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Abstract: High levels of chromium (Cr) in soil pose a significant threat to both humans and the
environment. Laboratory-based chemical analysis methods for Cr are time consuming and expensive;
thus, there is an urgent need for a more efficient method for detecting Cr in soil. In this study, a deep
neural network (DNN) approach was applied to the Land Use and Cover Area frame Survey (LUCAS)
dataset to develop a hyperspectral soil Cr content prediction model with good generalizability and
accuracy. The optimal DNN model was constructed by optimizing the spectral preprocessing methods
and DNN hyperparameters, which achieved good predictive performance for Cr detection, with a
correlation coefficient value of 0.79 on the testing set. Four important hyperspectral bands with strong
Cr sensitivity (400–439, 1364–1422, 1862–1934, and 2158–2499 nm) were identified by permutation
importance and local interpretable model-agnostic explanations. Soil iron oxide and clay mineral
content were found to be important factors influencing soil Cr content. The findings of this study
provide a feasible method for rapidly determining soil Cr content from hyperspectral data, which
can be further refined and applied to large-scale Cr detection in the future.

Keywords: soil hyperspectral; deep learning; chromium; sensitive bands

1. Introduction

Chromium (Cr) contamination is a major global environmental problem [1]. With
increasing urbanization, there has been a pronounced rise in industrial waste discharge
from mining, metallurgy, and electronic equipment manufacturing industries, which has
resulted in the continuous accumulation of Cr in the natural environment. For example,
indiscriminate waste discharge from tanneries in India’s Vellore district resulted in more
than 65% of tested soil samples exceeding the maximum permissible Cr content limits
established by environmental protection agencies [2–5]. Given the non-degradable and
highly toxic nature of Cr, it poses a significant threat to the ecological environment [6,7].

Cr occurs stably in nature [8]. Cr can accumulate in living organisms by contaminating
soil and water resources and then biomagnifying through the food chain [9,10]. In plants,
high Cr content can damage cells and inhibit growth [11], while in humans, Cr can cause
skin system, liver, and kidney dysfunction and even cancer [12,13]. Different countries
have set different soil Cr thresholds (e.g., 100 mg/kg for Romania and 90 mg/kg for China),
which shows that soil Cr content is a key environmental risk factor [14,15]. Therefore,
detecting Cr content in soil is essential for evaluating soil Cr contamination and subsequent
soil remediation.

Although it is one of the most widely used techniques for soil Cr detection, laboratory
chemical analysis has some limitations, including slow speed, high cost, and environmental
contamination by chemical reagents [16]. These issues would be worsened in the case of
large-scale Cr studies, which are needed given the global scale of Cr pollution issues [17].
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As an alternative to laboratory-based analytical methods, reflectance spectroscopy is in-
creasingly being used to measure soil quality [18]. This method primarily relies on the
principle that energy is absorbed or reflected by the vibrations of molecular bonds. This
technique leverages the numerous advantages of spectroscopic measurements, including
their rapid, non-destructive, cost-effective, and environmentally friendly nature, especially
when processing numerous samples [19]. At present, most physical and chemical properties
of soils can be predicted from soil spectra; however, there is still a significant knowledge
gap in the detection of soil Cr content from soil spectra [19,20].

Soil spectra can be considered non-specific and high-dimensional data due to the
overlapping reflectance signatures of many soil components [21–24]. In contrast to the com-
monly used principal component regression and partial least squares regression techniques,
deep learning-based methods, which are directly trained on the data to predict the desired
soil properties, are attracting increasing attention [25–28]. The nonlinear nature of deep
learning makes it well suited to handling large volumes of high-dimensional data, and this
approach has been successfully applied to similar environmental fields [29,30]. However,
few studies to date have applied deep learning to Cr detection from soil spectra.

To address this research gap, this study employed a deep neural network (DNN)
method to predict soil Cr content from soil spectra. As an important algorithm in the field
of deep learning, the DNN approach can effectively handle large volumes of data with high
dimensionality [31]; thus, this approach is suitable for large-scale Cr detection. The Land
Use and Cover Area frame Survey (LUCAS) dataset was used to train the DNN model,
whose performance was verified by several evaluation metrics. The trained DNN model
was then interpreted to identify the spectral bands sensitive to Cr content.

