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Abstract: Nasopharyngeal carcinoma is a significant health challenge that is particularly prevalent in
Southeast Asia and North Africa. MRI is the preferred diagnostic tool for NPC due to its superior
soft tissue contrast. The accurate segmentation of NPC in MRI is crucial for effective treatment
planning and prognosis. We conducted a search across PubMed, Embase, and Web of Science from
inception up to 20 March 2024, adhering to the PRISMA 2020 guidelines. Eligibility criteria focused
on studies utilizing DL for NPC segmentation in adults via MRI. Data extraction and meta-analysis
were conducted to evaluate the performance of DL models, primarily measured by Dice scores. We
assessed methodological quality using the CLAIM and QUADAS-2 tools, and statistical analysis
was performed using random effects models. The analysis incorporated 17 studies, demonstrating a
pooled Dice score of 78% for DL models (95% confidence interval: 74% to 83%), indicating a moderate
to high segmentation accuracy by DL models. Significant heterogeneity and publication bias were
observed among the included studies. Our findings reveal that DL models, particularly convolutional
neural networks, offer moderately accurate NPC segmentation in MRI. This advancement holds the
potential for enhancing NPC management, necessitating further research toward integration into
clinical practice.

Keywords: nasopharyngeal carcinoma (NPC); deep learning (DL); magnetic resonance imaging
(MRI); segmentation; convolutional neural networks (CNNs)

1. Introduction

Nasopharyngeal carcinoma (NPC) is a distinct head and neck cancer subtype origi-
nating in the nasopharynx, the upper region of the throat posterior to the nasal cavity [1].
Despite its rarity on a global scale, NPC exhibits a higher incidence in specific geographic
regions, such as Southeast Asia and North Africa, likely attributable to a combination
of genetic, environmental, and Epstein–Barr virus-related factors [2,3]. The early detec-
tion and accurate diagnosis of NPC are paramount for optimal treatment planning and
improving patient prognosis [4]. However, the complex anatomy of the nasopharynx
and the variability in clinical presentation make early detection and accurate diagnosis of
NPC challenging.

In this context, magnetic resonance imaging (MRI) is the preferred imaging modality
for the diagnosis, staging, and treatment planning of NPC due to its superior soft tissue
contrast resolution compared to other imaging techniques, such as computed tomography
(CT). MRI’s excellent contrast resolution allows for an accurate delineation of the primary
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tumor, assessment of local invasion, and detection of lymph node involvement. This
detailed visualization of the tumor’s extent significantly enhances NPC’s staging and
treatment planning by accurately outlining the tumor’s extent [5]. The capability of MRI to
accurately delineate the extent of tumor invasion is crucial for precise staging, which is a
critical determinant of therapeutic strategies [6]. Moreover, MRI offers the advantage of
not exposing patients to ionizing radiation, making it a safer choice for repeated imaging
during follow up and treatment response evaluation. The multiplanar imaging capabilities
of MRI further enhance the assessment of tumor spread in various planes, providing a
comprehensive understanding of the disease extent.

However, despite the advantages of MRI, the manual segmentation of NPC from
MRI, a prerequisite for accurate tumor delineation, is a time-consuming and subjective
process and is prone to inter- and intra-observer variability [7,8]. This variability can lead
to inconsistencies in tumor volume estimation, staging, and treatment planning, potentially
impacting patient outcomes. Therefore, there is a pressing need for automated, reliable,
and efficient segmentation methods to overcome these limitations and improve the clinical
management of NPC.

The advent of deep learning (DL) technologies has revolutionized the field of medical
imaging, offering novel paradigms for automated image analysis. Deep learning models,
particularly convolutional neural networks (CNNs), have demonstrated remarkable per-
formance in image recognition, segmentation, and analysis tasks, surpassing traditional
image processing methods in terms of accuracy and efficiency [9,10]. In the context of
NPC segmentation, DL models have the potential to overcome the limitations of manual
segmentation by providing rapid, accurate, and reproducible results [11,12].

