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Simple Summary: The increasing demand for livestock production with a more sustainable ap-
proach to reduce greenhouse emissions offers the opportunity to test essential oils (EOs), as natural
treatments, for their effect on rumen activity, as well as the use of antibiotics, for their antimicrobial
activities. However, little information is available on the effects of EOs on the proliferative immune
response and cytokine production. Therefore, the present paper is aimed at evaluating the effect of
the Mentha x piperita L., Rosmarinus officinalis L., and Lavandula angustifolia L. EOs on sheep peripheral
blood monocular cells’ bio-response in terms of viability, proliferation, and cytokine secretion. The
main results obtained encourage the implementation of these EOs as feed additives, in in vivo stud-
ies, to improve the animals’ immune competence, especially those under specific physiological or
environmental stressors.

Abstract: Recently, the uses of essential oils (EOs) as rumen modifiers, anti-inflammatory agents,
and antioxidants were demonstrated in livestock. In the present study, the role of Mentha x piperita L.
(MEO), Rosmarinus officinalis L. (REO), and Lavandula angustifolia L. (LEO) EOs in an in vitro sheep
model of inflammation was investigated. With this aim, peripheral blood mononuclear cells (PBMCs)
were treated with incremental concentrations (3, 5, 7, and 10%) of each EO to test their effects on
cell viability and proliferation and on interleukin (IL)-6, IL-10, and IL-8 secretion. The PBMCs
were stimulated by Concanavalin A (ConA) alone or in combination with lipopolysaccharide (LPS)
mitogen. The positive and negative controls were represented by PBMCs in the presence or absence,
respectively, of mitogens only. The cell viability and proliferation were determined by XTT and BrdU
assays, while the cytokines were analyzed by ELISA. The EO treatments did not affect the viability;
on the contrary, the PBMC proliferation increased in presence of all the EOs tested, according to the
different percentages and mitogens used. The IL-10 secretion was higher in both the REO and the
LEO tested at 3% than in the positive control; furthermore, the IL-8 level was influenced differently
by the various EOs. The present data demonstrate that EOs may modulate the immune response
activated by inflammation.

Keywords: sustainability; immune response; cytokines; one health

1. Introduction

Essential oils (EOs) are classified as a group of organic compounds originating from the
secondary metabolism of plants, which exhibit antimicrobial activity to control diseases [1].
Chemically, EOs are a mixture of different substances, including about 20 to 60 components,
including terpenoids, alcohols, aldehydes, hydrocarbons, ketones, esters, and ethers [2].
The most representative molecules, accounting for 90% of the total composition, are the
monoterpenes (limonene, thymol, carvacrol, linalool, carvone, geranyl acetate), followed
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by the phenylpropanoids, derived from phenylalanine [3]. Recently, these bioactive com-
pounds have attracted interest in relation to animal feed for their ascertained ability to
modify the rumen and gut functioning, contributing to the reduction in global greenhouse
gas emissions [4] and, therefore, to the increase in the sustainability of livestock productions.
Furthermore, in light of the “One World—One Health” concept, it could be crucial create
innovative strategies to control the emergence of infections [5] and to reduce antimicrobial
resistance through the exploitation of EOs as a safe potential replacement for therapy with
antibiotics [6]. Indeed, recent evidence has demonstrated that EOs might modulate the
immune system, antioxidant activity, and udder health of dairy animals [7]. Moreover,
EOs have been found to improve rumen fermentation efficiency by altering gut microbiota
and sustaining the integrity of the intestinal barrier, gut immune responses, and growth
performance, supporting small-ruminant-derived products [8].

Despite the increasing research on EOs, very few reports are available on the specific
effects of EOs on immune responses with a particular focus on inflammatory processes.
It has been suggested that the bioactive molecules from EOs could target multiple in-
flammatory signaling pathways, thus masking the possible identification of a leader anti-
inflammatory molecule [9]. Hence, in veterinary science, it might be essential to explore the
anti-inflammatory effects of EOs in order to increase the knowledge on the use of aromatic
plants as anti-inflammatory drugs for the treatment of inflammation [10]. In the study
of ruminants, the evaluation of immune competence can be determined throughout the
blastogenic response of peripheral blood mononuclear cells (PBMCs) to liposaccharide
mitogen (LPS) [11]. Indeed, the PBMCs of dairy cows have shown low responsiveness to
LPS stimulation after calving, suggesting an immune-depression state around this time [11].
In addition, LPS is a mitogen derived from microorganisms able to initiate the proliferation
of B-cells, which can be used in combination with other mitogens derived from plants,
including concanavalin A, a type of T-cell mitogen [12], in order to optimize the lymphocyte
proliferation rate in both in vivo and in vitro trials [13].