2. Materials and Methods

As noted above, the LUCAS 2009 dataset and corresponding Cr content values were
used to train and validate the DNN model. To determine the optimal spectral preprocessing
methods for Cr detection, the first derivative, second derivative, convolution smoothing,
and multivariate scattering correction approaches were compared. The optimal model’s
network structure and hyperparameters were determined using a grid search method.
Model interpretation on the optimal DNN model was then performed to identify the
spectral bands that were most sensitive to Cr content in soil.

2.1. Dataset
2.1.1. Data Collection

This study used the LUCAS 2009 dataset from the European Soil Data Center (ESDAC)
with topsoil samples from 23 EU member states. A total of 18,675 topsoil samples were
employed based on the LUCAS project (Figure 1a). In the original acquisition of this dataset,
the samples from these points were collected using a standardized sampling procedure and
sent to the same laboratory for physical and chemical analysis [32,33]. The topsoil samples
were ground, dried, and scanned using an XDS™ Rapid Content Analyzer (Foss, Hillerød,
Denmark) to obtain reflectance spectra data in the wavelength range of 400–2500 nm with
a resolution of 0.5 nm; thus, the reflectance of 4200 wavelengths were measured in this
region [34]. The hyperspectral curve is schematically illustrated in Figure 1b.

The LUCAS 2009 dataset has immense value for understanding soil characteristics and
properties across the EU member states. By incorporating a large quantity of topsoil samples
systematically collected from diverse locations, this dataset provides a comprehensive
overview of soil variations and compositions within the EU. The standardized sampling
procedure ensures data consistency and reliability across a large geographic area, making
this dataset a valuable resource for soil-related studies.
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Figure 1. Descriptive diagram of the dataset: (a) Geological map of the sampling points; (b) Sche-
matic diagram of the hyperspectral curve; (c) Distribution of Cr content. 

The LUCAS 2009 dataset has immense value for understanding soil characteristics 
and properties across the EU member states. By incorporating a large quantity of topsoil 
samples systematically collected from diverse locations, this dataset provides a compre-
hensive overview of soil variations and compositions within the EU. The standardized 
sampling procedure ensures data consistency and reliability across a large geographic 
area, making this dataset a valuable resource for soil-related studies. 

The application of hyperspectral analysis enables detailed characterization of the re-
flectance spectra of the topsoil samples. This analysis allows for the identification of spe-
cific wavelengths that correspond to various soil properties and components. The reflec-
tance spectra data, which span a broad range of wavelengths, provide important insights 
into the chemical, physical, and mineralogical properties of the topsoil samples [35]. Over-
all, the LUCAS 2009 dataset can be used to gain a deeper understanding of soil variability, 
nutrient content, organic matter composition, and other essential factors that influence 
soil health and fertility [36]. The rich and spatially extensive data provided by the LUCAS 
2009 dataset can be used for in-depth soil studies, statistical modeling, and the develop-
ment of predictive models to enhance soil management practices, land use planning, and 
environmental assessments. 

The soil Cr content values were extracted from Cr maps [37]. Note that the Cr meas-
urements were collected at the same sampling sites as the LUCAS 2009 study, ensuring 
consistency when integrating these two datasets. The distribution of Cr content indicates 
that most of the samples were not contaminated, when a Cr contamination threshold of 
100 mg/kg was used (Figure 1c) [38]. The contaminated samples were primarily concen-
trated in countries located in South and South Central Europe, such as Italy and Greece. 

2.1.2. Spectral Preprocessing Methods 
Spectral preprocessing techniques can transform reflectance measurements using 

various mathematical methods that remove physical variability from light scattering and 
enhance features of interest [39]. Many studies have shown that applying appropriate 
spectral preprocessing can improve model accuracy [40–42]. In this study, five commonly 

Figure 1. Descriptive diagram of the dataset: (a) Geological map of the sampling points; (b) Schematic
diagram of the hyperspectral curve; (c) Distribution of Cr content.