Previous reviews have focused on either the segmentation of head and neck cancers
in general [13] or NPC segmentation using both computed tomography (CT) and MRI [14].
This systematic review and meta-analysis aim to synthesize the current evidence on the
application of deep learning for NPC segmentation in MRI. Our study offers several unique
contributions to the existing literature on DL applications in NPC segmentation. First,
we focus exclusively on MRI, providing a comprehensive analysis of DL performance for
this specific modality. Second, our review includes the most recent studies from 2023 and
2024, ensuring up-to-date evidence. Third, we employ a novel three-level meta-analytic
approach that accounts for all reported results across validation sets, revealing significant
heterogeneity among independent datasets. This finding underscores the need for further
research to explore the sources of variability and standardize DL model development
and validation.

2. Materials and Methods
2.1. General Guidelines

This study maintained high methodological quality during its planning and dissemi-
nation phases in line with the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) 2020 standards [15]. We followed the PRISMA guidelines closely, and
the complete checklists are available in the Supplementary Materials (Tables S1 and S2). This
research is registered with the International Platform of Registered Systematic Review and
Meta-analysis Protocols (INPALSY), and the registration identifier is INPLASY202430120 [16].
As this systematic review and meta-analysis did not involve human participants, ethical
approval and informed consent were not required, which was consistent with the guidelines
for such studies.

2.2. Search of Databases and Selection of Eligible Studies

To select studies on DL applications for segmenting NPC in MRI scans, two reviewers
(T-WW and C-KW) conducted a detailed literature review across PubMed, Embase, and
Web of Science, covering all records up to 20 March 2024 (see Supplementary Table S2
for search details). The search strings were ((Nasopharyngeal Neoplasms OR Nasopha-
ryngeal Cancer OR Nasopharyngeal Carcinoma OR Nasopharyngeal Tumors) AND (MRI
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OR magnetic resonance imaging OR MR) AND (segmentation OR contouring OR delin-
eation) AND (deep learning OR convolutional neural networks OR CNN)) and are further
detailed in Table S3. The process included title and abstract screening supplemented by
manual searches to capture pertinent studies comprehensively. Any disagreements in
study selection were resolved by consulting a third expert. We only included studies that
applied DL for NPC segmentation in adult patients using MRI scans. Exclusions were made
for non-MRI studies, retracted conference papers, Supplementary Materials, studies not
addressing the research question directly, or those lacking necessary data for meta-analysis
(e.g., missing standard deviation of Dice scores).

2.3. Data Extraction and Management

T-WW and C-KW collected key data from the chosen studies, including the study
design, patient counts, and the number of series in training and testing sets. They also
reviewed the sources of data, the validation techniques used for the models, and the
standards for establishing reference values and indicators for ground truths. The docu-
mentation included MRI image specifics like magnetic field strength, sequences, and the
manufacturer and model of the MRI equipment. The evaluation of the algorithms focused
on their dimensions and types. This was accompanied by a detailed review of prepro-
cessing methods, covering normalization, resolution resampling, data augmentation, and
image cropping techniques. An extensive evaluation of the Sørensen–Dice coefficient was
performed, highlighting its crucial role in assessing segmentation accuracy in these studies.

2.4. Methodological Quality Appraisal

Two established tools were used to evaluate the methodological quality of the stud-
ies: the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) and the Quality
Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) [17,18]. T-WW and C-KW con-
ducted these assessments independently to minimize bias. Disagreements were resolved by
consulting senior researchers and ensuring a consensus-based, rigorous quality assessment.
This approach underscores the commitment to methodological precision and consensus in
evaluating study quality.

2.5. Statistical Analysis

Two meta-analyses assessed the Dice scores reported by the studies. The first analysis
selected the highest-performing algorithm when multiple outcomes were reported per
study or when different studies used the same validation dataset. Median and interquartile
ranges were converted to mean and standard deviation using established formulas [19,20].
A random effects model with restricted maximum likelihood was applied to accommo-
date study population heterogeneity [21], visualized through forest plots and assessed
via sensitivity analysis (leave-one-out method) and subgroup analyses on variables like
publication status [22]. The Q test quantified heterogeneity across studies, setting statistical
significance at a p-value of <0.05. Heterogeneity levels were categorized by I2 values as
trivial (0–25%), minimal (26–50%), moderate (51–75%), and pronounced (76–100%) [23]. To
assess publication bias, Egger’s method for funnel plot asymmetry was employed, utilizing
Stata/SE 18.0 for Mac [24].

