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Abstract: This study presents an extensive collection of data on the aerodynamic behavior at a low
Reynolds number and geometric coefficients for 2900 airfoils obtained through the class shape trans-
formation (CST) method. By employing a verified OpenFOAM-based CFD simulation framework,
lift and drag coefficients were determined at a Reynolds number of 105. Considering the limited
availability of data on low Reynolds number airfoils, this dataset is invaluable for a wide range
of applications, including unmanned aerial vehicles (UAVs) and wind turbines. Additionally, the
study offers a method for automating CFD simulations that could be applied to obtain aerodynamic
coefficients at higher Reynolds numbers. The breadth of this dataset also supports the enhancement
and creation of machine learning (ML) models, further advancing research into the aerodynamics of
airfoils and lifting surfaces.

Dataset: https://github.com/kanakaero/Dataset-of-Aerodynamic-and-Geometric-Coefficients-of-
Airfoils (accessed on 29 April 2024)

Dataset License: The dataset and the framework are available under the MIT License

Keywords: airfoil; computational fluid dynamics; OpenFOAM; class shape transformation; dataset;
aerodynamic coefficients; geometric coefficients; aerodynamics; machine learning

1. Introduction and Background

Airfoils designed for low Reynolds numbers play crucial roles in various applications,
such as in Unmanned Aerial Vehicles (UAVs), which are instrumental in executing high-
definition remote sensing [1–6], infrastructure surveillance [7–9], 3D mapping [10–13] and
photogrammetry tasks [14–19]. Additionally, they are vital for Small-Scale Wind Turbines
(SSWTs), contributing to the reduction in electrical grid demands and greenhouse gas
emissions [20–23]. To maximize the performance of these technologies, the airfoils must be
specifically designed to meet their unique requirements. Techniques for optimizing airfoil
design frequently include the use of genetic algorithms, surrogate modeling, and artificial
neural networks [24–28].

This study enhances the development of machine learning approaches for airfoil
optimization by generating a dataset with lift, drag, and parameterization coefficients for
2900 airfoils at a Reynolds number of 105. A diverse dataset of airfoils was utilized during
the course of this study. Airfoil profiles, including symmetric, asymmetric, cambered, and
reflex profiles, were utilized to enhance the applicability of the framework developed.
The lift and drag coefficients were generated using the Computational Fluid Dynamics
(CFD) approach implemented in OpenFOAM v2306 [29]. It employs the Class Shape
Transformation (CST) method [30] to describe the curve of each airfoil. Additionally, the
CST method was applied to augment the point count in each airfoil’s ’.dat’ file, improving
the accuracy of the mesh. The dataset also incorporates these refined coordinates from
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every ’.dat’ file. Finally, a baseline ML model is included to underscore the potential of
our dataset.

2. Methodology
2.1. Airfoil Profile

The initial airfoil ‘.dat’ files were obtained from the UIUC Airfoil Data Site [31] and
the Airfoil Tools [32] online databases. These online repositories have a vast collection of
diverse airfoil profiles ranging from the NACA 4, 5, and 6-digit airfoil series to the Eppler
and the Selig series airfoils. These include symmetric, asymmetric, cambered, and reflex
airfoils, which further enhance the scope of the framework developed. The ‘.dat’ files were
downloaded from the UIUC Airfoil Data Site using a Python script developed by Josh [33],
and those from the Airfoil Tools site were downloaded manually. The ‘.dat’ files thus ob-
tained were of varying numbers of points, and hence, this was a major consideration during
the automation of the Class Shape Transformation (CST) process. The study exclusively
utilized ‘.dat’ files in the Selig format. In this format, the coordinate system begins at (1, 0),
advances to the leading edge, and then returns to (1, 0) via the lower surface of the airfoil.

2.2. Class Shape Transformation (CST) Parametrization Technique

The CST (Class-Shape Transformation) or Kulfan airfoils constitute a group of air-
foil profiles characterized by a parameterized representation of their upper and lower
surfaces. The CST approach is a versatile parameterization strategy for crafting both two-
dimensional and three-dimensional forms. Utilizing a class function alongside a shape
function, the CST method encapsulates an airfoil’s form, ensuring a closed trailing edge.
Introduced by Kulfan [30], this parameterization technique delineates a two-dimensional
figure through the integration of a class function C(x̄) and a shape function S(x̄), augmented
by a component that delineates the trailing edge’s thickness.