The application of hyperspectral analysis enables detailed characterization of the
reflectance spectra of the topsoil samples. This analysis allows for the identification of
specific wavelengths that correspond to various soil properties and components. The
reflectance spectra data, which span a broad range of wavelengths, provide important
insights into the chemical, physical, and mineralogical properties of the topsoil samples [35].
Overall, the LUCAS 2009 dataset can be used to gain a deeper understanding of soil
variability, nutrient content, organic matter composition, and other essential factors that
influence soil health and fertility [36]. The rich and spatially extensive data provided by
the LUCAS 2009 dataset can be used for in-depth soil studies, statistical modeling, and
the development of predictive models to enhance soil management practices, land use
planning, and environmental assessments.

The soil Cr content values were extracted from Cr maps [37]. Note that the Cr mea-
surements were collected at the same sampling sites as the LUCAS 2009 study, ensuring
consistency when integrating these two datasets. The distribution of Cr content indicates
that most of the samples were not contaminated, when a Cr contamination threshold of
100 mg/kg was used (Figure 1c) [38]. The contaminated samples were primarily concen-
trated in countries located in South and South Central Europe, such as Italy and Greece.

2.1.2. Spectral Preprocessing Methods

Spectral preprocessing techniques can transform reflectance measurements using
various mathematical methods that remove physical variability from light scattering and
enhance features of interest [39]. Many studies have shown that applying appropriate
spectral preprocessing can improve model accuracy [40–42]. In this study, five commonly
used spectral preprocessing methods were applied and compared, including the first-order
derivative (D1), second-order derivative (D2), Sazitzky–Golay (SG), multiplicative scatter-
ing correction (MSC), and standard normal variate normalization (SNV) (Figure 2) [43].
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line drift, refining peak recognition and quantification accuracy [49]. The advantage of SG 
smoothing is its ability to eliminate noise without altering peak attributes and improve 
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[51]. These preprocessing methods can be applied to optimize specific data attributes and 
objectives and improve hyperspectral analysis precision; however, a comparison of these 
techniques is essential for optimal Cr detection. 

2.2. Deep Learning 
2.2.1. DNN Architecture 

DNN models consist of multiple processing layers used to learn from and compute 
data [52]. Compared to other common regression models, the DNN approach is uniquely 
suited to compute large data with high dimensionality [53]. A DNN is composed of three 
main parts: an input layer, hidden layers, and an output layer, where each neuron within 
a layer is interconnected with all the neurons from the preceding layer, and nonlinearity 
is introduced by using activation functions on these connections (Figure 3) [54]. Each layer 
contains a specified number of neurons, and each neuron receives a set of inputs, which 
are weighted and aggregated then transformed via the activation function. 

Figure 2. Hyperspectral curves with different spectral preprocessing: (a) Original spectral curve;
(b) D1 preprocessed curve; (c) D2 preprocessed curve; (d) SG preprocessed curve; (e) MSC pre-
processed curve; (f) SNV preprocessed curve. The curve represents the average value for each
corresponding Cr group and the shadow represents the standard deviation.

All five hyperspectral preprocessing techniques can potentially enhance hyperspectral
curve quality and analytical precision [44–48]. D1 and D2 effectively counteract baseline
drift, refining peak recognition and quantification accuracy [49]. The advantage of SG
smoothing is its ability to eliminate noise without altering peak attributes and improve
signal-to-noise ratios and resolution; however, excessive smoothing can potentially worsen
the peak definition [50]. The MSC method tackles scattering variations, amplifies spectrum-
content correlations, and refines quantitative analysis, but its benefits may be limited in
non-scattering-dominant scenarios [4]. SNV promotes spectrum comparability and aids
feature identification; however, this technique may cause noise amplification, particularly
in low-intensity zones, which can in turn influence subsequent interpretations [51]. These
preprocessing methods can be applied to optimize specific data attributes and objectives
and improve hyperspectral analysis precision; however, a comparison of these techniques
is essential for optimal Cr detection.