The second meta-analysis explored DL algorithm performance variability across vali-
dation sets, addressing dataset reuse by comparing bi-level and tri-level random effects
models, the latter clustering by dataset to mitigate mixed effects from validation reuse.
The variance was assessed across three levels—datasets, repeated analyses, and study
samples—using analysis of variance and Cheung’s formula [25]. Meta-regression [26] in-
corporated moderators like dataset splitting (train/test vs. cross-validation), the validation
method (internal validation vs. external validation), MRI sequence (single vs. multiple),
algorithm type (U-net, U-net variants vs. CNN), training size, and preprocessing techniques
(intensity normalization, resolution adjustment, image augmentation, and image cropping).
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Statistical analysis was conducted with the metafor package in R, considering p < 0.05
as significant.

3. Results
3.1. Study Identification and Selection

The PRISMA diagram (Figure 1) illustrates the exhaustive search and selection method-
ology adopted in the present investigation. Initially, a comprehensive search was conducted
across various databases from inception to 20 March 2024, yielding 176 studies, comprising
36 from PubMed, 72 from EMBASE, and 68 from Web of Science. After 66 duplicates were
removed, 110 articles were further assessed using EndNote software. An initial review of
titles and abstracts led to the exclusion of 36 articles, attributed to their irrelevance or lack
of comprehensive detail. Further evaluation of the 74 full-text articles resulted in the exclu-
sion of 57 articles [8,27–82] for various reasons, including the nature of the content being
reviews, supplements, or conference abstracts; the absence of MRI application; retraction
status; irrelevance to the scope of the current meta-analysis; or the inadequacy of reported
outcomes for quantitative synthesis (refer to Table S4). This selection process culminated
in the selection of 17 studies [11,12,83–97] for detailed examination within the scope of
this analysis.
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3.2. Basic Characteristics of Included Studies

The seventeen investigations [83–97] implemented a retrospective approach, encom-
passing a cumulative patient population of 7830 individuals. The sizes of the patient
cohorts exhibited significant variability, ranging from a minimum of 29 [11] to a maximum
of 4100 [95] patients. A fundamental aspect of these investigations was the implementation
of manual annotation, underscoring the indispensable role of human expertise within the
research framework. The methodologies for validation adopted across these studies were
bifurcated into either a train/test split [83–89,95,96] or cross-validation [11,12,90–94,97],
with the criteria for annotation differing and encompassing evaluations by professionals
such as experienced clinicians, radiologists, radiation oncologists, and oncologists (Table 1).
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Table 1. Basic characteristics.

First Author Study Design Patients Series
(Train/Valid/Test) Reference Validation Data Source Indicator

Standard

Zhang et al.
(2024) [83] Retrospective 130 130 (90/15/25) Manual Train/Test Guangdong Provincial

People’s Hospital
Experienced

clinician

Huang et al.
(2024) [84] Retrospective 96 96 (76/10/10) Manual Train/Test

Cancer Hospital Chinese
Academy of Medical
Sciences, Shenzhen

Hospital.

Two
radiologists

Meng et al.
(2023) [85] Retrospective 161 161 (129/0/32) Manual Train/Test Cancer Hospital Radiation

oncologists

Luo et al.
(2023) [86] Retrospective 1057 1057

(600/259/198) Manual Train/Test

Southern Medical
University, West China

Hospital, Sichuan
Provincial People’s

Hospital, Anhui
Provincial Hospital,

Sichuan Cancer Hospital

Two
oncologists

Gu et al.
(2023) [87] Retrospective 189 189 (114/0/75) Manual Train/Test

Sichuan Provincial
People’s Hospital, West

China Hospital

Radiation
oncologists

Zhang et al.
(2022) [88] Retrospective 93 93 (75/9/9) Manual Train/Test Sun Yat-sen University NR

Liu et al.
(2022) [89] Retrospective 92 92 (74/9/9) Manual Train/Test Sun Yat-sen University NR

