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Abstract: This work aims to identify the optimal rating scale for the rating system used by a credit
insurance company subjected to the Solvency 2 regulatory framework. To do so, we apply and further
develop a previously published result concerning the rating scale properties. The partition underlying
a given rating scale must satisfy two needs of the rating model user: efficient information synthesis
and stable semantics. Those needs cannot be addressed together in general. Nonetheless, it is possible
to specify the partition as a linear combination of the two choices that meet one requirement each. We
numerically show that, in general, the optimal combination is nontrivial under realistic assumptions
and is mainly driven by the target return fixed by the company’s stakeholders and the debtors’
probability of default distribution.
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1. Introduction

Nowadays, rating systems are widely applied across the most diverse contexts. With-
out claim for completeness, relevant applications include the healthcare sector [1–3], zero-
sum games [4–6], psychometrics [7–10], and agronomy [11]. However, the possibly most
widespread application of rating systems is the creditworthiness measurement, both in
banks [12] and insurance companies [13].

In its most general sense, a rating system is a set of rules to classify a subject into a
given rating class, or notch, based on processing a standardized data set associated with
the subject at the evaluation time. Typically, notches constitute an ordered set known as
“rating scale” or “master scale” [14–17].

The rating scale has two primary purposes, which remain the same in all the possible
applications. First, the rating scale provides the user with easily understandable informa-
tion. For example, in the credit risk context, the output returned by a rating system to a
given counterparty provides risk underwriters and investors with immediate knowledge
of the counterparty’s creditworthiness, given their awareness of the rating scale semantics.
Second, the rating scale enables the construction of automated decisional systems, as each
notch can activate a specific set of rules and actions regarding the evaluated subject.

In [18], we have shown that these two purposes may somewhat contrast each other.
Indeed, stable semantics can lead to an inefficient decisional system. e.g., given a portfolio
of risky credit debtors, a bank or other financial entity defines and calibrates an internal
rating system, fixing a probability of default (PD) level associated with each notch of the
rating scale (i.e., the rating scale is a priori defined through a semantics-based criterion).
Without any semantics update, as the average portfolio creditworthiness improves or
worsens over time, an increasing fraction of the debtors is progressively concentrated at
the extreme notches of the master scale, implying that the same action (rejecting the credit
request or granting the maximum credit limit) follows for each evaluated subject. In such a
case, the rating model becomes useless as its discriminant power approaches zero. On the
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other hand, when the rating scale’s semantics is redefined too strongly, the rating model’s
user loses the ability to understand the creditworthiness of the evaluated subject based on
the notch that is assigned by the rating system. This kind of situation may happen if the
master scale is defined and updated aiming to maximize the model efficiency in processing
the available information (i.e., an information-based criterion is applied to calibrate the
rating scale), implying that the same notch assumes different meanings depending on the
average creditworthiness of the evaluated portfolio at different times.

Fixing a credit limit level per notch has economic consequences for a bank that applies
a “rating-plus-automated-decisions” system. An automated decisional system typically
aims to establish a maximum acceptable amount of exposure to the counterparty risk of
each debtor. As shown in [18], a semantics-based rating scale implies a more prudential
behavior of the system as the average creditworthiness of the bank’s debtors worsens
over time. Conversely, an information-based rating scale implies a more efficient but less
prudential attitude of the system regarding the accepted exposures.

It is neither possible nor correct to consider one of these two approaches as the best
under every circumstance. The possibility to mix information-based and semantics-based
criteria allows us to identify a balanced solution that best fits a specific economic operator,
given its regulatory constraints and level of risk appetite.

The concept of a hybrid rating scale, discussed in [18] and this work, is new, although
problems concerning the stability of rating systems and PDs have been extensively investi-
gated in the banking literature. The most notorious and debated concept is choosing the
PDs’ calibration as through-the-cycle (TTC) or point-in-time (PIT) [19,20]. Namely, TTC
PDs are measured considering a risky firm’s creditworthiness fluctuations across a whole
economic cycle. Conversely, PIT PDs take into account the current economic context and
how a firm relates to it at the moment of its PDs’ measurement.

Indeed, the choice between PIT and TTC PDs improves a rating system’s reactivity
or stability, respectively [21]. Nonetheless, this parameterization choice does not directly
impact the rating scale’s semantics, which can be modified even if TTC PDs are used. In
fact, the model user can redefine the score or creditworthiness range associated with each
notch, regardless of the selected PDs’ calibration technique, resulting in an evolving PD per
notch. On the other hand, in case PIT PDs are chosen, the model’s user can adjust the score
range per notch for each PD update so that the PD associated with each notch remains
always the same.

To the best of our knowledge, the problem discussed in literature most similar to
the one addressed in this work is the stability-accuracy tradeoff analyzed by Cantor and
Mann [22]: namely, how to choose an intermediate solution between a reactive rating
system, whose frequent rating changes enable a high model’s accuracy, and a stable rating
system, whose rare rating changes imply a less dynamic model, although less predictive
as well. However, their approach considers the amplitude of a firm’s creditworthiness
variation and the persistence of the newly measured creditworthiness level as critical
elements for deciding whether to change its rating. In their study, the semantics of the
model is fixed by construction. Conversely, we consider the possibility of redefining the
rating scale (i.e., the model’s semantics) through time as the primary degree of freedom to be
investigated, while our rating system is assumed to react instantaneously and automatically
to every creditworthiness variation measured. Further, their study is limited to reducing
the governance costs of managing a corporate bonds portfolio, implying a relatively low
dynamic context, compared with most of the examples proposed above and especially the
case of a credit insurer managing a portfolio of SMEs, which is the application investigated
in the following.