The construction of an airfoil via the CST method involves aggregating the contribu-
tions from its foundational function, crafted using Bernstein polynomials. For initial airfoil
design and optimization, CST employing lower-order polynomials is preferred due to its
minimal parameter requirement for defining specific airfoil shapes. Although intricate,
CST can be adapted to a wide array of aerodynamic body shapes without necessitating a
predefined geometry. This methodology offers precise control over critical features such as
the leading-edge radius, boat-tail angle, and trailing-edge thickness, making it applicable
in both aerodynamic studies and optimization endeavors.

2.2.1. CST Formulation

The formulation for the Class Shape Transformation (CST) method elucidated in this
section has been adapted from [30]. The general form of the mathematical expression that
represents a typical airfoil geometry is as follows:

ζ(ψ) =
√

ψ(1 − ψ)
N

∑
i=0

Aiψ
i + ψζT (1)

where ψ = x/c, ζ = z/c and ζT = ∆ZTE/c. The term
√

ψ corresponds to the round nose
of the airfoil. Similarly, the term (1 − ψ) corresponds to the sharp trailing edge of the
airfoil. The term ψζT controls the thickness of the trailing edge, and the summation term is
a general function that describes the shape of the airfoil between the round nose and the
sharp trailing edge.

Figure 1 provides a visual representation of the CST parameters [34] given by Equation (1).
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Figure 1. CST parameters.

2.2.2. Airfoil Shape and Class Function

The shape function S(ψ) is given by the relation,

S(ψ) =
N

∑
i=0

[
Aiψ

i
]

(2)

The term ψ[1 − ψ] defines the class function C(ψ) given by,

CN1
N2(ψ)≜(ψ)N1[1 − ψ]N2 (3)

Typically, the parameters N1 and N2 are set to 0.5 and 1 for an airfoil with a rounded
nose and a sharp trailing edge. The class function delineates broad categories of geometric
forms, while the shape function specifies the exact contours within a particular geometric
category.

Defining an airfoil shape function and specifying its geometry class is equivalent to
defining the actual airfoil coordinates, which can then be obtained from the combination of
the shape and class functions from the relation,

ζ(ψ) = CN1
N2(ψ)S(ψ) + ψζT (4)

The airfoil is then defined using the Bernstein polynomials, which are defined for the
order n as follows,

Sr,n(x) = Kr,nxr(1 − x)n−r (5)

The binomial coefficients are defined as,

Kr,n =

(
n
r

)
=

n!
r!(n − r)!

(6)

The first term of the polynomial defines the leading-edge radius, and the last term is
the boat-tail angle. The terms that fall in between serve as the “shaping terms”. Here, a
Bernstein polynomial of the eighth order is employed, resulting in eight weighted coeffi-
cients upon completion of the CST process. The upper surface of the airfoil is defined by
the equations,

(ζ)upper = CN1
N2(ψ)Sl(ψ) + ψ∆ξupper (7)

Su(ψ) =
N

∑
i=1

AuiSi(ψ) (8)

The lower surface of the airfoil is defined by the equations,

(ζ)lower = CN1
N2(ψ)Sl(ψ) + ψ∆ξlower (9)



Data 2024, 9, 64 4 of 17

Sl(ψ) =
N

∑
i=1

AliSi(ψ) (10)

where,

∆ξU =
zuTE

C
and ∆ξL =

zlTE
C

(11)

The selection of an eighth-order Bernstein polynomial was justified by its drag predictions
and pressure distribution, which perfectly matched experimental observations [30].