Furthermore, studies have underlined the key mediating role of cytokines secreted
by immune cells, including PBMC, in the coordination of the physiological response to
stress stimuli in both health or disease states [14,15] by regulating the activation, replication,
chemotaxis, and apoptosis of immune cells [16]. Our hypothesis was that EOs could have
an immunomodulatory role, by sustaining the immune responses of small ruminants, in
terms of cell proliferation and cytokine production with pro- and anti-inflammatory actions.

Therefore, in this study, we investigated the effects of Mentha x piperita L., Rosmarinus
officinalis L., and Lavandula angustifolia L. oils (EOs) on sheep PBMC viability, proliferation,
and cytokine secretion, in the presence of ConA and the combination of ConA and LPS
stimulation.

2. Materials and Methods
2.1. Plant Sample Collection and Extraction of Essential Oils

Mentha x piperita L. var. citrata (Ehrh.) Briq, Rosmarinus officinalis var. Pyramidalis
L., and Lavandula angustifolia var. Royal purple L. were cultivated in an open field on the
“Bonomelli” farm. The soil underwent plowing to a depth of 35 cm and one treatment with a
disc harrow at a depth of 20 cm. Each crop was transplanted into continuous rows spaced at
1 × 1 m, and standard agronomic practices for aromatic crops (fertilization, drip irrigation,
weed control, etc.) were developed. Fresh collected (at 11 a.m.) leaves and flowers of
M. x piperita, R. officinalis, and L. angustifolia (only flowers) were used for hydrodistillation
using Clevengertype apparatus [17] in order to extract EOs. The extraction lasted two
hours for each plant. One kilogram of fresh plant (leaves and flowers) was submitted to
hydrodistillation with 7 L of distilled water (according to the European Pharmacopoeia).
At the end of the extraction, the accumulated EOs floated on the aqueous phase (hydrolat).
All the material was transferred into a glass separating funnel for four hours to obtain a
total separation (EOs/hydrolate). The EOs were stored in hermetically sealed dark-glass
containers and kept in rooms at 5–6 ◦C. The determination of the oil compositions was
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performed by gas chromatography (GC) coupled with mass spectrometry (MS) analysis
according to Adams’ method [18].

2.2. Animals and Experimental Treatments

Dairy sheep enrolled in this study were from a commercial farm located in Foggia
(Italy). The guidelines of the EU Directive 2010/63/EU (2010) on the protection of animals
used for experimental and other scientific purposes were followed. The animal study
protocol was approved by the Ethics Committee of the University of Foggia (protocol
number 0002302). Veterinarians examined all the animals to exclude the presence of any
signs of disease. Sheep were chosen with a random design, and an in vitro experiment was
performed, with four incremental percentages (3, 5, 7, and 10%) of rosemary EO (REO),
mint EO (MEO), and lavender EO (LEO), respectively. For the biological experiments, stock
solutions of each EO were prepared by solubilizing in dimethyl sulfoxide (DMSO,1:1). Next,
several dilutions were prepared in a cell culture medium and evaluated for their in vitro
proliferative and anti- or pro-inflammatory activity, measured by cytokine secretion. All the
samples were protected from light at −20 ◦C until use. The final concentration of DMSO
in cell culture was less than 0.5% for all EOs tested to exclude any toxic effect on cells, as
previously reported by Ciliberti et al. [19].

2.3. Isolation of Sheep Peripheral Blood Mononuclear Cells

A density-gradient centrifugation method was applied to isolate PBMCs according
by Ciliberti et al.’s modification [20] of Wattegedera et al.’s method [21]. Briefly, Na-
heparinized blood samples (15 mL) were collected from the jugular veins of sheep, diluted
in cold PBS (1:1, pH 7.4), and centrifuged at 670× g at 4 ◦C for 20 min. Buffy coat containing
leukocytes was recovered, layered over 10 mL of Hystopaque gradient (Merk/Sigma-
Aldrich, Darmstadt, Germany, 1.077 g/mL), and centrifuged at 1130× g at 25 ◦C for 30
min. The mononuclear cell ring was recovered, washed with prewarmed (37 ◦C) Hanks’
Balanced Salt solution (HBSS), and finally suspended at a final concentration of 2 × 106

cells/mL in Iscove’s modified Dulbecco’s medium (Merk/Sigma-Aldrich, Darmstadt,
Germany) supplemented with 10% fetal bovine serum (Merk/Sigma-Aldrich, Darmstadt,
Germany) and 50 µg/mL gentamicin (Merk/Sigma-Aldrich, Darmstadt, Germany). After
the isolation step, the PBMC viability was determined by trypan blue dye exclusion using
Burker chamber, reaching >96%.