This work investigates the possibility and the utility of applying the concept of hybrid
master scale to the risk appetite framework of a credit insurance company [23–28] subject
to the Solvency 2 regulation [29–31]. We aim to understand if a credit insurer equipped
with an internal rating model has an advantage from implementing a hybrid rating scale
instead of a classical, fixed-semantics one. Further, we define an optimization problem
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based on realistic assumptions concerning the risk appetite framework adopted by the
insurer, with particular reference to the capital absorption constraints and the target returns
required by the stakeholders. Our approach is purely simulative. This choice excludes all
the undesired sources of uncertainty and error that must be faced in applying historical-
data-driven methodologies. In particular, our simulated ratings are error-free, allowing us
to isolate and observe the impact of the rating scale definition, avoiding any overlap with
the accuracy limit of the underlying scoring model, whose parameterization is imposed to
be exact. On the other hand, the assumptions are stressed through a sensitivity analysis
focused on different distributions of the underlying debtors’ PDs and a realistic range of
target return rates to exclude that our conclusions can be affected by a specific choice of
the considered assumptions. Our numerical results show that the optimal rating scale is
generally nontrivial (i.e., hybrid criteria are preferable to semantics- or information-based
criteria) and remarkably dependent on the target return level.

The remainder of the paper is organized as follows. Section 2 describes the considered
rating system and recalls the hybrid master scale calibration method proposed in [18].
Section 3 introduces an example of Solvency 2 risk appetite framework in credit insurance,
which defines the context and constraints of the application investigated in this work.
Given all the previously defined elements, the application is introduced in Section 4, where
we address it numerically as an optimization problem. Section 5 summarizes the main
results obtained in this work.

2. A Rating System with Hybrid Rating Scale

This section describes the features of the rating system considered in this work.
Section 2.1 outlines a rating model based on a logistic regression model. Section 2.2 briefly
describes the hybrid master scale introduced in the previous work [18], whose application
to the credit insurance context is investigated in this work.

2.1. A Typical Rating System

To introduce the rating system applied in this work, we first recall the main features
of our chosen credit scoring model. A credit scoring model is a map from a set of attributes
to a symbolic notch that expresses a certain creditworthiness level [32]. The attributes
qualify the evaluated subject and are ideally measured simultaneously—or, more likely, are
evaluated filtered to the same reference date, although the last update of each considered
attribute may date back to different earlier dates. The foundational assumption of a credit
scoring model is that the PD of risky firm F defined onto a future time interval (t, t + ∆t]
can be written as a generalized linear function of some selected variables measured in t.

PD(F, t, ∆t) = E
[
1I{τF∈(t,t+∆t]}|Ft

]
= f

(
β0 +

N

∑
i=1

βixiF(t)

)
(1)

where τF is the instant to default of F, β := (β0, β1, . . . , βN) ∈ RN+1 is the array of the
model parameters and xiF(t) ∈ R is the value of the i-th considered variable, observed in t
from the F’s financial statements or other available information sources.

The function f : R→ [0, 1] is chosen according to tractability criteria. The “logit” and
“probit” models are the most widespread choices in terms of the number of papers [32–34].
We consider a “logit” model, that corresponds to taking f (·) as the standard logistic function

f (x) ≡ ex

ex + 1
=

1
2
+

1
2

tanh
( x

2

)
. (2)

The model is completed by assuming that default events over (t, t+∆t] are distributed
as i.i.d. Bernoulli random variables conditionally to each firm’s xF(t). Both the logit and
the probit models are popular because they are easily calibratable by their parameters’
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maximum likelihood (ML) estimation. Indeed, the likelihood function L can be written in
closed form due to the assumed independence among defaults.

L(β|Ft′) = ∏
F

f (β · xF(t))DF [1− f (β · xF(t))]
1−DF (3)

where t′ ≥ t + ∆t, xF(t) := (1, x1F(t), . . . ) and DF := 1I{τF∈(t,t+∆t]}.
Further, the calibration problem is easily solved due to the computable form of the f ’s

first derivative. Indeed, in the logit model, it holds f ′(x) = f (x)[1− f (x)], as the logistic
function is a solution of that differential equation. However, the choice between the two
models is not relevant to practical purposes [34,35]. Commonly the considered output of
the model is the score s ∈ R, defined as

s := β0 +
N

∑
i=1

βixiF(t). (4)

which has a monotonic relation with the firm’s creditworthiness.
To complete the model, we need to discretize the score through a partition S : R→

{1, . . . , R} ⊂ N, which defines the notches of the rating scale.

S(s) =
R

∑
r=1

r1I{sr−1≤s<sr} (5)

where sR = −s0 = +∞. Different approaches available to the model developer in order to
specify S have been investigated in [18] and are briefly summarized in the next Section 2.2.

Banks and other financial institutions typically embed this technique on a broader
framework [17,18,35,36] (i.e., an internal rating system) to assess the credit risk profile of
homogenous risky debtors. Considering a cluster of debtors to be “homogenous” means
that the functional relation between each debtor’s PD and a given attributes’ array x(t)
is assumed to be the same, concerning both the functional form and the parameters’ set
(β0, β1, . . . , βN). Typical examples of homogeneous clusters consist of enterprises that
belong to the same segment, economic sector, and geographical area. The homogeneity
assumption enables the model’s calibration through past observations of comparable enter-
prises (defaulted or survived) collected over several years. Equations (1), (2) and (4) imply
that the calibrated model can return a “natural” PD level, which is equal to logistic(s(xF)).
However, this probability may not cope with the purposes of the model’s user, as the cali-
brated model is applied to a macroeconomic context which could be significantly different
from the ones that affected each historical observation considered in the calibration. The
estimation of a proper PDr per notch r is a widely investigated problem [37,38], as it is the
only additional requirement needed to upgrade a credit scoring model to a rating system.
However, this problem is not relevant to the purpose of this work. Hence, in the following,
we only consider the natural PD level f (s(xF)) implied by the calibration.

2.2. A Hybrid Partition Criterion

As anticipated above in Equation (5), the score thresholds array

s := (−∞ ≡ s0, . . . , sr . . . , sR ≡ ∞) (6)

fully specifies the rating scale. In the previous work, we outlined two approaches to
defining a generic rating scale.

The first one is a priori (i.e., semantics-based). It is fixed through time, regardless
of the dynamics of the evaluated population. Thus, the model’s user benefits from the
constant meaning of each notch regarding creditworthiness level. In the credit risk context,
the meaning of each notch is determined by the PD distribution of the corresponding
sub-population. Hence, a natural choice to fix the semantics is to choose constant threshold
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levels of PD between subsequent notches. Namely, the chosen PD thresholds define the
score partition:

sFix := (−∞ ≡ [sFix]0, logit(PD1), . . . , logit(PDR−1), [sFix]R ≡ ∞), (7)

where PD1 < PD2 < · · · < PDR−1. Although other fixed-semantics criteria are possi-
ble [18], they are approximately equivalent. Hence, we consider only the criterion above in
the remainder of this work.