2.2.3. Key Observations

Throughout the process of airfoil parameterization, several key findings emerged that
deserve attention. Notably, when the leading edge point deviated from the origin (0,0) with
a y-offset, the airfoils generated through the CST method exhibited a marked increase in
error percentage. This deviation significantly altered the airfoil’s curvature, rendering it
beyond the capture capability of the ’blockMesh’ utility. Additionally, a significant portion
of the airfoils had their trailing edges positioned away from (1,0), challenging the meshing
process, which necessitates a trailing edge at (1,0). Consequently, airfoils not meeting this
criterion were excluded from the preliminary airfoil database. The comparison between
the original and the derived airfoils showed only a minimal error margin (less than 5%
margin of error). This is elucidated in Figure 2. The original airfoil is given by the blue line,
and the dashed line represents the airfoil profile generated using the CST framework. This
approach was developed utilizing MATLAB® R2022b building on the work of Pramudita
Satria Palar [35].

(a) GOE 590 Airfoil (b) S1223 Airfoil

(c) Eppler 377 Airfoil (d) Clark K Airfoil
Figure 2. Generation of airfoil sections using CST.

2.2.4. Shape Generation

Figure 2 illustrates several different airfoil sections created using the CST framework
developed.

It is observed that the CST framework can capture diverse airfoil sections of varying
thicknesses and curvatures accurately.

2.3. Geometry

The CST framework was used to create airfoils that were 1 m in length. It generates the
‘.dat’ file containing a specified number of points distributed evenly. Generating the ‘.dat’
file with more points to increase the number of coordinates representing the airfoil surfaces
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both enhances the smoothness of the airfoil geometry and leads to more precise simulations
by better representing the airfoil’s shape. Eventually, it was inferred that beyond 600 points,
the number of airfoil coordinates in the ‘.dat’ file no longer influenced the airfoil CFD
lift/drag outcomes. Therefore, ‘.dat’ files with 600 points were established as the standard
for subsequent simulations.

The computational domain was designed with a C-type layout, maintaining an
11 chord length distance on average from the far field. The curved surface and both
the top and bottom surfaces were assigned the role of flow inlet boundary, whereas the
outlet condition was applied to the right-side wall. The domain is divided into seven blocks,
as shown in Figure 3, with blocks 0, 1, and 2 serving as reflections of blocks 6, 5, and 4,
respectively, across the chord line of the airfoil. The airfoil coordinates were interconnected
using the OpenFOAM ‘PolyLine’ segments. However, as the ’Polyline’ edges were not
effectively capturing the airfoil’s leading edge curvature, an additional block (block 3) was
formed where the airfoil coordinates were connected through the OpenFOAM ’Spline’
curve segments.

Figure 3. Computational domain.

2.4. Mesh Setup and Details

This study utilized the OpenFOAM ‘blockMesh’ mesh generation utility. Initially,
a study on mesh independence was conducted to assess the impact of the quantity and
dimensions of mesh cells on the outcome of the simulation. It was observed that an increase
in the number of cells typically enhances the accuracy of the simulation, albeit at the cost of
increased computational time and resources. This study of grid independence involved
a comparison of the lift coefficient for the symmetric NACA 0018 airfoil at a 4◦ angle
of attack.

Figure 4 demonstrated that a grid with 198,000 cells is adequate for achieving a solution
that is independent of grid size. This grid comprised 198,000 structured hexahedral cells,
segmented into a far-field zone and a more detailed near-field region as shown in Figure 5.

Multi-grading techniques were employed to modulate the cell expansion ratios within
the blocks and enhance the refinement of the boundary layer adjacent to the airfoil wall.
Furthermore, the aspect ratio of cells near the airfoil was meticulously managed to ensure
they remained within acceptable ranges, given that cells with high aspect ratios, particularly
in areas sensitive to flow, can sometimes compromise the reliability of the findings.
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Figure 4. Results of the grid independence study.

(a) Mesh around NACA 0018 airfoil (b) Near-field Mesh Region
Figure 5. Mesh Domain

2.5. Solver Setup and Turbulence Model

The simulations were run using the steady-state Reynolds-Averaged Navier–Stokes
(RANS) OpenFOAM ’simpleFOAM’ solver along with the viscous Spalart–Allmaras turbu-
lence model. SimpleFOAM is a pressure-based solver (for low-speed incompressible flows)
that incorporates the SIMPLE (Semi-implicit Method for pressure-linked equations) algo-
rithm. This solver is generally preferred to other pressure-based OpenFOAM solvers (such
as PisoFoam or PimpleFoam) for largely incompressible and turbulent flows around airfoils.