2.4. XTT Cell Proliferation Assay

The evaluation of in vitro cell viability was performed by using TACS® XTT Cell Pro-
liferation Assay (R&D Systems, Inc., Minneapolis, MN, USA). This assay was based on the
evaluation of the metabolically active cells through the direct cleavage of the tetrazolium
salt (yellow dye) to formazan (orange dye,) initiated by the succinate–tetrazolium reductase
system of the mitochondria. The protocol was carried out according to the manufacturer’s
suggestions. Briefly, 100 µL of cell suspension (1 × 105 cells/mL) was seeded into quadru-
plicate in U-96-well plate. The absorbance was set at 450 nm in a microplate reader. Data
were presented as the percentage change in absorbance relative to the experimental control
(negative control, CNS).

2.5. Bromodeoxyuridine Proliferation Assay

The proliferative response of PBMCs to EO treatment was measured by bromod-
eoxyuridine (BrDU) incorporation during DNA synthesis. In brief, a PBMC suspension
measuring 100 µL (1 × 106 cells/mL) was seeded into quadruplicate in a U 96-well plate.
Cells were stimulated by the addition of a mixture of concanavalin A (ConA, Sigma-
Aldrich), at a final concentration of 5 µg/mL, and lipopolysaccharide (LPS, Sigma-Aldrich),
at final concentration of 1 µg/mL, as previously reported by Ciliberti et al. [22]. Moreover,
stimulation with only concanavalin A (ConA, 5 µg/mL, final concentration) was performed.
Both the PBMCs stimulated with ConA and LPS and those stimulated with ConA only were



Vet. Sci. 2024, 11, 157 4 of 14

treated with an incremental concentration (3, 5, 7, and 10%) of REO, MEO, and LEO. In the
in vitro trial, the positive controls were represented by PBMCs stimulated with Con A and
LPS (CS_ConALPS), with Con A only (CS_ConA), or with LPS only (CS_LPS). Moreover,
the negative control (CNS) was characterized by PBMCs in presence of culture medium
only and with no addition of DMSO. The plates were cultured in a humidified incubator
under 5% CO2 at 37 ◦C for 24 h. After incubation time, cell-free supernatants were col-
lected, after a centrifugation step at 300× g for 10 min, and stored at −20 ◦C until ELISA
to measure cytokine secretion. Next, the PBMCs remaining in the bottoms of wells were
incubated with BrdU (Exalpha Biologicals Inc., Shirley, MA, USA) to test the proliferative
response to an in vitro EOs stimulation. After 18 h of incubation, the incorporation of BrdU
during DNA synthesis was measured by determining optical density at 450 nm by using a
spectrophotometer (PowerWave XS, Biotek, Swindon, UK).

2.6. Determination of IL-6, IL-10, and IL-8 in PBMC Supernatant

The secretion of IL-6, IL-10, and IL-8 cytokines in PBMC supernatant was determined
in duplicates by a sandwich ELISA according to methods reported by Ciliberti et al. [20,22].
Plates were coated overnight at 4 ◦C with the capture antibodies, represented by mouse
monoclonal antibody (mAb) anti-sheep IL-6, (Clone 4B6, Biorad Ltd., Hercules, CA, USA),
anti-bovine IL-10 (Clone CC318, Biorad Ltd., Hercules, CA, USA), and anti-bovine IFN-
γ (Clone CC330, Biorad Ltd., Hercules, CA, USA). As detecting antibodies, the rabbit
polyclonal anti-ovine IL-6, the biotinylated mouse anti-bovine IL-10 mAb (Clone CC320,
Biorad Ltd., Hercules, CA, USA), and the biotinylated anti-bovine IFN-γ antibody (clone
CC302, Biorad Ltd., Hercules, CA, USA) were added, respectively. All the bovine antibodies
involved in the sandwich ELISA demonstrated cross reactivity with ovine species. In each
assay a standard curve was built using scalar dilution of the recombinant ovine IL-6 protein
(Cusabio Biotech Co., Wuhan, China), recombinant bovine IL-10 (Biorad Ltd., Hercules, CA,
USA), and recombinant bovine IFN-γ (Kingfisher Biotech, St Paul, MN, USA). The reading
was set at 450 nm (Power Wave XS, Biotek, Charlotte, VT, USA). Data were expressed in
nanograms of IL-6, IL-10, and IL-8 per milliliter.