Another possible approach to calibrating the rating scale is adopting an a posteriori
(i.e., information-based) perspective, and thus aiming to process and preserve the available
information most efficiently, depending on the evaluated population. This choice implies
that the creditworthiness level associated to each notch is allowed to assume different
values in different contexts. Different information-based criteria lead to comparable results
as numerically verified in [18]. Hence, we recall only the criterion based on the hit rate
(HR), used to quantify the predictive power of a rating system [39,40]. Given a sample
population of M individuals where D default events have occurred over a given period,
and a rating scale {sr}r=1...R, HR is defined as follows:

HR = 1
2

R

∑
r=1

Mr
M (Kr + Kr−1), (8)

where Mr(s) is the number of r-rated individuals,

Kr =

(
1
M ∑

s≤sr

Mr; 1
D ∑

s≤sr

Dr

)
, (9)

and Dr(s) is the number of defaulted r-rated individuals. Higher HR levels correspond
to a greater difference between the ratings’ distributions of defaulted and not defaulted
sub-populations by construction, implying a more predictive model. Thus, the rating scale

sHR = argmax{HR(s)} (10)

maximizes the model’s accuracy.
The model’s developer can mix the two approaches. Indeed, given two ordered sets

(s1, . . . , sR−1) and (s′1, . . . , s′R−1), both sorted in ascending or descending order, the set(
αs1 + (1− α)s′1, . . . , αsR−1 + (1− α)s′R−1

)
, α ∈ [0, 1]

preserves the order. This trivial property leads to obtaining the one-parameter family of
hybrid criteria

sHybrid(α) := (1− α)sFix + αsHR. (11)

which may preserve the advantages of both information- and semantics-based criteria to
some extent.

3. A Credit Insurance Company under the Solvency 2 Regulatory Framework

This section introduces the context where we aim to investigate the application of a
hybrid rating system.

Section 3.1 recalls some fundamental features of credit insurance and a simplified ap-
proach to credit pricing. The latter comes in handy in the following Section 3.2, where a risk
appetite framework is introduced coherently with the Solvency 2 regulatory framework.

3.1. Elements of Credit Insurance

Credit insurance protects sellers of goods or services against losses from buyers who
do not pay their expired commercial debts [23,24]. Thus, the claim arises specifically when
the payment terms are violated, whether the liable buyer goes bankrupt or not. If a claim
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occurs, the insurer pays a contractually established fraction of outstanding debt to limit
the insured seller’s moral hazard. The seller could otherwise increase its risk appetite and
adversely select its buyers without any drawback. Generally, the insurer does not know a
relevant part of the risky buyers when the policy is issued, as the insured seller may decide
to start new business relationships during the coverage period.

If the buyer becomes insolvent, the insurer receives the expired invoices as proof of
the credit’s existence and maturity. For each claim, the insurer shares the debt recovery
benefits in proportion to its share of the losses. The insured and the insurer may also work
jointly toward the recovery process. Regularly paid invoices are not notified during the
coverage period. Notification may occur at the end of each policy annuity if the insured
annual turnover is needed to quantify the premium. However, in credit insurance, the
insurer cannot benefit from real-time information on the issued invoices, unlike other forms
of credit risk protection, such as factoring.

The insurer grants a specific limit for each risky buyer. Each insured’s request for a
new credit limit may be accepted, partially or entirely, or even rejected, depending on the
buyer’s creditworthiness. Insurers commonly develop and apply internal rating systems to
evaluate each underlying buyer. This practice is also considered in EIOPA’s comparative
study NLCS since it is widespread among Credit and Suretyship insurance companies [13].

When a credit limit Ci is active for a given i-th buyer, the outstanding amount of the
buyer’s debt owed to the insured is covered up to Ci, while the insured retains the risk
in excess.

The insurer can also reduce or nullify Ci depending on the dynamics of the buyer’s
creditworthiness. This action only affects the coverage of the invoices issued after the credit
limit modification. The Ci revision needs continuously updated information to be effective.
Thus, insured sellers are obliged to share any negative information about their buyers
with the insurer, and additional information on each risky buyer is usually bought from
specialized info providers. Further details on credit insurance are available in [23–26].

The share of insurance premium πi associated to an active credit limit Ci can be
approximately evaluated according to the equation

πi = pi`Ci + ($ + c)πi (12)

where pi is the default probability of the i-th buyer over the insured annuity time horizon
(i.e., one year) and, thus, pi`Ci is the expected loss contribution. The coefficient ` ∈ (0, 1]
represents the expected severity of each claim, expressed as a fraction of the granted credit
limit Ci. ` embeds the expected recovery of the insurer after the claim, the possible partial
usage of Ci by the insured seller at the claim time, and the further reduction of the insurer’s
loss due to the fraction of outstanding debt which the insured seller must retain. The term
$πi rewards the risk-averse insurer’s stakeholders, as $ scales as the cost-of-capital rate.
πi is the premium itself, which is approximately proportional to its contribution to the
insurer’s capital absorption (also SCR, i.e., Solvency Capital Requirement), according to
the Solvency II (SII) Standard Formula (SF) framework [29,41]. The insurer’s costs are
considered through the cost ratio c, assuming them to scale as πi.

The approach to single-buyer pricing outlined above is a simplification inspired by
the approach followed in [41] to price suretyship contracts. It is adequately precise to our
purposes, as it allows us to partition the economic value of coverages granted by the insurer
among the covered risky buyers. More accurate actuarial pricing should shift the focus
from each buyer to the policy as a whole, as a credit insurance policy commonly covers
a portfolio of buyers, featuring contractual clauses that affect the insurer’s future losses
and are unrelated to a specific buyer. However, to design the risk appetite framework
presented in the next Section 3.2, it is useful to evaluate the premium contribution of each
buyer separately as done in Equation (12). A possible way to reconcile the two perspectives
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may be expressing the buyer contribution to the total earned premiums Π of the line of
business as follows

πi = k
pi`Ci

1− $− c
, (13)

where the adjustment

k :=
Π

`
1−$−c ∑i piCi

(14)

forces the sum of the premium contributions per buyer implied by Equation (12) to equate
the Π computed per policy. The case when the insurer grants distinct credit limits on
the same buyer to different insured sellers is easily handled in Equation (13) by defining
Ci := ∑j Cij, where Cij is the credit limit granted on the i-th buyer to the j-th insured seller.
Further discussions on credit insurance policy pricing are available in [23,27,28,42,43].