The validity of numerical results greatly depends on the nature of the turbulence
model utilized to predict real-world flow conditions. For flow over an airfoil, laminar
flow eventually transitions to turbulent flow at the transition point (generally at 30% of
the airfoil chord). However, during turbulence modeling, any of the selected turbulence
models, which will have to capture the overall flow phenomena over the airfoil, will not
account for the small laminar portion of the flow, and will rather assume fully turbulent
flow, which can produce certain inherent biases in the generated data set, especially for
the drag outcomes. Considering all of these, for the given flow conditions (incompressible,
low-speed, low-Reynolds number) and the nature of simulations (external airfoil 2D flow),
the Spalart–Allmaras (SA) single-equation model was deemed to be the most appropriate
amongst the other turbulence models. In order to verify the fidelity of the results, apart
from validation with published experimental data of other investigators, which the SA
model had good agreement with over a wide range of angles of attack, parameters such
as the y+ were considered. The y+ is a non-dimensional distance used to determine the
proper size of the cells near domain walls during turbulence modeling. Given that the
average y+ during most of our simulations was approximately 0.13, the Spalart–Allmaras
model appears more than adequate for generating reliable high-fidelity data. The only
limitation associated with the SA model is its inability to accurately predict drag outcomes
in highly separated flow regions, such as at high angles of attack.
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The Spalart–Allmaras model is a single-equation turbulence model, solving for the
modified turbulent kinematic viscosity. It is widely used in various aerospace applications
and is designed for low-velocity wall-bounding flows with boundary layers subject to
adverse pressure gradients [36] like in airfoils. It is commonly used for low-Reynolds
number flows and is more straightforward to implement, unlike other turbulence models
such as the k-ϵ or the k-ω models, which require the turbulent length scale to be calculated.
The Spalart–Allmaras transport equation [37], solving for the turbulent kinematic viscosity,
ṽ, is given below:

∂

∂t
(ρṽ) +

∂

∂xi
(ρṽµi) =

1
σṽ

( ∂

∂xj

[
(µ + ρṽ)

∂ṽ
∂xj

]
+ Cb2ρ

(
∂ṽ
∂xj

)2)
+ Gṽ − Yṽ + Sṽ (12)

where ρ is the density, ν is the molecular kinematic viscosity and µ is the dynamic viscosity.
The four terms on the right of Equation (12) represent the diffusion, transition, dissipation,
and production terms, respectively. The turbulent viscosity, µt can be determined through:

µt = ρṽ fv1 (13)

Subsequently, the viscous damping function, fν1 is given by:

fv1 =
X3

X3 + C3
v1

(14)

X represents the ratio of the turbulent kinematic viscosity to the kinematic viscosity:

X =
ṽ
v

(15)

The empirical constants for the Spalart–Allmaras model are given by: σ = 2/3,
κ = 0.41, cb1 = 0.1355, cb2 = 0.622, cw1 = 3.239, cw2 = 0.3, cw3 = 2, cv1 = 7.1, ct3 = 1.2,
ct4 = 0.5.

The kinematic viscosity (ν) for the domain is set to be 1.48 × 10−5 m2/s which is the
kinematic viscosity of air at 15 °C. For the Spalart–Allmaras model, the turbulent viscosity
(µt) is initialized to be equal to the kinematic viscosity in the internal field of the domain,
while the turbulent kinematic viscosity (ṽ) is initialized to be equal to 4ν (X = 4).

2.6. Automation

Automating the dataset creation process was a key component of the research. This
was achieved through a comprehensive strategy. The software tools utilized for automation,
listed in the order of their application, are illustrated in Figure 6.

Figure 6. Software used in the automation process.

The CST framework was constructed using MATLAB®. Python played a key role
in the automation of mesh creation. The execution of CFD simulations was streamlined
through the use of Bash scripts. Additionally, Python was employed for the analysis and
postprocessing of the results of the CFD simulation. Figure 7 illustrates the step-by-step
approach adopted to generate the dataset elucidated in the present work.
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Figure 7. Framework of automation approach.