2.2. Deep Learning
2.2.1. DNN Architecture

DNN models consist of multiple processing layers used to learn from and compute
data [52]. Compared to other common regression models, the DNN approach is uniquely
suited to compute large data with high dimensionality [53]. A DNN is composed of three
main parts: an input layer, hidden layers, and an output layer, where each neuron within a
layer is interconnected with all the neurons from the preceding layer, and nonlinearity is
introduced by using activation functions on these connections (Figure 3) [54]. Each layer
contains a specified number of neurons, and each neuron receives a set of inputs, which are
weighted and aggregated then transformed via the activation function.

Activation functions are key components within a DNN, introducing non-linearity and
enabling the network to capture complex patterns [55]. The selection of activation functions
depends on the data characteristics and network architecture. Selecting suitable activation
functions can significantly enhance the DNN’s ability to capture intricate relationships in
hyperspectral data, which can contribute to accurate Cr prediction [56].
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Layers represent the fundamental building blocks of a DNN and facilitate the extrac-
tion of hierarchical and abstract features from raw data. Each layer in a DNN serves as
a specialized processing unit, transforming the input data through learned weights and
activation functions [57]. The overall DNN structure typically consists of an input layer,
multiple hidden layers, and an output layer. The data are received through the input
layer, and feedforward processing is performed, during which the difference between the
predicted and true values is calculated using a loss function. The parameter weights of
each layer are then updated by an optimizer using backpropagation to minimize the misfit
between the model predictions and true values. [58].

2.2.2. DNN Structure and Parameter Optimization

The construction of ML models must be optimized to achieve ideal performance on
specific problems [59]. Both the DNN’s structure and its hyperparameters will directly affect
modeling performance. When a DNN is trained, the data are usually computed in batches,
and the batch size will affect the model’s training efficiency and generalization ability. Batch
size is the number of training samples used in one iteration and plays a critical role in the
training efficiency of a DNN. A larger batch size can accelerate the training process as more
data are processed simultaneously, leading to faster convergence. However, this speed
comes at the cost of accuracy. Larger batches provide a less accurate estimate of the gradient,
potentially leading the training process to converge to suboptimal solutions. Conversely,
a smaller batch size tends to provide a more accurate gradient estimate, enhancing the
model’s ability to generalize but slowing down the training process. Therefore, selecting
an optimal batch size represents the balance between training speed and model accuracy.
The larger the batch size, the faster the model’s training speed but the lower its accuracy.

The dropout rate aims to reduce the risk of model overfitting by randomly dropping
some neurons during the training process so that each neuron is more independent. During
training, a randomly selected subset of neurons is ignored or ‘dropped out’. This process
prevents neurons from co-adapting too much, encouraging individual neurons to learn
features independently, thereby reducing the model’s reliance on any small set of neurons and
thus mitigating overfitting. However, setting the dropout rate too high can lead to underfitting,
where the model fails to learn the data’s underlying pattern adequately. Thus, the dropout
rate must be carefully calibrated to ensure the model learns sufficiently complex patterns
without overfitting to the training data. Therefore, it is necessary to carefully optimize the
batch size and dropout rate hyperparameters to enhance the model’s performance.

In this study, the number of layers, the number of neurons, the activation function,
batch size, dropout, and learning rate were optimized using the grid search approach
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(Table 1) [60]. The performance of each combination was calculated as the average of
10 repetitions to avoid the effect of randomness during dataset splitting. The dataset was
split in an 8:1:1 ratio of training, validation, and testing sets [61].

Table 1. Hyperparameter selection range.