3.2. A Credit Insurance RAF in the Solvency 2 Framework

According to the SII Directive [31] (Article 44), each insurer must define a set of rules,
known as Risk Appetite Framework (RAF), that aims to limit the SCR level below a given
fraction of the own funds. The RAF should discipline the management actions to be taken
in running each line of business and the overall strategy, that is, the balance among the
different lines of business through time. The efficient capital allocation among the insurer’s
lines of business is a problem being extensively investigated in the actuarial literature (see,
e.g., [44,45] and references therein). Our interest in a credit insurance company’s RAF is
limited to the subset of rules that may limit the insurer’s risk appetite against Premium Risk
and the related Catastrophe Man-Made Risk in the SII SF framework.

A partial RAF may be defined as an automated decisional system fed by the insurer’s
rating model output. All the other SCR’s components (e.g., reserve risk, lapse risk) are
excluded from the following discussion. Premium risk and Catastrophe Man-Made Risk
arising from lines of business different from credit insurance are excluded as well. Finally,
also the effect of reinsurance is neglected for simplicity. We follow the approach outlined
in [41] for Suretyship insurance, which the Solvency 2 framework treats as a whole with
Credit insurance, applying the same models and methods.

SII SF [29,30] states that a portfolio of credit insurance policies generates three risk
components of the Underwriting Risk:

i. The Premium Risk, whose SCR is measured as

SCRPr := 3σPrVPr,
VPr := max{PNext; PLast}+ FPExisting + FPFuture;

(15)

where PLast and PNext are the premiums earned in the last 12 months and the premi-
ums to be earned in the next 12 months, respectively, FPExisting and FPFuture are the
expected present value of the premiums to be earned after the following 12 months for
existing contracts and for contracts whose initial recognition date falls in the following
12 months respectively, and σPr = 19% according to the current regulations. We
assume the geographical diversification factor is irrelevant in Equation (15).

ii. The Catastrophe Recession Risk, whose SCR is measured as

SCRRec := PNext (16)

iii. The Catastrophe Default Risk, whose SCR is measured as

SCRDef := 10%(LE1 + LE2) (17)

where LEi (i = 1, 2) are the first two largest exposures at risk.
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The risk sub-modules represented above are aggregated in the SF framework by applying
the following rule

SCRUdw =
(

SCR2
Pr + 2ρSCRPrSCRCat + SCR2

Cat

) 1
2 ,

SCRCat =
(

SCR2
Def + SCR2

Rec

) 1
2 ,

(18)

where ρ = 25% and SCRUdw is the Underwriting Risk measure under the assumption that
all the risk components different from i.− iii. are null, as anticipated above and further
discussed in [41].

Thus, in this context, SCRUdw scales approximately with the magnitude of the fu-
ture Π which, according to Equation (13), scales as the credit limit per buyer Ci and the
corresponding claim probability pi.

Let us consider a stable or expanding credit insurance business so that

max{PNext; PLast} = PNext. (19)

Further, given the typically short time scale of credit insurance coverages, we can as-
sume

FPExisting + FPFuture = 0. (20)

The simplification introduced in Equations (19) and (20) implies that Equation (18)
can be rewritten as follows

SCRUdw =

√(
9σ2

Pr + 1
)

P2 + 6ρσPrP
√

D2 + P2 + D2 (21)

where we use the compact notation D := SCRDef and P := PNext. Equation (21) allows to
estimate the marginal contribution δSCRUdw to the capital requirement originated by a
specific i-th buyer

δSCRUdw(P, D) = SCRUdw(P + δPi, D)− SCRUdw(P, D)

' ∆P δPi (22)

where
∆P := ∂xSCRUdw(x, D)|x≡P

=
1

SCRUdw(P, D)

[(
9σ2

Pr + 1
)

P + 3ρσPr
D2 + 2P2
√

D2 + P2

]
, (23)

and δPi is the i-th buyer’s contribution to PNext. We assume D constant, which is valid
until the i-th buyer’s exposition is greater than LE2 in Equation (17). Nonlinear terms in
Equation (22) are considered negligible.

The premium accrual is linear in time, although the risk generated by each buyer is a
nonlinear decreasing function of the time-to-maturity. Thus we have

δPi = πi
1
Ci ∑

j
Cij

Tj−t
Tj−tij

(24)

where t is the observation date, tij is the time since when a credit limit has been granted on
the i-th buyer to the j-th policyholder, and Tj is the end date of the j-th policy. Equation (24)
embeds the implicit assumption Tj − tij ≤ 1. Further, it holds that tij ≤ t < Tj by construc-
tion.

Due to the insurance business complexity and dynamics, an insurer is likely to update
SCRUdw quarterly at most, while new policies are issued daily or weekly. Further, existing
credit limits may be updated anytime, based on the policyholders’ requests and the new
information available to the insurer.
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Hence, the insurer should keep SCRUdw at a safe distance from a threshold SCRUdw by
defining a maximum acceptable δSCRUdw caused by the total credit limit granted per buyer.

Equations (13), (22) and (24) imply that the maximum acceptable credit limit Ci of a
buyer admits an upper bound C̃i which scales as p−1

i . Namely, it holds

Ci ≤ C̃i :=
δSCRUdw

∆P

1− $− c
k`

p−1
i , (25)

where δSCRUdw is the maximum acceptable contribution of each buyer to SCRUdw. Inequal-
ity (25) is directly implied by the inequality πi ≥ δPi, which follows from Equation (24),
and by the inequality δSCRUdw ≥ δSCRUdw, which holds by definition of δSCRUdw.