Li et al.
(2022) [90] Retrospective 754 754

(604/150/0) Manual Cross-
validation Sun Yat-sen University Three

radiologists
Wong et al.
(2021) I [91] Retrospective 404 404

(303/101/0) Manual Cross-
validation

Joint Chinese University
of Hong Kong Expert

Wong et al.
(2021) II [92] Retrospective 201 201 (130/6/65) Manual Cross-

validation
Joint Chinese University

of Hong Kong Expert

Qi et al.
(2021) [93] Retrospective 149 149 (119/30/0) Manual Cross-

validation

Shandong Cancer
Hospital Affiliated to
Shandong University

Experienced
radiologists

Cai et al.
(2021) [94] Retrospective 251 251 (226/25/0) Manual Cross-

validation
Fudan University

Shanghai Cancer Center
Radiation
oncologist

Ye et al.
(2020) [12] Retrospective 44 44 (40/4/0) Manual Cross-

validation Panyu Central Hospital Radiologist
Ke et al.

(2020) [95] Retrospective 4100 4100
(3285/411/404) Manual Train/Test Sun Yat-sen University Radiation

oncologist
Lin et al.

(2019) [96] Retrospective 1021 1021
(715/103/203) Manual Train/Test Sun Yat-sen University Radiation

oncologist
Ma et al.

(2018) [97] Retrospective 30 30 (29/1/0) Manual Cross-
validation West China Hospital Radiation

oncologist
Li et al.

(2018) [11] Retrospective 29 29 (28/1/0) Manual Cross-
validation Sun Yat-sen University Radiologists

Abbreviations: NR, not recorded.

3.3. Characteristics of MRI

Magnetic field strengths span from 1.5 Tesla (T) [12,94] to 3T [11,84,91,92,95,97], with
some studies encompassing both ranges [86,90]. This diversity underscores the extensive
array of MRI technologies utilized in both the clinical and research domains. The MRI se-
quences investigated across these studies encompass T1 weighted (T1w), contrast-enhanced
T1 weighted (T1c), T2 weighted (T2w), dynamic contrast enhanced (DCE), and a variety
of specialized sequences, including Ktrans, T1 water, T2 water, fat-saturated T2 weighted
(fs-T2W), and contrast-enhanced T1 weighted with fat saturation (fs-ce-T1W). With respect
to hardware, the research references the utilization of apparatuses from foremost manu-
facturers, such as GE, Siemens, and Philips, among others, highlighting models like the
GE Discovery MR 750w, Siemens Magnetom Skyra, Philips Achieva TX, and Siemens Aera
(Table 2).

Table 2. Characteristics of MRI.

First Author Tesla Sequence Hardware

Zhang et al. (2024) [83] NR T1c NR
Huang et al. (2024) [84] 3T DCE, Ktrans GE Discovery MR 750w
Meng et al. (2023) [85] NR T2w Siemens Magnetom Skyra
Luo et al. (2023) [86] 1.5T/3T T1c GE, Siemens, Philips
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Table 2. Cont.

First Author Tesla Sequence Hardware

Gu et al. (2023) [87] NR T1w, T1c, T1 water,
T2 water NR

Zhang et al. (2022) [88] NR T1c Siemens Aera
Liu et al. (2022) [89] NR T1c Siemens Aera
Li et al. (2022) [90] 1.5T/3T T1, T2, T1c NR
Wong et al. (2021) I [91] 3T T2w Philips Achieva TX

Wong et al. (2021) II [92] 3T T1W, fs-T2W, T1c and
fs-ce-T1W Philips Achieva TX

Qi et al. (2021) [93] NR T1, T2, T1c NR
Cai et al. (2021) [94] 1.5T T1, T2, T1c GE, Milwaukee
Ye et al. (2020) [12] 1.5T T1w, T2w Siemens Avanto

Ke et al. (2020) [95] 3T T1c

Trio Tim; SIEMENS, Achieva,
PHILIPS; Discovery MR750;
GE; Discovery MR750w; GE,
USA

Lin et al. (2019) [96] NR T1, T2, T1c, T1w-fs NR
Ma et al. (2018) [97] 3T T1w Philips Achieva
Li et al. (2018) [11] 3T DCE Magnetom Trio, Siemens

Abbreviations: NR, not recorded. DCE: dynamic contrast enhanced; fs: fat suppress; GE: General Electric.