2.7. Statistical Analysis

Results were presented as the means ± the standard error of the mean. The Shapiro–Wilk
test was used for analysis of the data distribution. After confirmation of normal data, the
comparisons between cell culture treatments were made using one-way analysis of variance
(ANOVA) by using GraphPad Prism 5 software (GraphPad Software, La Jolla, CA, USA). The
Tukey post hoc adjustment for multiple comparisons was used to set the differences between
mean cell culture treatments. Statistical differences of p < 0.05 were considered significant.
The secretion of IL-6, IL-10, and IL-8 cytokines in presence of Con A stimulation and EOs
tested was below of the limit of detection; therefore, for statistical analysis, only the secretion
of cytokines of PBMC supernatant from the stimulation in presence of both ConA and LPS
mitogens was analyzed.

3. Results and Discussion
3.1. Essential Oils Composition

Table 1 shows the results of the GC–MS analysis of the EOs employed for the PBMC
treatment. Twenty-four compounds were identified in the EO of R. officinalis (REO); the
main constituents were 1,8-cineole (25.2%), α-pinene (20%), camphor (16.2%), and cam-
phene (10.8%), accounting for a 72.2% of the total compounds identified. In a study by
Gachkar et al. [23], lower percentages of the major compounds α-pinene and 1,8-cineole
were found, registering values of 14.9%, and of 7.43%, respectively. Previous studies on
REO composition reported slight differences between the main compounds [24–26]; these
results can be ascribed to the effect of the climate on the relevant plants, which, in turn, are
able to modify their chemical composition [23]. Moreover, our findings were consistent
with a prior observation by Akrout et al. [27], who identified three distinct R. officinalis
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chemotypes that contained EOs with equal amounts (20–30%) of 1,8-cineole, α-pinene, and
camphor from Morocco, Tunisia, Turkey, Greece, Yugoslavia, Italy, France, and Algeria. A
total of 16 compounds were identified in the EO of M. piperita L. (MEO), characterized by
a huge amount of piperitenone oxide (51.25%) and a lower amount of 1,8-cineole (17.4%,
eucalyptol) and limonene (11.8%), out of a total of 96.65% compounds identified. In a
study by Gracindo et al. [28], some genotypes of Mint (Mentha spp.) were characterized by
EOs with a high content piperitone oxide, including Mentha suavelons (79.0%) and Mentha
spicata (65.5%). Accordingly, the chemical composition of mint genotypes was related to
the region of origin, showing different percentages of oxides, particularly piperitone oxide
and piperitenone oxide, the major specimens [29–32]. Finally, the chemical composition of
L. angustifolia essential oil (LEO) was characterized by 25 constituents, containing 44.5%
linalol, 10.9% borneol, and 9.8% terpinene-4-olo, out of 97.9% of the total components
identified. In a study by Silva et al. [33], linalool was the predominant component of the L.
angustifolia EO, accounting for 32.52% of the total of 28 components identified. Notably, the
changes in the EO composition found in the literature were mainly attributed to the genetics
of the plants and differences in their climatic, seasonal, and geographical conditions [34].
The results obtained in the present study agreed with those reported in the literature, with
linalool, linalyl acetate, fenchone, eucalyptol, and borneol found to be the major LEO
components [34–38].

Table 1. Relative percentage compositions of Rosmarinus officinalis L., Mentha x piperita L., and
Lavandula angustifolia L. essential oils used for the in vitro sheep PBMC treatments.

No. Mentha x piperita
L.

Percentage
(%) No. Rosmarinus

officinalis L.
Percentage

(%) No. Lavandula
angustifolia L.