Without loss of generality, let us consider an RAF such that C = C̃. Further, the
internal rating system outlined above in Section 2 provides a probability of default p(r)
for each notch r = 1 . . . R of the rating scale. These elements, together with Equation (25),
allow defining an automated decisional system that depends on the internal rating model
evaluations. The curve C̃(r) defines the maximum credit limit that the insurer accepts to
grant per buyer depending on their rating r, given the Solvency 2 regulatory framework
and the assumptions stated above in Sections 2 and 3. Thus, all the insured sellers’ requests
for protection against the i-th buyer are accepted up to a cumulative credit limit equal to
C̃(ri) and rejected once the limit is reached.

It is worth noticing that ri and the corresponding probability pi are time-dependent,
both due to the update of the data set associated to the i-th buyer and the update of
the rating model itself, that is, the periodic calibration of the parameters array β and
the possible re-definition of the model’s semantics, through the update of the additional
parameters array s. Hence, the value C̃(ri) may change over time as well.

4. Benefits of the Hybrid Rating Scale to a Solvency 2 Based RAF

In this section, we jointly apply the concepts introduced in Sections 2 and 3. Section 4.1
defines an optimization criterion to choose α based on maximizing the risk-adjusted returns.
A realistic case study is introduced and investigated in Section 4.2. Section 4.3 discusses
the optimal α landscape under different {pi} distributions and considering different values
of the target return $.

4.1. α as the Solution of an Optimization Problem

Let us consider a credit insurance company that is regulated by the Solvency 2 frame-
work and adopts the RAF introduced in Section 3. The company’s top management fixes
the target return that the line of business must attain in the following fiscal year. The target
determines the value of $ and, together with the δSCRUdw value established by the com-
pany’s risk management, implies a risk appetite level per buyer, depending on the buyer’s
creditworthiness, through Equation (25). The company’s internal rating system evaluates
the creditworthiness level, whose specifications are the ones described in Section 2.

So far, δSCRUdw and $ allow us to evaluate the C̃(r) curve. However, it is worth
noticing that it holds C̃(r) > 0 by construction, implying a non-zero risk appetite level for
any buyer, regardless of the measured creditworthiness. For practical purposes, we may
expect the following deviation from the theoretical curve:

C̆(r) := 1I{r≤R̆}C̃(r) (26)

Namely, a notch R̆ is associated with the minimum acceptable creditworthiness per
buyer. Beyond that level, the insured sellers’ requests for a credit limit are rejected. In
Equation (26) and the following, we adopt the convention that creditworthiness decreases
as the notch r increases.

Given the RAF introduced above, the optimization problem is finally specified by
choice of a objective function that links each α ∈ [0, 1] to a risk-adjusted returns level
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attained by the insurer. A natural choice is the Sharpe ratio Sa, which in this context can be
specified as follows

Sa :=
(1− c− $0)Π− k`∑i piC̆(ri)

k`
√

∑i pi(1− pi)C̆2(ri)
. (27)

The insurance business’ extra return is obtained by subtracting costs cΠ, risk-free returns
$0Π, and expected loss contribution from the total premiums. However, it is worth noticing
that both the expected loss and the loss volatility are estimated by the set {pi} of “actual”
PD per buyer. At the same time, each premium contribution πi is implicitly computed by
the set {pr(i)} of PD per grade, which is available to the insurer after having calibrated
the internal rating system. Loss events are assumed to be independent in estimating the
loss volatility level needed in the Sa definition. Further, it is assumed that the appetite for
protection of the insured sellers is generally greater than the insurer capability per debtor,
implying the i-th credit limit to be equal to C̆(ri).

Thus, the optimal choice for α is the solution

α? := argmaxαSa (28)

where Sa and the whole RAF implicitly depend on the partitions sFix and sHR, which have
to be optimally mixed by α?.

4.2. A Full Working Example

We consider a credit insurance company equipped with the internal rating system
described in Section 2. The company has to fix α to specify the rating scale through
Equation (11). Thus, the problem introduced in Equation (28) must be addressed, given the
risk exposures portfolio, the costs, and the target return required by the stakeholders.

The problem’s features are completed by considering the following assumptions. The
PDs {pi} are Beta distributed. The company’s rating scale has 10 notches (i.e., “1—highest
creditworthiness” to “10—lowest creditworthiness”), following the standards commonly
adopted across the credit insurance market [13]. The central PD level pr associated to the
r-th notch is defined as

pr := 1
2 [logistic(sr−1(α)) + logistic(sr(α))]. (29)

This definition is independent of the PD distribution of the r-rated debtors. The main
advantage is that there is no need for updating pr as the buyers population evolves, unlike
other possible choices, such as

pr := E[p|logit(p) ∈ [sr−1, sr)]. (30)

On the other hand, the drawback is the possible lack of precision in approximating the
actual pi associated with each r-rated debtor, especially in case of a wide interval [sr−1, sr)
associated with the notch r.

The insurance company’s management fixes the risk appetite δSCRUdw, the target
return $, the premiums Pnext to be earned over the next year, and the maximum acceptable
notch R̆. Conversely, the variables k, `, c and D are measurable. Thus, Equations (25), (26)
and (29) allow us to fully specify the considered decisional system

C̆r(α) := 1I{r≤R̆}
δSCRUdw

∆P

1− $− c
k`

p−1
r (α). (31)

where ∆P(P, D) can be evaluated through Equation (23), recalling that D is measurable,
and that P ≡ Pnext.

In Table 1, we provide the specifications of a working example to solve the problem
stated in Equation (28) under realistic assumptions.
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Table 1. Numerical setup considered as a case study to solve the optimal master scale problem.