3.4. Characteristics and Performance of Preprocessing Techniques and DL Algorithms

Intensity normalization is prominently applied in a significant majority of investiga-
tions [11,12,83–87,89–93,96,97], underscoring its critical role in harmonizing the intensity
scale across images to enhance algorithmic precision. Resolution adjustment, implemented
selectively across studies [83,85,86,97], reflects a customized strategy to refine image res-
olution to meet specific analytical requisites. Image augmentation, a strategy designed
to augment the diversity of training datasets, finds application in nearly all examined
studies [94,95], evidencing its widespread adoption to bolster model resilience. Conversely,
image cropping is utilized in various research endeavors [11,83–89,91,93], focusing model
analysis on pertinent image regions (Table 3).

Table 3. Characteristics and performance of preprocessing techniques and deep learning algorithms.

First Author Intensity
Normalization

Resolution
Adjustment

Image
Augmentation

Image
Cropping

Training
Size

Input
Dimension Algorithms Dice Score

Zhang et al.
(2024) [83] Yes Yes Yes Yes 90 2D/3D SICNet 0.74

Huang et al.
(2024) [84] Yes No Yes Yes 76 2D ResU-Net 0.66

Meng et al.
(2023) [85] Yes Yes Yes Yes 129 3D Attention-

guided Vnet 0.72

Luo et al.
(2023) [86] Yes Yes Yes Yes 600 3D nnUNet 0.88

Gu et al.
(2023) [87] Yes No Yes Yes 114 2D CDDSA 0.92

Zhang et al.
(2022) [88] No No Yes Yes 75 2D AttR2U-Net 0.82

Liu et al.
(2022) [89] Yes No Yes Yes 74 2D LW-UNet-3 0.81

Li et al.
(2022) [90] Yes No Yes No 604 2D NPCNet 0.73

Wong et al.
(2021) I [91] Yes No Yes Yes 303 2D CNN 0.79

Wong et al.
(2021) II [92] No No Yes No 130 2D U-net 0.73

Qi et al.
(2021) [93] Yes No Yes Yes 149 3D MMFNet 0.68

Cai et al.
(2021) [94] No No No No 226 2D T-U-Net 0.85

Ye et al.
(2020) [12] Yes No Yes Yes 40 2D DEU 0.72

Ke et al.
(2020) [95] No No No No 3285 3D SC-

DenseNet 0.77
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Table 3. Cont.

First Author Intensity
Normalization

Resolution
Adjustment

Image
Augmentation

Image
Cropping

Training
Size

Input
Dimension Algorithms Dice Score

Lin et al.
(2019) [96] Yes No Yes No 715 3D VoxResNet 0.79

Ma et al.
(2018) [97] Yes Yes No No 29 2D/3D CNN 0.85

Li et al.
(2018) [11] Yes No Yes Yes 28 2D CNN 0.89

Research incorporating 3D input dimensions, such as those employing attention-
guided Vnet [85], nnUNet [86], MMFNet [93], SC-DenseNet [95], and VoxResNet [96],
illustrates a growing dependency on volumetric data to enhance accuracy in segmentation
tasks, with nnUNet [86] achieving a notable Dice score of 0.88 across a dataset encompassing
600 samples. Conversely, 2D analyses persist in their prevalence, with CDDSA [87] attaining
a Dice score of 0.92 on 114 samples, demonstrating the effectiveness of specialized 2D
convolutional frameworks in distilling relevant features from intricate image datasets. The
variation in training dataset sizes, ranging from a minimal 28 in studies utilizing CNNs [11]
to a substantial 3285 in the context of SC-DenseNet [95], highlights the adaptability of deep
learning frameworks to assimilate and learn from datasets of divergent scopes. Moreover,
the application of distinct algorithms such as SICNet [83], ResU-Net [84], and T-U-Net [94]
across various studies, with Dice scores fluctuating between 0.66 and 0.92, accentuates the
diverse methodological tactics engaged within the domain (Table 3).

3.5. Quality Assessment

Figure S1 illustrates the quality assessments of the included studies conducted with the
QUADAS-2 tool. Supplementary Table S6 details an analysis focusing on bias-related risks
and applicability concerns, identifying ambiguous risks due to the exclusion of interval
derivation in datasets in 10 (58.8%) of the studies [12,83–89,93,97], which may impact data
interpretation. This criterion could influence the applicability and generalizability of the
results from these studies.