Percentage
(%)

1 α-Pinene 1.6 1 Tricyclene 0.4 1 α-Tujene 0.2
2 Sabinene 1.5 2 α-Thujene 0.3 2 α-Pinene 0.7
3 β-Pinene 2.7 3 α-Pinene 20.0 3 Camfene 0.4
4 Myrcene 4.2 4 Camphene 10.8 4 Sabinene 0.3
5 3-Octanol 0.3 5 β-Pinene 4.9 5 β-Pinene 0.6
6 Limonene 11.8 6 3-Octanone 1.2 6 1-octen-3-ol 0.6
7 1,8-Cineole 17.4 7 β-Myrcene 5.1 7 3-octanone 0.2
8 Linalol 0.2 8 α-Phellandrene 2.4 8 β-Myrcene 1.0
9 α-Terpineol 0.3 9 ∆3-Carene 0.1 9 α-Phellandrene 0.1

10 Piperitone oxide 0.4 10 α-Terpinene 1.0 10 ∆3-Carene 0.2
11 Carvone 0.2 11 p-Cymene 1.1 11 α-Terpinene 0.1

12 Pipertitenone
oxide 51.25 12 1,8-Cineole 25.2 12 p-Cymene 4.7

13 β-Caryophyllene 3.3 13 β-cis-Ocimene 0.1 13 1,8-Cineol 11
14 Germacrene D 0.6 14 γ-Terpinene 1.8 14 Trans Ocimene 3.3
15 Bicyclogermacrene 0.1 15 Terpinalene 1.0 15 Cis Ocimene 1.3

16 Caryophyllene
oxide 0.8 16 Linalol 0.7 16 γ-Terpinene 0.4

17 Camphor 16.2 17 Terpinolene 0.4
18 Borneol 1.7 18 Linalol 44.5
19 Terpinen-4-olo 0.4 19 Canfor 3.6
20 α-Terpineol 0.7 20 Borneol 10.9
21 Verbenone 1.4 21 Terpinen-4-ol 9.8
22 Bornyl acetate 0.7 22 α-Terpineol 0.9

23 β-
Caryophyllene 1.6 23 Lavandulyl

Acetate 1.3

24 α-Humulene 0.4 24 Geranyl Acetate 0.7
25 β-Farnesene 0.7

% Total identified 96.65 % Total
identified 99.2 % Total

identified 97.9

Compounds were numbered based on the order of retention times. Highlighted compounds are more than 1%.

3.2. In Vitro PBMC Viability after EO Treatment

The EOs used in vitro were tested for their toxic effects on sheep PBMCs by evaluating
the cell viability within a concentration range from 3 to 10% (Figure 1a–c). The PBMC
viability was significantly affected by all the EOs in the in vitro treatments (p < 0.001 for all
EOs tested), showing a viability at least at the level of that of the negative control (CNS). In
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particular, the MEO treatment tested at the 10% concentration and stimulated with ConA,
and its combination with LPS, tested at 5% and stimulated with ConA, resulted in a higher
viability than the CNS, CS_ConALPS, CS_LPS, 3_ConALPS, and 5_ConALPS (Figure 1a).
The REO treatment tested at 10% and stimulated with ConA and its combination with
LPS showed the highest viability, as compared with all the controls (CNS, CS_ConA,
CS_ConALPS, and CS_LPS, Figure 1b). Similarly, the LEO tested at 10% in the PBMCs
stimulated with ConA and its combination with LPS showed a higher viability than all
the in vitro treatments, except for that registered for the PBMCs treated with 7% LEO
stimulated with ConA (Figure 1c).
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Figure 1. (a) PBMC-viability percentage after in vitro treatment with incremental concentrations
(3, 5, 7, and 10%) of Mentha x piperita L. EO (MEO) stimulated with concanavalin A (ConA) and
liposaccharide (LPS) and concanavalin A only (ConA); (b) PBMC-viability percentage after in vitro
treatment with incremental concentrations (3, 5, 7, and 10%) of Rosmarinus officinalis L. EO (REO)
stimulated with concanavalin A (ConA) and liposaccharide (LPS) and concanavalin A only (ConA);
(c) PBMC-viability percentage after in vitro treatment with incremental concentrations (3, 5, 7, and
10%) of Lavandula angustifolia L. EO (LEO) stimulated with concanavalin A (ConA) and liposaccharide
(LPS) and concanavalin A only (ConA). Controls were represented by CNS (unstimulated PBMC),
CS_ConA (PBMCs stimulated with ConA), CS_ConALPS (PBMCs stimulated with ConA and LPS),
CS_LPS (PBMCs stimulated with LPS). Treatments with differing superscripts (a, b, c, d) differ
(p < 0.05).