Variable Description Value

P Premiums to be earned during the next 12 months (arbitrary units) 104

D SCR associated to Catastrophe Default risk in Solvency 2 Standard
Formula framework (arbitrary units) 103

δSCRUdw
Risk appetite per risk expressed as the maximum acceptable contribution
to the SCRUdw (SCRUdw units) 5×10−5

k Average effect of contractual clauses and conditions 90%
` Average exposure at default ratio 50%
c Insurer’s cost ratio 35%
$ Target return required by the insurer’s stakeholders 8%
$0 Risk free return 2%
R Number of notches belonging to the considered master scale 10

R̆ Notch associated with the minimum acceptable creditworthiness per
buyer 7

N Number of risky buyers against whom the insured sellers ask for
protection 105

E[p] Expected value of the buyers’ PD distribution 7.0%
sd[p] Standard deviation of the buyers’ PD distribution 3.5%

The fixed-semantics rating scale is chosen a priori, considering a typical Moody’s rating
scale as a reference (see, e.g., [14,15,35]). Namely, sFix is taken so that pr computed through
Equation (29) fits the considered rating scale. Considering a widespread rating scale as the
possible fixed-semantics scale of the system is a sounding choice, as the company’s credit
analysts and management will likely be familiar with it. The resulting partition is depicted
in Figure 1 against the considered buyers’ PD distribution.
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Figure 1. Semantics-based rating scale (i.e., α = 0) compared with the buyers’ PD distribution
β(3.6, 48.5) specified in Table 1, considering a population of 105 individuals. The amplitude of each
colored band highlights the PD interval associated with a given notch r of the rating scale, from lower
PDs (green band, corresponding to r = 1) to higher PDs (red band, corresponding to r = 10).

The information-based rating scale is chosen a posteriori, considering the PD distribu-
tion across the risky buyers’ population. sHR is estimated as the solution to the problem
introduced in Equation (10). The resulting partition is depicted in Figure 2 against the
considered buyers’ PD distribution. A comparison between Figures 1 and 2 highlights how
sHR fits the distribution {pi} better than sFix. This feature is expected, as sHR implicitly
depends on {pi} through the objective function defined in Equation (8).

Given sHR and sFix, we find the optimal α? value to mix the two rating scales according
to the RAF introduced above and the set of assumption displayed in Table 1. Without claim
to completeness, it is worth noticing that the solution to the problem stated in Equation (28)
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is nontrivial, in the sense that α? ' 21% and thus s(α?) does not coincide with sFix nor with
sHR, as shown in Figure 3.

This result copes with the intuition, as sFix is chosen a priori. In contrast, sHR is the
solution to an optimization problem different from the one in Equation (28). In an actuarial
perspective, this result suggests that a credit insurance company may somewhat benefit
from mixing its a priori rating scale with an information-based rating scale.
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Figure 2. Information-based rating scale (i.e., α = 1) compared with the buyers’ PD distribution
β(3.6, 48.5) specified in Table 1, considering a population of 105 individuals. The interpretation of the
colored bands overlying the PD distribution is the same as Figure 1.
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Figure 3. Optimal hybrid rating scale (i.e., α = 0.21) compared with the buyers’ PD distribution
β(3.6, 48.5) specified in Table 1, considering a population of 105 individuals. The interpretation of the
colored bands overlying the PD distribution is the same as Figure 1.

The graphical solution to problem in Equation (28) is displayed in Figure 4, where the
displayed simulation shows a smooth behavior of the Sharpe ratio Sa as a function of α and
the existence of one local maximum, which is not located at the boundaries {0; 1} of the
α domain.
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Figure 4. Sharpe ratio as a function of α, considering $ = 8%.

4.3. Sensitivity Analysis

Section 4.2 shows how to choose the optimal α in a realistic, practical case. However, a
wide range of realistic setups may be considered instead of the one detailed in Table 1.

Further, the framework itself can be modified. For example, other measures of the
risk-adjusted returns can be chosen instead of the Sharpe ratio, or implementation of the
Solvency 2 framework based on a partial internal model is feasible instead of the Standard
Formula used in Section 3.2. Nonetheless, it is worth noticing that all the possible variations
to the considered case study do not affect the possibility nor the interest of identifying and
applying a hybrid rating scale that maximizes the risk-adjusted returns of the insurer, while
satisfying the constraints imposed by the chosen RAF.

Two elements are considered in the following sensitivity analysis: the target return $
requested by the stakeholder and the PD’s distribution of the risky buyers underlying the
insurance policies.

Despite the number of variables involved in the RAF definition, this choice is exhaus-
tive due to the functional form of C̆r. In fact, the automated decisional system specified
in Sections 4.1 and 4.2 can be represented as the product of two terms, as shown in
Equation (31). One of them is inversely proportional to the PD of a considered risky buyer,
previously evaluated by the internal rating system of the insurer. The other one is a function
of all the elements relevant to the RAF and the capital absorption metrics, including the
returns level $. Thus, for each α, exploring the reduced parameters’ space of $ and the
buyers’ PD distribution, we obtain all the possible C̆r(α) profiles. Indeed, for the reason
above, modifying any other degree of freedom of our system, such as k, `, or c, would
produce an effect on C̆r(α) which is perfectly equivalent to the one produced by a specific
choice of $, implying that a sensitivity more extended than the one proposed would be
redundant.

The proposed sensitivity analysis systematically explores $ ∈ [0.02, 0.12], given three
distinct PD distributions. For each distribution and each $ value, the optimization problem
defined in Equation (28) is solved separately, obtaining one α?($) curve per PD distribution.
The three curves are displayed in Figures 5–7. Since each point of a α?($) is the result of the
optimization performed over a Sa(α|$) curve, each figure features three subplots to show
how the Sa(α|$) profile evolves as a function of $, implying different α? solution across the
considered domain.

In Figure 5, the optimal α? is numerically investigated considering the same set of
assumptions reported in Table 1, apart from $, which ranges from 2% to 12%, so that the
over-risk-free returns range in the 0–10% interval.

A highly non-linear relation links $ and Sa by construction, as both the decisional
system C̆r and the premium contribution πi of the i-th buyer depend on $. Thus, finding
a nontrivial dependency of the solution α? from $− $0 in the considered range 0–10% is
not surprising.
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Remarkably, Figure 5 shows the existence of a critical threshold of the target return,
beyond which it holds α? ≈ 1, that is, the sHR component becomes preponderant in the
mix at increasing target returns. Conversely, it holds α? tends to zero as $ is approaching
$0, and α?($) results to be monotonically increasing across the whole considered domain.

The three subplots in Figure 5 display the distortion of the curve Sa(α|$) at different $
values, providing insight on the α? variation as a function of the target return.