2.6.1. Automation of CST Using MATLAB®

The automation of generating the CST coefficients and the creation of 600-point ‘.dat’
files was facilitated through MATLAB®. The airfoil ‘.dat’ file obtained from the online
airfoil repositories was initially imported into MATLAB®. Following this, the Selig format
‘.dat’ files were split into the coordinates of the upper and lower surfaces of the airfoil.
The CST method using the shape and class functions was run individually on both the
upper and lower surfaces. Thus, the CST coefficients of the airfoil were obtained. In order
to increase the number of points in the ‘.dat’ file to 600 points, the obtained coefficients
were substituted in an eighth-order Bernstein polynomial. Regardless of the number of
points in the initial ‘.dat’ file, the CST framework generated the CST coefficients and a
‘.dat’ file with 600 points. The number of points in the ‘.dat’ file was standardized to be
600 (Section 2.3), which was crucial to the subsequent meshing process. This is elucidated
visually in Figure 8.

Figure 8. CST automation using MATLAB®.

2.6.2. Mesh Generation

Initially, a BlockMeshDict file conforming to a standard was developed to streamline
the meshing process for airfoils. Following this, a Python script was crafted to retrieve
coordinates from a 600-point airfoil ‘.dat’ file and methodically replace them line by line in
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the specified lines of the BlockMeshDict file. This approach enabled the efficient meshing
of any Selig format ‘.dat’ file with 600 points.

2.7. Bash Scripting

Bash scripts were pivotal in the research process, being utilized across various phases
of the simulation, from initiating the case setup to managing the postprocessing of the
gathered results. Furthermore, they played a significant role in parallelizing the CFD
simulations and controlling the numerous concurrent simulations.

2.7.1. CFD Automation

The convergence of CFD simulations is often determined by the property residuals,
which represent the local imbalance of that conserved scalar within the control volume. In
most CFD simulations, property residuals of the order of around 10−5 are considered to be
well converged, while residuals around 10−6 are considered tightly converged (no further
variation in the value of the property with further iterations). Tests across multiple airfoil
shapes and angles of attack indicated that 2000 iterations consistently produced residuals
of the order less than 10−5 across all properties, including Ux (x-direction fluid velocity),
P (local pressure) and the turbulence parameters. The Ux and Uy initial residuals plot for
the simulation of NACA 0018 at 0° is shown in Figure 9. It can be inferred that beyond
1500 iterations, there is no substantial change in the residuals (almost a near-converged
solution). Moreover, beyond 2000 iterations, the lift and drag coefficients only varied in
the 4th and 6th decimal places, respectively, which have negligible contributions to the
measured parameters. Furthermore, increasing the iteration count would significantly raise
computational time and resources. Therefore, in the process of automating the simulations,
the iteration limit for each airfoil was set to 2000.

Figure 9. Residuals plot for NACA 0018 at 0°.

2.7.2. Parallelization

Throughout the study, OpenFOAM v2306 was the designated software version in use.
The primary tool for simulation, the simpleFOAM solver, is a CPU-based solver. Initial
simulations were conducted on a laptop (on Ubuntu 23.10) equipped with a Ryzen 7 5800H
CPU and 32 GB of RAM, featuring eight cores and 16 threads. Running a simulation on a
single thread took about 15 min, indicating that completing simulations for all the airfoils at
a single angle of attack (AoA) would require approximately 31 days. This would translate
into 403 days for 13 angles of attack. Due to the sheer amount of time it would take to
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run simulations for 2900 airfoils at a single AoA, it was then decided to parallelize the
simulation process.

Initially, parallel simulations were executed on the mentioned laptop before transfer-
ring the cases to a supercomputer powered by an AMD Epyc 32-core CPU with 110 GB
of RAM. The airfoil database was divided into parts, allowing for simultaneous runs of
one case per sub-database. This setup ensured that several simulations were operational
concurrently. The optimal number of simultaneous simulations was determined through
experimentation, considering both the supercomputer’s performance and the cumulative
simulation time for one AoA.