The evaluation of the toxic effects of the EOs at different working concentrations can
be considered a crucial step in the biological experiments conducted in vitro; thus, it is
necessary to choose specific concentrations in compliance with the sample [10]. To the best
of our knowledge, this is the first report in which the biological effects of MEO, REO, and
LEO on sheep PBMCs were examined in terms of proliferation and cytokine production.
The literature on LEO cytotoxicity places it in the category of “safe” oils [39]. Very few
reports are available on its cytotoxicity. In the study by Prashar et al. [40], LEO was tested
on different human skin cell lines, and, starting from 0.25% (v/v), a cytotoxic effect was
registered with a similar pattern to that expressed when using linalool (contained in 35%
lavender oil), suggesting that it is an active component of lavender oil [40]. Furthermore,
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REO tested at 1 mg/mL on hepatocellular carcinoma (Hep 3B & Hep G2) had no impact on
cell viability [41]. This result was consistent with that reported by the European Medicines
Agency on the clinical safety of REO [42], as well as with that by the European Food
Safety Authority, which declared the safety of REO for dietary exposure [43]. Finally,
a risk-assessment study on the cytotoxity of MEO found that the concentration of 100
µg/mL did not affect the viability of human epidermal keratinocyte (HaCaT) cells, which
remained at approximately 90% [44]. Based on our data and according to the literature, the
concentrations of all the EOs tested in the present experiment may be considered non-toxic
for sheep-PBMC studies.

3.3. In Vitro PBMC Proliferative Response to Mitogen Stimulation and EO Treatments

Inflammation triggered by invading pathogens or endogenous signals, such as dam-
aged cells, involves a series of complex and often simultaneous molecular, immunological,
and physiological processes focused on the elimination of the initial cause of injury, the
clearance of necrotic cells, and tissue repair [45]. For example, during an inflammatory
response, an increase in blood leukocyte influx, vascular and intracellular cell-adhesion
molecule (VCAM and ICAM) expression, the upregulation of the enzyme activity of oxyge-
nase, peroxidase, and nitric oxide synthase, and the shift in metabolism of arachidonic acid
with the release of pro-inflammatory cytokines are observed [46–49]. In the present paper,
the effects of the EO treatments on the blastogenic responses of sheep cells when using a
combination of LPS and ConA mitogens or ConA only were verified. The proliferation
of PBMCs was significantly affected by the in vitro EO treatments (p = 0.008 for MEO,
p = 0.005 for REO, and p = 0.0002 for LEO, respectively, Figure 2). The PBMCs treated with
MEO at 10% and stimulated with ConA and LPS had greater proliferation than the positive
control (CS ConA_LPS, Figure 2a). By contrast, the proliferation of PBMCs treated with
REO at 5% and stimulated with ConA and LPS registered a greater proliferation than the
treatments at 7% and 10%, which were at the same level as the negative control (CNS,
Figure 2b). A greater proliferative response was displayed in the PBMCs treated with REO
at 5% stimulated with ConA and LPS than in those stimulated only with ConA, which was
probably due to the different responses of cells to mitogen. The proliferation of PBMCs
treated with 10% LEO, and stimulated with ConA and LPS mitogens, was greater than
those all the in vitro treatments, except for the proliferation of 10% stimulated with ConA
only (Figure 2c).

When planning an in vitro study, it must be considered whether a particular com-
pound or condition causes optimal proliferation [13]. Mitogens are compounds originating
in plants (i.e., Con A) or microorganisms (i.e., LPS), which can be employed to test im-
munocompetence in animals in both in vitro and in vivo experiments. They activate DNA
synthesis and the division of large leucocyte populations. In particular, mitogen can be
classified into T-cell mitogens (i.e., Phorbol 12-myristate 13-acetate (PMA), ionomycin,
A23187, Phytohemagglutinin, ConA, and others), B-cell mitogens (i.e., anti-IgM Ab, LPS,
8-mercaptoguanosine, protein kinase C activators, and others), and polyspecific mitogens,
for both T- and B-cell proliferation, like Pokeweed Mitogen (PWM) [12]. Therefore, we
decided to test two different types of blastogenic stimulators, the combination of ConA
and LPS and ConA only, considering the lack of knowledge on this argument and to cover
the possible absence of response to mitogens, which can cause a marked inhibition of the
lymphocyte proliferation rate [13], and could mask the real effect of in vitro tests.