The analysis is repeated, considering two alternative distributions of the PDs. The
results are displayed in Figures 6 and 7, respectively. The monotonicity of α?($) and the
existence of a critical threshold $ such that α?($|$ > $) ≈ 1 are numerically confirmed also
in these cases.
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Figure 5. The optimal α? := argmaxαSa as a function of the extra-return $ − $0, given the other
assumptions in Table 1. The buyer’s PDs {pi} are distributed as a Beta r.v. with parameters α ≈ 3.6
and β ≈ 48.5, that copes with the assumptions stated in in Table 1 with specific reference the expected
value and the standard deviation of pi.
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Figure 6. The optimal α? := argmaxαSa as a function of the extra-return $ − $0, given the other
assumptions in Table 1. The buyer’s PDs {pi} are distributed as a Beta r.v. with parameters α ≈ 0.9
and β ≈ 17.1. This choice corresponds to E[pi] = 5% and sd[pi] = 5%. The other assumptions
needed are chosen as displayed in Table 1.
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Figure 7. The optimal α? := argmaxαSa as a function of the extra-return $ − $0, given the other
assumptions in Table 1. The buyer’s PDs {pi} are distributed as a Beta r.v. with parameters α ≈ 0.9
and β ≈ 17.1. This choice corresponds to E[pi] = 20% and sd[pi] = 10%. The other assumptions
needed are chosen as displayed in Table 1.

5. Conclusions

In this work, we have investigated whether and to what extent applying a hybrid
rating scale is beneficial in the non-life insurance risk management context. More precisely,
our analyses have been focused on a credit insurance company subject to the Solvency 2
framework. Although considering realistic assumptions, both on the regulatory and the
business sides, we have adopted a fully simulative approach to study the specific effects of
the hybrid rating scale, excluding any distortion originated by the system’s imperfection
(e.g.,: calibration errors in the scoring model underlying the rating system). We have
designed a realistic RAF based on the Solvency 2 Standard Formula, where the decisional
system grants different credit limits depending on the rating evaluations. Assuming the
insurance company aims to maximize its risk-adjusted returns, measured through the
Sharpe ratio, we have defined and solved an optimization problem that returns the best
hybrid rating scale to choose in order to reach the target returns given all the constraints
concerning the capital absorption, the expenses, and the available market.

Since all the considered variables are accessible to a real-world credit insurer, the
optimization problem proposed in this work and its solution are of practical interest to the
insurance industry. As our results show, a credit insurance company can actually benefit
from a hybrid rating scale, and this work provides all the tools needed to identify which
choice best suits a specific company.

The numerical results show that the optimal mix strongly depends on the evaluated
debtors’ distribution and the unadjusted target returns requested by the stakeholders.
Remarkably, our simulations highlight the existence of a critical threshold in target returns,
beyond which the information-based master scale is the optimal choice. Conversely, in the
presence of relatively low extra returns, a mixed rating scale or even a pure semantics-based
master scale is the optimal choice. This is a key result of this paper. A better understanding
of the observed critical threshold and its causes could help a credit insurer choose its
rating scale even more effectively. In principle, a complete explanation of this phenomenon
could lead to a closed-form solution to the proposed optimization problem, with exciting
implications both on theoretical and practical sides. The theoretical reasons behind the
existence of a critical threshold of returns and, more generally, the nontrivial behavior of
the optimal mixing parameter as a function of the target returns are beyond the scope of
this work and deserve further investigations in future research works.
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This work is limited to studying the interplay between the internal rating system and
the risk appetite framework of a credit insurance company, providing a practical toolkit to
identify the optimal rating scale. Thus, there is no claim to completeness with respect to
the wide range of other practical applications of the hybrid rating scale method and the
related optimization problem. However, the investigated application shows the advantage
of choosing an optimal rating scale and the necessity to identify it through a rigorous
optimization process since it strongly depends on the specific features of the rating model
user. The specialization of these methods to other applicative contexts could be addressed
in the future as a development of the presented research activity.
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6. Veček, N.; Mernik, M.; Črepinšek, M.; Hrnčič, D. A Comparison between Different Chess Rating Systems for Ranking Evolutionary

Algorithms. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland,
7–10 September 2014.

7. Thurstone, L.L. Theory of attitude measurement. Psychol. Rev. 1929, 36, 222. [CrossRef]
8. Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 22, 55.
9. Parducci, A. Category ratings and the relational character of judgment. Adv. Psychol. 1983 11, 262–282.
10. Menold, N.; Wolf, C.; Bogner, K. Design aspects of rating scales in questionnaires. Math. Popul. Stud. 2018, 25, 63–65. [CrossRef]
11. Carlsen, L. Rating Potential Land Use Taking Ecosystem Service into Account—How to Manage Trade-Offs. Standards 2021, 1,

79–89. [CrossRef]
12. Weissova, I.; Kollarb, B.; Siekelova, A. Rating as a Useful Tool for Credit Risk Measurement. Procedia Econ. Financ. 2015, 26,

278–285. [CrossRef]
13. European Insurance and Occupational Pensions Authority—EIOPA. NLCS 2020 log File A, (V1.1) Updated on 19 July 2021.

Available online: https://www.eiopa.europa.eu/consultations/non-life-underwriting-risk-comparative-study-internal-models_
en (accessed on 6 June 2023).

14. Güttler, A.; Raupach, P. The Impact of Downward Rating Momentum on Credit Portfolio Risk; Discussion Paper Series 2: Banking
and Financial Studies No 16/2008 Deutsche Bundesbank. Available online: https://www.bundesbank.de/resource/blob/704272
/d4c8a1578e3122b5cfe696e0553865c3/mL/2008-06-24-dkp-16-data.pdf (accessed on 6 June 2023).

15. Rating Symbols and Definitions. Moody’s Investors Service, 2 June 2022. Available online: https://www.moodys.com/
researchdocumentcontentpage.aspx?docid=pbc_79004 (accessed on 6 June 2023).

16. Oosterveld, B.; Bauer, S. Rating Definitions. FitchRatings Special Report, 21 March 2022. Available online: https://www.
fitchratings.com/research/structured-finance/rating-definitions-21-03-2022 (accessed on 6 June 2023).

17. Nehrebecka, N. Probability-of-default curve calibration and validation of internal rating systems. In Proceedings of the 8th IFC
Conference on “Statistical Implications of the New Financial Landscape”, Basel, Switzerland, 8–9 September 2016. Available
online: https://www.bis.org/ifc/publ/ifcb43_zd.pdf (accessed on 6 June 2023).