After fine-tuning the parallelization strategy, the ultimate simulations were carried out
on four Intel Xeon Platinum Cascadelake 8268 processors, boasting a total of 96 cores and
1536 GB of RAM. The database was segmented into 96 parts, leading to a final simulation
time of approximately two days for one AoA.

2.7.3. Post-Processing

A Python script was created to save the simulation outcomes (Cl and Cd), the Angle
of Attack (AoA), and the CST coefficients in a CSV (Comma Separated Values) file. The
format of the CSV file is given in the following section. This approach was implemented to
streamline the data consolidation process and facilitate subsequent data analysis.

3. Data Description

The dataset was stored on a GitHub repository. The data structure of the repository is
shown in Figure 10. The repository is primarily divided into six parts. These correspond
to the raw and processed airfoil data, the CFD and CST subdirectories, the final dataset,
and the baseline model. The CFD subdirectory contains the OpenFOAM case setup and
its associated directories. Similarly, the CST subdirectory contains the CST framework.
Furthermore, separate directories have been created for the raw and processed airfoil
databases. Additionally, the baseline model subdirectory was created for the baseline
model developed for the current study.

Figure 10. The data structure of the GitHub Repository.

The outcome of this study, the final dataset, is provided in the following format
represented in Table 1.
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Table 1. Dataset format.

Airfoil
Filename AoA (α) X1 X2 X3 X4 X5 X6 X7 X8 Cl Cd

Here, AoA refers to the angle of attack, Xi the CST coefficients, and Cl , Cd are the lift
and drag coefficients, respectively.

4. Data Validation

The validation of lift and drag coefficients for selected symmetric and cambered airfoils
was achieved by comparing the simulation results with experimental data cited from two
distinct sources, focusing on a Reynolds number approximating 100,000. This process
aimed to affirm the precision of both the outcomes and the simulation methodology itself,
involving a comparison across various airfoil types. However, due to space limitations,
only a select number of relevant illustrations are included. The validation for NACA airfoils
utilized findings from the NACA report [38], whereas validations for other non-NACA
airfoils drew upon data from the data library [39].

The comparison includes numerically derived and experimentally measured lift and
drag coefficients for a symmetric airfoil, specifically the NACA 0018 at a Reynolds number
of 84,000, and a cambered airfoil, the NACA 2412, at a Reynolds number of 82,800. For
each airfoil, these comparisons are depicted in the designated Figures 11 and 12.
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Figure 11. Aerodynamic characteristics of NACA 0018 at Re = 84,000.
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Figure 12. Aerodynamic characteristics of NACA 2412 at Re = 82,800.

The OpenFOAM model accurately predicts values within the selected range of angles
of attack, paralleling experimental findings. The deviations for both lift and drag coefficients
for the symmetric NACA 0018 airfoil fall below a 5% margin, indicating high precision
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in the results. Similarly, lift coefficient estimates for the cambered NACA 2412 airfoil
align closely with experimental data, remaining within a 5% error margin. However,
the model tends to underestimate the drag coefficients for the NACA 2412, showing a
discrepancy of about 15% at certain angles of attack. This pattern is consistent across other
tested airfoils, where lift coefficients are accurately predicted while drag coefficients are
slightly underestimated.

For the NACA 4415 and NACA 6412 airfoils at Reynolds numbers of 82,500 and 83,000,
respectively, the results shown in Figures 13 and 14 showcase that while lift coefficient
(Cl) values are within a 5% error margin, the gap between predicted and experimental
drag coefficient (Cd) values widens beyond 10% at both high and notably negative angles
of attack.
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Figure 13. Aerodynamic characteristics of NACA 4415 at Re = 82,500.
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Figure 14. Aerodynamic characteristics of NACA 6412 at Re = 83,000.

Validation is also carried out for non-NACA airfoils. The results obtained for the
Selig/Donnovan SD8020 airfoil at a Reynolds number of 101,800 is shown in Figure 15. The
expected results are obtained; the error in the lift is less than 4% while the error in the drag
coefficient remains less than 10% apart from at highly negative angles of attack.