Supplementary Table S7 reports a detailed evaluation of 17 studies using the CLAIM
criteria, revealing an average CLAIM score of 27.35, equating to approximately 65.13%
with a standard deviation of 3.86, and scores ranging from 23.00 to 33.00 out of a maximum
of 42. The breakdown of average scores for CLAIM subsections indicates the quality of
these studies as follows: title/abstract, 1.64/2 (82%); introduction, 2.00/2 (100%); methods,
18.18/28 (64.9%); results, 2.7/5 (54%); discussion, 1.94/2 (97%); and other information,
0.88/3 (29.4%). These results highlight the strengths and potential improvement areas in
lung cancer research utilizing DL methodologies.

3.6. Efficacy of DL Model Segmentation of NPC on MRI

The investigation synthesized findings from 11 studies, each utilizing distinct datasets
and DL models for segmentation tasks, and uncovered notable variations in Dice scores,
which spanned from 66% to 84%. The consolidated outcomes produced a pooled Dice
score of 78%, with a 95% confidence interval (CI) ranging from 74% to 83% (Figure 2). The
Q test indicated substantial heterogeneity across the studies, as evidenced by a Q value
of 588.81 with a significance level below 0.01. Further affirmation of this heterogeneity
was provided by the Higgins I2 statistic, which reported a remarkably high degree of
variability (I2 = 99.02%). Sensitivity analysis reinforced the reliability of these findings,
affirming the statistical significance of the summary effect sizes even upon the sequential
exclusion of individual studies from the analytical framework (Figure S2). Additionally,
the funnel plot assessment of the 11 studies, coupled with Egger’s regression test, disclosed
a p-value of 0.037, intimating the presence of publication bias within the examined corpus
of studies (Figure S3). Nevertheless, subsequent analysis through subgrouping predicated
on publication metrics failed to disclose any significant discrepancies (Figure S4).
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Employing a sophisticated meta-analytic methodology, a three-level meta-analysis was
undertaken to scrutinize potential moderating factors associated with DL models utilized
in segmentation tasks. This meticulous examination included an extensive assessment of
outcomes across numerous validation sets, augmented by clustering according to datasets
to mitigate the impact of their repeated utilization. From an aggregation of 68 reported
effects spanning 17 distinct studies, the mean Dice coefficient was calculated to be 76.4%,
with a 95% CI ranging from 71.1% to 81.6%. The Q statistic analysis revealed an absence
of significant heterogeneity, evidenced by a Q value of 55.4 (p = 0.821). Comparative
evaluations employing Akaike and Bayesian information criteria highlighted a preference
for the three-level model over conventional two-tiered approaches, highlighting its superior
accuracy in representing the data structure. Further, variance analysis elucidated that
58.61% of the total variance was attributable to level 1 (sampling variance), with the
residual variance delineated between within-dataset disparities (4.6e-8%) at level 2 and
inter-dataset differences (41.39%) at level 3. This distribution of variability underscored
significant inter-dataset variation, in contrast to negligible within-dataset discrepancies
(Supplementary Table S5), reinforcing previously observed significant heterogeneity in
meta-analyses of independent datasets. Meta-regression analysis probing factors such as
dataset splitting, validation methodology, MRI sequence, algorithmic typology, training
volume, and preprocessing approaches did not yield significant correlations with the
segmentation efficacy of DL models.

4. Discussion

The primary objective of this systematic review and meta-analysis was to assess the
efficacy and accuracy of DL models, specifically in the segmentation of NPC in MRI. In
the landscape of medical imaging, especially for conditions like NPC where precision in
diagnosis and treatment planning is critical, the role of DL technologies marks a transfor-
mative potential. By focusing on MRI, this review targets an area where DL models can
significantly leverage high-resolution images for better disease characterization.