Parameter Search Range

Layer [1, 2, 3, 4, 5, 6, 7, 8, 9]
Neurons [100, 200, 400, 600, 800, 1000, 1500, 2000]

Activation function [ReLU, Leakly_ReLU, Swish, Sigmoid]
Batch size [25, 50, 75, 100, 500, 100]

Dropout rate [0.1, 0.2, 0.3, 0.4, 0.5]
Learning rate [0.01, 0.001, 0.0001]

2.2.3. Model Evaluation Metrics

Model evaluation is an important step in ML modeling and different evaluation metrics
focus on different aspects of the trained models. In this study, the Pearson coefficient (R),
root mean square error (RMSE), and mean absolute error (MAE) were chosen to evaluate
the model’s performance [62]. R measures the correlation between the model’s predicted
variables and the actual variables, thereby assessing the quality of the model’s predictions.
The RMSE is the square difference between the true and predicted values and represents
the magnitude of the error generated in the model’s predictions. The MAE is the average
absolute difference between the true and predicted values. In general, lower RMSE and
MAE values and higher R values indicate better model performance. The above metrics
are calculated as follows:

R =
Cov(X, Y)√
Var[X]Var[Y]

(1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

MAE =
n

∑
i=1

|xi − yi|
n

(3)

where n is the number of samples, yi is the true Cr content of soil sample i, and ŷi is the Cr
content predicted by the model for sample i.

2.3. Model Interpretation
2.3.1. Overview of Model Interpretation

Deep learning models have proven to be highly effective in processing large-scale
datasets, but their inherent “black box” nature often obscures the understanding of the
internal mechanics influencing their results. This opacity can cast doubts on their relia-
bility, especially in critical applications. To address this, the development of interpretable
methods has become essential, providing insights into how these models arrive at their
conclusions [63].

Interpretable methods in machine learning are broadly categorized into two types:
global and local interpretable methods. Global interpretable methods aim to identify the
overall internal working mechanisms of deep learning models. These methods are de-
signed to provide a comprehensive view of how input data are transformed and processed
through various layers and nodes of a neural network. By understanding these global
mechanisms, it becomes possible to gain insights into the model’s overall decision-making
process, enhancing the transparency and trustworthiness of the model. In contrast, local
interpretable methods focus on elucidating the causal relationships between specific inputs
and their corresponding model predictions. They break down the prediction process for
individual instances, enabling researchers to understand why a model made a particular
decision for a specific input. This level of granular insight is invaluable for diagnosing and
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refining models, especially when dealing with complex datasets where the interactions
between input variables can be intricate and non-intuitive [64]. In summary, interpretable
models enhance the transparency and credibility of deep learning models, offering avenues
for processing and optimizing the models.

2.3.2. Permutation Importance

Permutation importance is a valuable and insightful feature importance assessment
technique that plays a crucial role in understanding and interpreting the outputs of machine
learning (ML) models. This method, based on the predicted outputs of the ML model, offers
a straightforward yet powerful way to determine the significance of different features in
the model’s predictions [65]. The process of permutation importance involves a systematic
alteration of each feature in the dataset. To assess the importance of a particular feature, that
feature’s values are shuffled or ‘permuted’, while keeping the values of all other features
unchanged. This shuffling disrupts the relationship between the feature and the target,
essentially simulating a scenario where the feature does not provide any useful information
to the model.

Once the data with the disrupted feature is prepared, it is fed back into the model for
prediction. The key step in permutation importance is comparing the model’s predictions
on this perturbed data against its predictions on the original, unaltered data. The difference
in performance, typically measured in terms of accuracy or error, indicates how much the
model relies on the feature. A large degradation in the model’s performance upon permut-
ing a feature indicates its high importance. Conversely, if the model’s performance remains
relatively unchanged, the feature is likely less important or even redundant. This method
of evaluating feature importance has several advantages. Firstly, it is model-agnostic,
meaning it can be applied to any ML model regardless of its internal mechanics. This
makes permutation importance particularly versatile and widely applicable across various
types of models and algorithms. Secondly, it is computationally efficient, often requir-
ing only a few additional rounds of prediction, making it suitable for large datasets and
complex models [66,67]. Furthermore, permutation importance provides a more intuitive
understanding of feature importance compared to other methods like coefficients in linear
models or feature importance scores in tree-based models. It helps in identifying not just
the highly influential features but also those which might be misleading or non-informative.
This can guide the feature selection process, leading to simpler, more interpretable, and
often more generalizable models.