One interesting inference that was derived from the validation study was that sym-
metric airfoil simulations produced more accurate drag results at higher angles of attack
than cambered airfoils.
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Figure 15. Aerodynamic characteristics of SD 8020 at Re = 101,800.

Predicting the aerodynamic performance, particularly drag, in scenarios of high flow
separation or at significant angles of attack poses a challenge for numerical methods [40].
As the angle of attack reaches its limits, leading to detached flows, simulation results tend
to deviate from those reported in the literature. This deviation is challenging to address
without resorting to unsteady Reynolds-Averaged Navier–Stokes (RANS) or Large Eddy
Simulation (LES) techniques and the use of highly detailed meshes [41]. Previous studies,
including this one, have noted inconsistencies in the numerical versus experimental lift
(Cl) and drag (Cd) coefficients across angles of attack (AoA) when employing the Spalart–
Allmaras model [42].

In any design process, CFD simulations are often conducted in the detailed final
stages due to the amount of computational resources and time required to carry out
the simulations. However, given that the dataset already consists of the required airfoil
aerodynamic parameters, the data can be used in the initial stages of the design process.
In the preliminary stages, the slight discrepancy in the drag coefficients at high angles of
attack will not cause significant issues and will be more than adequate for initial estimates.
This represents an alternative application for the generated dataset and serves as a much
more comprehensive and accurate substitute instead of depending on crude panel solvers
for initial estimates.

Furthermore, as highlighted in the introduction, at low-Reynolds numbers, the pro-
posed dataset will find significant use while designing Unmanned Aerial Vehicles (UAVs).
In order to remain within their limits of safe operation, these UAVs only fly at moderate
Angles of attack, rarely exceeding 7°–8°, within which the aerodynamic predictions and
results remain reasonably accurate. Moreover, beyond the selected range of angles of attack,
extreme flow separation will initiate airfoil stalling characteristics. Given the diversity of
airfoil shapes present in the dataset, the absolute stall angles will also vary considerably for
each airfoil, and hence be extremely difficult to predict and standardize. This is another
reason why a moderate angle of attack range (from −4° to 8°) was selected.

Overall, despite occasionally underestimating drag forces, the OpenFOAM numerical
results provide adequate lift and drag estimations for the angles of attack required by our
study, which do not involve predominant flow separation. Additionally, the high level
of accuracy observed in simulations across various references [38,39] further confirms the
feasibility and effectiveness of the automated simulation processes.

5. Baseline Machine Learning Model

To demonstrate the potential of our dataset in machine learning-based airfoil opti-
mization approaches, we implemented a feed-forward neural network architecture. This
network consists of two layers, with 12 and six neurons, respectively. Batch Normalization
and ReLU activation functions were applied after each layer. The network was trained to
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predict the lift and drag coefficients of an airfoil based on its eight CST coefficients and an
angle of attack as input. The neural network’s architecture is given in Figure 16.

Figure 16. Baseline neural network architecture.

To handle outliers and ensure robustness, we employed the Huber loss function, which
dynamically adjusts between Mean Squared Error and Mean Absolute Error based on a
threshold. The loss was minimized using the Adam [43] optimizer over 15 epochs, as
depicted by the loss curve in Figure 17.

Figure 17. Loss curve for baseline model training.

By coupling our model with a design optimizer, we streamline the airfoil optimization
process, significantly reducing computational time compared to the conventional method
of employing a design optimizer with a traditional CFD solver.

6. Conclusions

This paper introduces a dataset featuring airfoil aerodynamic coefficients and CST pa-
rameters of airfoils obtained from reputable online repositories (the UIUC Airfoil Database
and Airfoil Tools). Focused on low Reynolds numbers (100,000), it serves as a proof of
concept of a robust and automated framework for CFD analyses. The release of the CFD
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framework and dataset sets the stage for future research, including the expansion to higher
Reynolds numbers and the training of several AI models for low Reynolds number aerody-
namic analyses. This is reinforced by the implementation of a baseline ML model using
the generated dataset. This dataset could serve as a valuable resource for researchers and
engineers in various fields.
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