4.1. Summary of Findings

Our comprehensive analysis revealed that DL models, particularly convolutional
neural networks (CNNs), enhance the accuracy of NPC segmentation in MRI scans. The
pooled analysis of Dice scores, a key metric for evaluating segmentation accuracy, included
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11 studies with a total of 7830 patients or MRI scans. Using a random effects model, we
calculated a pooled mean Dice score of 78% (95% confidence interval: 74% to 83%) across
the included studies (Figure 2). The Dice score ranges from 0 to 1, with higher values
indicating better segmentation accuracy. Heterogeneity among the studies was assessed
using the Q test and the I2 statistic. The Q test indicated substantial heterogeneity across
the studies (Q = 588.81, p < 0.01), and the I2 statistic revealed a high degree of variability
(I2 = 99.02%). To explore the potential sources of heterogeneity, we conducted subgroup
analyses and meta-regressions on variables such as publication status, MRI sequence,
algorithm type, and preprocessing techniques (see Section 3.6 for details). The funnel plot
assessment and Egger’s regression test (p = 0.037) suggested the presence of publication
bias within the examined studies (Figure S3). However, further subgroup analysis based on
publication status did not reveal any significant discrepancies (Figure S4). These findings
underscore the effectiveness of DL models in improving NPC segmentation accuracy in
MRI scans compared to traditional methods. The pooled mean Dice score of 78% indicates a
moderate to high level of segmentation accuracy, highlighting the potential of DL models to
enhance clinical decision making and treatment planning in NPC management. However,
it is important to acknowledge the substantial heterogeneity observed among the included
studies, which may stem from differences in patient populations, MRI acquisition protocols,
and DL model architectures.

4.2. Comparison with the Existing Literature

Previous reviews have extensively covered various applications of deep learning
and machine learning for nasopharyngeal carcinoma (NPC) [98–100]. In the review by
Li et al. [98], the authors briefly outline articles related to auto-segmentation using deep
learning techniques. Ng et al. [99] presented a descriptive box plot in their study of auto-
targeting, showing a median Dice score of 0.7530, which illustrates the current performance
level in this field. Wang et al. [100] discussed the advantages and disadvantages of different
imaging modalities. They noted that while CT images often lack sufficient soft tissue
contrast, PET images provide excellent tumor visualization but fail to deliver accurate
boundary information due to their low spatial resolution. Dual-modality PET-CT images,
however, offer more valuable information for delineating tumor boundaries and assess-
ing the extent of tumor invasion [101]. Despite its superior soft tissue contrast, MRI is
considered the gold standard for staging and measuring target volume contours in NPC.
However, identifying tumor margins on MRI can be challenging due to factors such as
high variability, low contrast, and discontinuous soft tissue margins. While discussions
on auto-segmentation using deep learning methods are present, there is a notable lack of
comprehensive and quantitative analysis in the existing literature.

Compared to previous systematic reviews and meta-analyses on CT and MRI seg-
mentation of nasopharyngeal cancer, our focused investigation into NPC segmentation
exclusively using MRI technology represents a more specialized inquiry into this do-
main [14]. Our review not only corroborates the effectiveness of deep learning models
in NPC segmentation, demonstrating a pooled Dice score of 78%, closely aligning with
prior findings of 76% [14], but it also introduces several key differentiators that enhance
the robustness and relevance of our conclusions. Notably, our review incorporates five
additional studies from 2023 and 2024, broadening the evidence base. Our emphasis on
MRI scans allowed for more nuanced data extraction and analysis, ensuring a deeper
understanding of this specific imaging modality’s challenges and opportunities in NPC
segmentation. Furthermore, we employed a two-pronged meta-analysis approach: a tradi-
tional two-level random effects model that addressed independent datasets and a novel
three-level random effects model that accounted for all reported results across validation
sets, effectively clustering by dataset. This methodology revealed significant heterogeneity
among independent datasets, indicating the necessity for further research to explore the
sources of this variability. Future studies are encouraged to expand the dataset to illuminate
these findings further and comprehensively address the identified heterogeneity.
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4.3. Strengths of Deep Learning Models

DL models handle complex, high-dimensional data, and are ideally suited for medical
imaging tasks. Their strengths lie in rapid processing, high accuracy, and reproducibility,
as demonstrated by models like nnU-Net [86] and CDDSA [87], which exhibited exemplary
performance in our review. The nnU-Net (no-new-Net) [102] represents a significant
stride in the application of deep learning for medical image segmentation, specifically
highlighted in our review by its exceptional performance in NPC segmentation within MRI
scans. Achieving a Dice score of 0.88, the nnU-Net not only demonstrates its robustness
in precisely delineating the tumor boundaries in NPC but also underscores the model’s
capability in handling the inherent complexities of medical imaging data. This performance
is particularly noteworthy given the challenging nature of NPC, a cancer type characterized
by its intricate anatomical location and the potential for subtle imaging signatures.