2.3.3. Local Interpretable Model-Agnostic Explanations (LIME)

The main concept of the LIME method is to interpret a complex model by constructing
a simple model. This method begins by perturbing the input data and creating a new,
representative dataset that reflects the original data distribution and characteristics. The
newly generated dataset is then used to train a simpler model, which is inherently more
interpretable than the complex model. The key objective of LIME is to ensure that the
predictions made by this simpler model on the new dataset closely align with those made
by the complex model on the same data. By achieving this alignment, LIME effectively
reveals how the complex model behaves locally around specific instances. It also verifies the
local fidelity of the simple model to the complex global model. The goal of this method is
to identify the features with a high degree of importance to the model [68]. The underlying
principle of LIME is shown in Equation (4). To make the local model more accurately
represent the global complex model, the error between the predicted values of the global
complex model f and the new simple model g must be minimized. Subsequently, the
locality-aware loss function is constructed as Equation (5).

Explanation(x) = argmin
g∈G

L( f , g, πx) + Ω(g) (4)
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L( f , g, πz) = ∑
z,z′∈Z

πx(z)
(

f (z)− g
(
z′
)
)2 (5)

where f denotes the global complex model, i.e., the model to be explained, g denotes the
simple model, G is a collection of simple models, e.g., all possible linear models, πx denotes
the proximity measure of data z′ in the new dataset to the original data z, and Ω(g) denotes
the complexity of simple model g.

2.4. Implementation and Visualization

Python 3.8 was used as the programming language in the current study. Spectral
preprocessing calculations were conducted using NumPy 1.25.2, Pandas, and SciPy 1.11.4.
Keras 2.15.0 and scikit-learn 1.2.2 were utilized for the establishment, training, and perfor-
mance assessment of the DNN models. The interpretability analysis of the models was
conducted using Lime 0.2.0.1, SHAP 0.42.0, and eli5 0.13.0.

3. Result and Discussion
3.1. Model Optimization Results

In this study, the influence of five preprocessing methods (SNV, SG, D1, D2, SG, and
MSC) on the modeling performance was compared based on the R value, as shown in
Figure 4. D1 performed optimally on both the training and validation sets, with R values of
0.83 and 0.75, respectively. Compared to the original spectra, the DNN model trained on
D1 preprocessed spectra exhibited a significant improvement, achieving the R increase of
0.30 in the training set and 0.247 in the testing set.
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To obtain the optimal DNN structure, the number of hidden layers and the number of
neurons in the hidden layer were adjusted [59]. After the architecture optimization, the
selected DNN structure comprised seven hidden layers. These layers contained 2000, 1500,
1000, 600, 400, 200, and 100 neurons, respectively, and were connected by the Leaky ReLU
activation function. To prevent gradient explosion and overfitting, the dropout and early
stopping mechanisms were also used during DNN model construction (Figure 5) [69,70].

As described above, different combinations of dropout rate, batch size, and learning
rate will affect the modeling performance. After comparing the performance of learning
rates of 0.01, 0.001, and 0.0001, a value of 0.001 was found to achieve better performance
and was thus used for the subsequent optimization (Figure 6) [71]. The grid search of the
dropout rate and batch size hyperparameters indicates that the model’s performance was
optimized when the dropout rate was 0.15 and the batch size value was 70. For the above
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optimal parameter combination, the DNN model achieved the R values of 0.85 and 0.79 on
the training and validation sets, respectively.

Toxics 2024, 12, 357 9 of 17 
 

 

To obtain the optimal DNN structure, the number of hidden layers and the number 
of neurons in the hidden layer were adjusted [59]. After the architecture optimization, the 
selected DNN structure comprised seven hidden layers. These layers contained 2000, 
1500, 1000, 600, 400, 200, and 100 neurons, respectively, and were connected by the Leaky 
ReLU activation function. To prevent gradient explosion and overfitting, the dropout and 
early stopping mechanisms were also used during DNN model construction (Figure 5) 
[69,70]. 

 
Figure 5. The optimized DNN structure. 