18. Giacomelli, J. The Rating Scale Paradox: Semantics Instability versus Information loss. Standards 2022, 2, 352–365. [CrossRef]
19. Frei, C. and Wunsch, M. Moment Estimators for Autocorrelated Time Series and Their Application to Default Correlations. J.

Credit. Risk 2018, 14, 1–29. Available online: https://ssrn.com/abstract=3141168 (accessed on 30 September 2023). [CrossRef]
20. Gordy, M.B. and Howells, B. Procyclicality in Basel II: Can we treat the disease without killing the patient? J. Financ. Intermediation

2006, 15, 395–417. [CrossRef]
21. Altman, E.I.; Rijken, H.A. How rating agencies achieve rating stability. J. Bank. Financ. 2004, 28, 2679–2714. [CrossRef]
22. Cantor, R.M.; Mann, C. Analyzing the Tradeoff between Ratings Accuracy and Stability. J. Fixed Income 2006. Available online:

https://ssrn.com/abstract=996019 (accessed on 30 September 2023). [CrossRef]
23. Giacomelli, J. Parametric estimation of latent default frequency in credit insurance. J. Oper. Res. Soc. 2023, 74, 330–350. [CrossRef]

http://doi.org/10.1016/j.annemergmed.2012.12.023
http://www.ncbi.nlm.nih.gov/pubmed/23465555
http://dx.doi.org/10.3109/10903127.2014.959222
http://uscf1-nyc1.aodhosting.com/CL-AND-CR-ALL/CL-ALL/1967/1967_08.pdf
http://uscf1-nyc1.aodhosting.com/CL-AND-CR-ALL/CL-ALL/1967/1967_08.pdf
http://dx.doi.org/10.1111/1467-9876.00159
http://dx.doi.org/10.1037/h0070922
http://dx.doi.org/10.1080/08898480.2018.1439240
http://dx.doi.org/10.3390/standards1020008
http://dx.doi.org/10.1016/S2212-5671(15)00853-9
https://www.eiopa.europa.eu/consultations/non-life-underwriting-risk-comparative-study-internal-models_en
https://www.eiopa.europa.eu/consultations/non-life-underwriting-risk-comparative-study-internal-models_en
https://www.bundesbank.de/resource/blob/704272/d4c8a1578e3122b5cfe696e0553865c3/mL/2008-06-24-dkp-16-data.pdf
https://www.bundesbank.de/resource/blob/704272/d4c8a1578e3122b5cfe696e0553865c3/mL/2008-06-24-dkp-16-data.pdf
https://www.moodys.com/researchdocumentcontentpage.aspx?docid=pbc_79004
https://www.moodys.com/researchdocumentcontentpage.aspx?docid=pbc_79004
https://www.fitchratings.com/research/structured-finance/rating-definitions-21-03-2022
https://www.fitchratings.com/research/structured-finance/rating-definitions-21-03-2022
https://www.bis.org/ifc/publ/ifcb43_zd.pdf
http://dx.doi.org/10.3390/standards2030024
https://ssrn.com/abstract=3141168
http://dx.doi.org/10.21314/JCR.2017.231
http://dx.doi.org/10.1016/j.jfi.2005.12.002
http://dx.doi.org/10.1016/j.jbankfin.2004.06.006
https://ssrn.com/abstract=996019
http://dx.doi.org/10.3905/jfi.2007.683318
http://dx.doi.org/10.1080/01605682.2022.2039567


Standards 2023, 3 372

24. The International Credit Insurance & Surety Association. A Guide to Trade Credit Insurance; Anthem Press: London, UK, 2015.
25. The International Credit Insurance & Surety Association. ICISA Catalog of Credit Insurance Terminology—English Edition.

2017. Available online: icisa.org/wp-content/uploads/2019/07/ICISA-Catalogue-of-Credit-Insurance-Terminology-English.pdf
(accessed on 6 June 2023).

26. Jus, M. Credit Insurance; Academic Press: Cambridge, MA, USA, 2013.
27. Passalacqua, L. A pricing model for credit insurance. G. Dell’Istituto Ital. Degli Attuari 2006, 69, 4.
28. Passalacqua, L. Measuring effects of excess-of-loss reinsurance on credit insurance risk capital. Giornale Dell’Istituto Ital. Degli

Attuari 2007, 70, 81–102.
29. Commission Delegated Regulation (EU) 2015/35 of 10 October 2014 Supplementing Directive 2009/138/EC of the European

Parliament and of the Council on the Taking-Up and Pursuit of the Business of Insurance and Reinsurance. Available online:
https://eur-lex.europa.eu/eli/reg_del/2015/35/oj (accessed on 6 June 2023).

30. Commission Delegated Regulation (EU) 2019/981 of 8 March 2019 Amending Delegated Regulation (EU) 2015/35 Supplementing
Directive 2009/138/EC of the European Parliament and of the Council on the Taking-Up and Pursuit of the Business of Insurance
and Reinsurance (Solvency II). Available online: https://eur-lex.europa.eu/eli/reg_del/2019/981/oj (accessed on 6 June 2023).

31. Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009. Available online: https://eur-lex.
europa.eu/eli/dir/2009/138/oj (accessed on 6 June 2023).

32. Stanghellini, E. Introduzione ai Metodi Statistici per il Credit Scoring, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009.
33. Konrad, P.M. The Calibration of Rating Models. Estimation of the Probability of Default based on Advanced Pattern Classification Methods,

1st ed.; Tectum Verlag Marburg: Marburg, Germany, 2012.
34. Gurný, P.; Gurný, M. Comparison of credit scoring models on probability of defaults estimation for US banks. Prague Econ. Pap.

2013, 22, 163–181. [CrossRef]
35. Fankenstein, E.; Boral, A.; Carty, L.V. RiskCalc for Private Companies: Moody’s Default Model. Moody’s Investor Service Global

Credit Research, May 2000. Available online: https://ssrn.com/abstract=236011 (accessed on 6 July 2023).
36. Basel Committee on Banking Supervision (BSBC). The Internal Ratings-Based Approach; Bank for International Settlements: Basel,

Switzerland, 2001.
37. Tasche, D. The art of probability-of-default curve calibration. J. Credit. Risk 2013, 9, 63–103. [CrossRef]
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