglycerides, different oils will present similar FTIR spectra, as the functional groups are
always the same [43–45].
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3.4. Thermal Analysis

The thermal behaviors of the studied oils can be seen in Figure 3.
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In the synthetic air atmosphere, the initial decomposition temperatures of guava and
passion fruit oils were 222.33 and 218.99 ◦C, while in the nitrogen atmosphere, they were
281.15 and 311.8 ◦C, respectively; on the other hand, decomposition of pequi and açaí oils
started at temperatures as high as 298.30 and 382.60 ◦C in the synthetic air atmosphere, and
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even 343.60 and 332.32 ◦C in the nitrogen atmosphere, respectively (Table 4). These results
indicate that, regardless of the atmosphere they were subjected to, the oils of passion fruit
and guava exhibited lower thermal stability than the others.

Table 4. Main results of thermogravimetric analysis of pequi, açaí, guava, and passion fruit oils in
synthetic air and nitrogen atmospheres. T = temperature.

Synthetic Air Atmosphere Nitrogen Atmosphere

1st Step 2nd Step 3rd Step 4th Step 1st Step

Oil T range (◦C) Mass
loss (%) T range (◦C) Mass

loss (%) T range (◦C) Mass
loss (%) T range (◦C) Mass

loss (%) Oil T range (◦C) Mass
loss (%)

Guava 222.33–364.47 10.93 326.76–373.63 44.141 424.88–44385 27.775 528.96–563.5 0.518 Guava 311.8–495.83 96.75
Passion

fruit 218.99–269.73 8.745 330.59–387.59 45.729 420.30–452.19 28.9 531.29–580.39 12.373 Passion
fruit 281.15–481 91.256

Pequi 298.30–379.37 59.696 417.33–453.99 24.2 212.30–566.71 13.47 - - Pequi 343.6–482.85 99.33
Açaí 382.60–443.41 96.309 - - - - - - Açaí 332.32–468.11 99.45

Events that occur under a nitrogen atmosphere are usually due to the pyrolysis of
triglycerides, and their rates are lower than in an oxidizing environment [46]. Although
the thermogravimetry (TG) curves showed that all oils, when subjected to the nitrogen
atmosphere, exhibited only one mass loss event, the differential thermogravimetric (DTG)
ones revealed the occurrence of three simultaneous events, with the exception of açaí oils,
for which the appearance of a tortuous peak did not allow them to establish their exact
number (Figure 2).

The TG/DTG curves of the oil samples under the synthetic air atmosphere revealed
the occurrence of two to four events. Pardauil et al. [46] attributed the first loss of mass (up
to 290 ◦C) to the removal of volatile substances, moisture, and short-chain 12–16 carbon
fatty acids. The first mass loss event may still be related to the smoke point of the oils under
study, i.e., the release of volatile and low molecular weight compounds and free fatty acids.
In frying processes with vegetable oils, for example, smoke is clearly seen emerging [47].

According to [48], events related to thermal decomposition of vegetable oils in an oxidiz-
ing atmosphere usually correspond to the degradation of polyunsaturated (200 to 380 ◦C),
monounsaturated (380 to 480 ◦C), and saturated (480 to 600 ◦C) fatty acids. However,
since there are other substances in addition to fatty acids, such as pigments, chlorophylls,
carotenoids, terpenoids, vitamins, proteins, glycerides and non-glycerides, polyphenols,
and secondary metabolites, among others, it is sometimes difficult to interpret the results
of their thermogravimetry analysis [46]. An example of the high complexity of thermo-
gravimetry of vegetable oils is given by açaí oil, which apparently exhibited, as previously
mentioned, only one mass loss event in the TG analysis and a tortuous peak in the DTG
one, likely caused by several simultaneous events.

The thermogravimetric study of vegetable oils is of great importance when they are
intended for food application. Vegetable oils are used in various ways in the food industry,
i.e., in their in natura form, emulsified, or even as media for cooking or frying [49,50].
Deep-fat frying is one of the most-used frying methods in food processing for its ease,
agility of use, and low cost. Palm oil stands out for use in frying mainly because it starts to
lose mass above 200 ◦C, which makes it possible to use in the typical frying temperature
range (150–190 ◦C) [49,50]. All the oils studied suffered a mass loss greater than 10% at
temperatures above 300 ◦C, although those of guava and passion fruit showed around 8 to
10% of mass loss between 200 and 270 ◦C (Table 4), likely due to volatilization of minor
constituents such as short-chain fatty acids.

In the frying process, there is a mass transfer from the oil to the food. Therefore, the
resulting food will be rich in the main constituents of the oil. For instance, foods fried with
palm oil are usually rich in palmitic acid [49,50]. Oleic acid is a monounsaturated fatty acid
whose health benefits are widely recognized and desired in foods. All the oils evaluated
in this study had high content of oleic acid, which decreased in the following order:
açaí (46.72%) > pequi (38.80%) > passion fruit (38.11%) > guava (37.90%) oil (Table 1).
In addition, they also had promising contents of linoleic acid, which decreased in the
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following order: passion fruit (47.63%) > guava (44.72%) > pequi (19.39%) > açaí (18.83%)
oil. However, this acid, despite its great health benefits, when subjected to elevated
temperatures becomes more reactive and susceptible to oxidation, reducing the shelf life of
fried food. Therefore, making a balance of the advantages and disadvantages of the tested
oils when subjected to elevated temperatures, açaí oil stood out due not only to its thermal
stability, but also to its favorable fatty acid composition.

4. Conclusions

The oils of açaí, pequi, guava, and passion fruit have in their composition the oleic
and linoleic acids as the main fatty acids. The high content of oleic acid and linoleic
acids is responsible for the high nutritional quality of these oils, evidenced by their low
values of thrombogenicity and atherogenicity index. On the other hand, this composition
makes these oils interesting for the production of food-grade nanoemulsions and lipid
nanoparticles. Mixtures of these oils with solid lipids are an alternative to the oil phase of
nanostructured lipid carriers rich in mono- and polyunsaturated fatty acids.

Regarding the physical and chemical characteristics, the oils showed values of acidity
and peroxide indexes within what is recommended by the official regulations, obviously
respecting their individual peculiarities. The other physicochemical characteristics, such as
the acidity, saponification, refraction, and iodine indexes, confirmed the good quality of the
oils for use in food preparation.

The results of the Fourier transform infrared spectroscopy showed typical bands
of carboxylic acids and esters, depending on the nature of oil triacylglycerols. Finally,
thermogravimetry studies revealed that oils, even if crude, have high thermal stability (all
above 180 ◦C), which makes them suitable for frying and/or cooking food. The thermal
stability (above 100 ◦C) of the oils opens up alternative applications as inputs for food
products that require heating during production, such as gums/jujubes.

In general, the results of the present study showed that pequi, açaí, passion fruit, and
guava oils have the potential to be used in gastronomic recipes outside their regions of
origin and may be suitable for developing new fatty products in the food industry.
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