As described above, different combinations of dropout rate, batch size, and learning 
rate will affect the modeling performance. After comparing the performance of learning 
rates of 0.01, 0.001, and 0.0001, a value of 0.001 was found to achieve better performance 
and was thus used for the subsequent optimization (Figure 6) [71]. The grid search of the 
dropout rate and batch size hyperparameters indicates that the model’s performance was 
optimized when the dropout rate was 0.15 and the batch size value was 70. For the above 
optimal parameter combination, the DNN model achieved the R values of 0.85 and 0.79 
on the training and validation sets, respectively. 

 
Figure 6. The optimized batch size and learning rate. 

  

Figure 5. The optimized DNN structure.

Toxics 2024, 12, 357 9 of 17 
 

 

To obtain the optimal DNN structure, the number of hidden layers and the number 
of neurons in the hidden layer were adjusted [59]. After the architecture optimization, the 
selected DNN structure comprised seven hidden layers. These layers contained 2000, 
1500, 1000, 600, 400, 200, and 100 neurons, respectively, and were connected by the Leaky 
ReLU activation function. To prevent gradient explosion and overfitting, the dropout and 
early stopping mechanisms were also used during DNN model construction (Figure 5) 
[69,70]. 

 
Figure 5. The optimized DNN structure. 

As described above, different combinations of dropout rate, batch size, and learning 
rate will affect the modeling performance. After comparing the performance of learning 
rates of 0.01, 0.001, and 0.0001, a value of 0.001 was found to achieve better performance 
and was thus used for the subsequent optimization (Figure 6) [71]. The grid search of the 
dropout rate and batch size hyperparameters indicates that the model’s performance was 
optimized when the dropout rate was 0.15 and the batch size value was 70. For the above 
optimal parameter combination, the DNN model achieved the R values of 0.85 and 0.79 
on the training and validation sets, respectively. 

 
Figure 6. The optimized batch size and learning rate. 

  

Figure 6. The optimized batch size and learning rate.

3.2. Model Evaluation

Figure 7a presents a comparative analysis of the DNN model’s performance through-
out the optimization process, ranging from the default model to the optimal model. A
marked enhancement in the DNN’s performance was observed during the whole model
construction process. Specifically, the R of the model improved from 0.6 to 0.8 on the
validation set, indicating a significant increase in the correlation between the model’s
predictions and the actual values (Figure 7b). In the meantime, RMSE was decreased from
168.6 to 68.4 and MSE was decreased from 8.16 to 5.84. These improvements in evalu-
ation metrics demonstrate enhanced accuracy and reliability of the model in predicting
chromium content in soil. The discrepancies between the actual and predicted values in
the training, validation, and testing sets were predominantly concentrated within a range
of 10, further underscoring the effectiveness of the DNN modeling (Figure 7c–e). On the
testing set, the optimal DNN model exhibited robust predictive performance with an R
value of 0.79, RMSE of 96.98, and MAE of 5.79. These results indicate that the model’s
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capability to predict chromium content from soil hyperspectral data was enhanced after
the optimization of DNN architecture and hyperparameters.
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the optimal model, respectively. The ‘default model’ refers to the initial DNN model, ‘preprocess model’
to the model post preprocessing, ‘structure model’ to the model after optimizing the neural network
structure, and ‘optimal model’ to the model achieving the best performance.

3.3. Spatial Autocorrelation and Residual Analysis of the DNN Prediction

Considering that the soil chromium content might have some spatial patterns, Moran’s
index was calculated at 0.287 with a p-value of 0.001 using the residuals and geographical
coordinates from the DNN model. This indicates a tendency for chromium to cluster within
the spatial scope of the European Union, confirming the presence of significant spatial
autocorrelation in the data.