No studies were available on the blastogenic responses of EOs in sheep in an in vitro
model of inflammation. Recent research mainly reported the anti-proliferative effects of
linalool, one of the main chemical active compounds in LEO [50], L. angustifolia [51], R.
officinalis [52], and M. x piperita Eos [53], on different tumor-derived cell lines. Very few
findings reported the effects of EOs on peripheral blood leukocytes’ proliferation in humans.
A previous study, conducted on human PBMC proliferation induced by PHA, found that
the EO of M. x piperita L. var. RAC 541 had a stimulatory effect on proliferation by affecting
cytokine production in different way, according to a specific cultivar [54]. Conversely, an
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experiment focused on the evaluation of the immunomodulatory effect of Nigella sativa
EO (NSEO) on human PBMCs reported an antiproliferative effect on CD4+ and CD8+ T
cells when NSEO was tested at the lowest (1:10, 1:50, and 1:100) dilutions [55]. Moreover, a
reduction in the proliferation rate of peripheral blood leukocytes without affecting their
capacity to secrete anti-inflammatory cytokines was demonstrated by using Melaleuca
alternifolia EO [56]. In the present experiment, none of the concentrations of EOs tested ex-
erted any antiproliferative effects on the PBMCs; on the contrary, the highest concentrations
of MEO and REO and the 5% LEO increased the proliferative response to the mitogens
ConA and LPS. The stimulatory action of EOs on PBMCs could be particularly desirable for
treating immunocompromised animals, such as those exposed to physiological [57] and/or
environmental stressors [58].
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Figure 2. (a) PBMC proliferative response measured with optical density (OD) at 450 nm after
in vitro treatment with incremental concentrations (3, 5, 7, and 10%) of Mentha x piperita L. EO (MEO)
stimulated with concanavalin A (ConA) and liposaccharide (LPS) and concanavalin A only (ConA);
(b) PBMC proliferative response measured with optical density (OD) at 450 nm after in vitro treatment
with incremental concentrations (3, 5, 7, and 10%) of Rosmarinus officinalis L. EO (REO) stimulated
with concanavalin A (ConA) and liposaccharide (LPS) and concanavalin A only (ConA); (c) PBMC
proliferative response measured with optical density (OD) at 450 nm after in vitro treatment with
incremental concentrations (3, 5, 7, and 10%) of Lavandula angustifolia L. EO (LEO) stimulated with
concanavalin A (ConA) and liposaccharide (LPS) and concanavalin A only (Con)A. Controls were
represented by CNS (unstimulated PBMC), CS_ConA (PBMC stimulated with ConA), CS_ConALPS
(PBMC stimulated with Con and LPS), CS_LPS (PBMC stimulated with LPS). Treatments with
differing superscripts (a, b, c) differ (p < 0.05).

3.4. Cytokine Profiles in PBMC Supernatant

Cytokine secretion is triggered by stimuli like bacterial endotoxin or lipopolysaccha-
ride (LPS), as well as many other pathogen components that similarly activate Toll-like
receptors [59,60]. These receptors trigger a cascade of intracellular signals, involving the
activation of nuclear factor kappa B (NFκB) and resulting in the early transcription of
cytokines such as IL-1, IL-6, and tumour necrosis factor-α (TNF-α) [61]. The immunostimu-
latory effects of EOs are mainly related to their interaction with the signaling cytokines, the
regulatory transcription factors, and the expression of pro-inflammatory genes [9]. Previous
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studies hypothesized that the mechanisms of action of EOs on immune cells can be both
indirect and direct via several mechanisms, such as hyperemia, which accelerates the re-
cruitment of leukocytes and promotes anti-inflammatory reactions (citrals, citronellal, and
cuminal in external use), or the inhibition of the synthesis and secretion of inflammatory
mediators (histamines, pro-inflammatory cytokines, prostaglandins, leukotrienes, nitric
oxide, and free radicals), representing different levels of anti-inflammatory activity [62,63].