nnU-Net’s architecture is designed to automatically adapt to the segmentation task’s
specifics, including optimizing its configuration to match the input data dimensions, pre-
processing routines, and network architecture parameters. This adaptability is key to its
success, enabling the nnU-Net to efficiently process the high-dimensional data typical of
MRI scans, thereby ensuring high accuracy and reproducibility across different datasets
and segmentation tasks. The model’s proficiency in capturing the nuanced details of NPC
tumors from MRI without the need for extensive manual tuning or intervention represents a
paradigm shift from traditional segmentation approaches, which are often time consuming
and prone to inter- and intra-observer variability. By automating the segmentation process
while maintaining, if not exceeding, the accuracy of manual methods, the nnUNet not only
enhances diagnostic workflows but also paves the way for more personalized and timely
treatment planning, leveraging the full potential of deep learning to improve patient care
outcomes in oncology.

Comparing the three models, the nn-U-Net [86], CDDSA [87], and CNN [11], the
studies using CDDSA and CNN demonstrated higher performance than the one using the
nn-U-Net. All three studies utilized extensive preprocessing techniques such as intensity
normalization, image augmentation, and image cropping. The study using the nn-U-
Net [86] additionally employed resolution adjustment. It is important to note that the CNN
study [11] from 2018 had a limited sample size of only 29 patients, which may affect the
robustness and generalizability of their model’s performance. In contrast, the study using
the nn-U-Net [86] included 1057 patients and performed external validation, demonstrating
the most robust validation among the three. The CDDSA study [87] used 189 patients
with internal validation, which can be considered decent. Moreover, the disentangle-based
style augmentation technique utilized in the CDDSA study may have contributed to its
high performance.

4.4. Limitations and Challenges

Despite the promising outcomes, our review faced limitations, including evident pub-
lication bias and significant study heterogeneity, which could influence the interpretability
of our results. Moreover, while being the standard for comparison, the manual segmen-
tation process introduces subjectivity and variability in outcomes. DL models, though
superior, are not without challenges, including the need for extensive training data and the
complexity of model tuning to achieve optimal performance.

4.5. Implications for Clinical Practice

Integrating DL models into clinical settings for NPC segmentation from MRI scans
could revolutionize treatment planning and prognosis evaluation. The precision of DL-
enhanced segmentation can lead to more accurate staging, targeted therapy, and monitoring
strategies. However, for such integration to be successful and globally applicable, there is a
critical need for standardization in DL model development, validation, and implementation
across different healthcare contexts.
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4.6. Future Research Directions

Future research should aim at developing more advanced DL models capable of accom-
modating the variability inherent in MRI data, including differences in imaging parameters
and tumor presentation. Moreover, exploring DL applications beyond segmentation, such
as in treatment response assessment and recurrence detection in NPC, could provide com-
prehensive tools for holistic disease management. This direction promises improvements
in clinical outcomes and paves the way for personalized treatment approaches based on
predictive analytics.

5. Conclusions

Our systematic review and meta-analysis have highlighted the effectiveness of deep
learning (DL) models in improving the accuracy of nasopharyngeal carcinoma (NPC)
segmentation in MRI scans, with a pooled mean Dice score of 78% (95% confidence interval:
74% to 83%), indicating a moderate to high segmentation accuracy in DL models. DL’s role
in medical imaging, particularly for NPC, marks a significant advancement that matches the
growing need for precision in medical diagnostics. However, the substantial heterogeneity
and the presence of publication bias observed necessitate a careful interpretation of these
results. They emphasize the need for further validation and standardization of DL models
across varied clinical environments to confirm their effectiveness and consistency. While
current deep learning models achieve moderate to high segmentation accuracy, further
optimization and improvement of deep learning architectures are warranted. As we
look forward, integrating DL into clinical practice is set to transform NPC management
by equipping clinicians with more accurate tools, potentially enhancing personalized
treatment and patient outcomes. Future research should extend the use of DL to other
areas, such as treatment response monitoring and intraoperative imaging, maximizing the
benefits of this technology in cancer care.
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