Further analysis was performed on the residuals through kriging interpolation, as
shown in Figure 8. This revealed that large residuals were predominantly distributed
among Southern and Central European countries, while predictions for countries in North-
ern Europe were more reliable. In future research, more tailored DNN models could be
established for different regions or countries within the European Union to enhance the
robustness of the model’s predictions.
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3.4. Model Interpretation Analysis

As detailed above, the permutation importance can be calculated by randomly dis-
rupting a single feature in all the samples. This can then be used to calculate the impact
on the model’s accuracy due to the change in that feature and, thus, the importance of
each feature [72]. The calculated feature permutation importance using the optimized
DNN model exhibited a relatively smooth trend (Figure 9); however, there were significant
fluctuations in four specific band ranges: 400–439 nm (region I), 1364–1422 nm (region II),
1862–1934 nm (region III), and 2158–2499 nm (region IV). More pronounced absorption
peaks were also observed in these ranges in the hyperspectral reflection curves processed
using the first-order differential method.

Among these four band regions, region I is mainly attributed to the iron oxide content,
while the peaks in regions II and III are primarily related to the presence of clay minerals
and hydroxyl groups in water [73]. Region IV involves vibrations of metal–OH bonds
and indicates a key absorption peak near 2200 nm; this peak is mainly influenced by Al–
OH bonds, with the main contributing substances being kaolinite, montmorillonite, and
illite [74].

The above permutation importance results indicate that soil Cr content is mainly
correlated with clay minerals and iron oxides. Clay minerals directly influence soil texture
and play a crucial role in the growth of plants and microorganisms. These factors, in turn,
exert a significant influence on Cr content and flow within ecosystems [75]. For example,
montmorillonite, a clay mineral characterized by a layered structure and active surface
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sites, can adsorb Cr through processes such as ion exchange with water within its lattice or
complexation on its surface [75,76]. As an iron-loving element, Cr can be adsorbed with
iron oxides to produce stable precipitates or surface complexes—these promote the binding
of Cr to soil particles and thus reduce damage to the environment [77,78]. Therefore, the
summarized high correlation between Cr content with clay minerals and iron oxides agrees
well with the findings in the literature.
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In this study, 1000 samples were randomly selected for LIME analysis and their
10 most important features were classified based on the four important regions identified in
Figure 8. The LIME results are summarized in Figure 10. As shown, 77% of the important
features identified in the LIME analysis belonged to one of the four intervals, while the
other 23% were irregularly distributed in the other regions. The above results indicate a
good agreement between LIME and permutation importance results. Notably, the number
of important features in region IV was much higher than those in regions I, II, and III, and
the top 10 most important features identified from the permutation importance were also
distributed in region IV. Therefore, clay minerals were observed to be the most important
indicators for Cr content in soil.

The above importance analysis indicates that the chemical properties of soil signif-
icantly affect the accumulation of Cr in soil. To prevent excess Cr accumulation in the
soil, heavy metal industries should not be distributed in soils with high clay minerals and
iron oxide content. This measure can help minimize the extent and impact of Cr pollution
resulting from industrial accidents and improper sewage treatment. For soils that have
accumulated large amounts of Cr, remediation using iron oxide or clay minerals can be
performed to absorbed Cr from soil.
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4. Conclusions

In this study, various analyses were performed based on the LUCAS dataset to estab-
lish a DNN model for Cr detection from soil spectra. As part of the optimization process,
the optimal preprocessing method was determined, and the model’s hyperparameters were
tuned. The resulting optimum DNN model can accurately predict soil Cr content from soil
spectra. Meanwhile, four Cr-sensitive bands were identified through the interpretation
using the optimal DNN model. The main conclusions are as follows:

(1) D1 was identified as the optimal preprocessing method for the DNN model to predict
soil Cr content. The R value of the DNN model increased from 0.50 to 0.75 on the
testing set after spectral preprocessing.

(2) The adjustment of DNN architecture and hyperparameters resulted in the further
improvements in the model performance. The R, RMSE, and MAE values of the
optimal model on the testing set were 0.79, 96.98, and 5.79, respectively, which were
significantly improved compared to the default model.

(3) Four important sensitive band regions of Cr content in soil were identified, namely,
400–439 nm (region I), 1364–1422 nm (region II), 1862–1934 nm (region III), and
2158–2499 nm (region IV). These bands correspond primarily to iron oxide and clay
mineral content in the soil.
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