It is worth noting that the molecular basis of the immunomodulatory activities of
EOs has not been deeply investigated and could change, depending on the specific EO
used [10]. In the present paper, the secretion of IL-6 was not affected by the in vitro EO
treatments (p = 0.232 for MEO, p = 0.492 for REO, and p = 0.524 for LEOs, respectively,
Figure 3a). The level of IL-10 was higher in the lowest concentrations of both the REO and
the LEO treatment, even though it displayed higher IL-10 values than the positive control
(ConA_LPS, Figure 3b). Conversely, the level of IL-8 secretion in the PBMC supernatant was
influenced differently in relation to the type of EO in vitro treatment. The MEO treatment
significantly affected the level of IL-8 (p < 0.001, Figure 3c), as demonstrated by the lower
levels registered in all the tested concentrations compared with both CS_ConALPS and
CNS. The REO treatment at 7% showed a lower IL-8 secretion than the NC (p = 0.0018).
Regarding the LEO treatment, all the tested concentrations had lower levels of IL-8 than
the CNS (p = 0.0013).
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Figure 3. Secretion of (a) IL-6, (b) IL-10, and (c) IL-8 in PBMCs after in vitro treatment with incremental
concentrations (3, 5, 7, and 10%) of EOs and in presence of the combination of concanavalin A (ConA)
and liposaccharide (LPS) stimuli. Controls were represented by CNS (unstimulated PBMC), and
CS_ConALPS (PBMC stimulated with ConA and LPS). In blue, data on Mentha x piperita L. EO (MEO),
in green, data on Rosmarinus officinalis L.(REO), and in purple, data on Lavandula angustifolia L. (LEO)
cytokine production. Treatments with differing superscripts (a, b, c) differ (p < 0.05).

The ability of LEO and its constituents to interfere with the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB), and p38-mitogen-activated protein
kinase (MAPK)-signaling immunological pathways, as well as cytokine secretion, was
demonstrated [64,65]. Indeed, the main components of LEO, including (+)-α-pinene, (–)-
linalool, and (+)-limonene, decreased the secretion of interleukin-2 (IL-2) and increased
the IL-10/IL-2 ratio in mouse primary splenocytes, indicating their potential role in the
activation of T-helper 2 (Th2) responses [65], which promotes the humoral immune re-
sponse [66]. Furthermore, (– linalool was found to be able to attenuate the production of
LPS-induced TNF-α and IL-6, both in RAW 264.7 macrophages, and in mice [64,65]. In the
present paper, both LEO and REO treatments resulted, concomitantly, in a higher level of
IL-10 and a lower level of IL-8 secreted by the PBMCs, demonstrating their potential role
in the activation of the Th2 response, driven by IL-10. Interleukin-8 (IL-8) is a chemokine
family member, identified as neutrophil chemotactic polypeptide, in the conditioned media
of LPS-stimulated peripheral blood monocytes [67]. The regulation of IL-8 production or
the inhibition of its action were investigated during acute inflammation with a therapeutic
purpose [67]. Based on this evidence, the reduced secretion of IL-8 by PBMCs in the pres-
ence of EOs underlined the potential immunoregulatory role of EOs in both physiological
and pathological conditions, which needs to be further explored. Indeed, results from an
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in vitro study attributed the anti-inflammatory activity of eight EOs to their inhibitory effect
on NF-κB activation, with the downregulation of IL-6, IL-1β, TNF-α, and COX-2 mRNA
expression in macrophages [10]. Furthermore, IL-10 is known as an anti-inflammatory
cytokine that inhibits the production of a wide range of cytokines, including IL-1, IL-6, IL-8,
and TNF-α, in various cell types, by causing the selective inhibition of NF-κB [68]. Based
on this assumption, the higher level of IL-10 found in the PBMCs treated with EOs could
help to justify the lower level of IL-8 registered. However, EO supplementation in piglets
resulted in a potentiated immune response by improving the lymphocyte proliferation rate,
phagocytosis rate, and immunoglobulin (Ig) G, IgA, IgM, C3, and C4 production [69,70], as
well as by decreasing the major pro-inflammatory (TNF-α, and IL-6), and anti-inflammatory
(IL-10) cytokines [71]. These last statements confirm that EO activities are complex, cannot
be considered only one-sided (anti-inflammatory or pro-inflammatory) [9], and might be
able to modify the immune response in a context-specific way. In the present study, the
cytokine profile mainly depended on the type of EO tested and could affect both the anti-
and the pro-inflammatory-cytokine pattern.

4. Conclusions

This is the first study in which the effects of three EOs on sheep PBMC proliferation
and cytokine production were evaluated. The data from the present research demonstrate
that R. officinalis L., M. x piperita L., and L. angustifolia L. EOs can have a stimulatory effect
on PBMCs’ blastogenic responses to both LPS and ConA mitogens. Furthermore, the
immunomodulatory activity of the EOs tested was ascertained by showing a cytokine
pattern in favor of IL-10 anti-inflammatory cytokines, with a concomitant lower level of the
pro-inflammatory IL-8.

The present study encourages the use of EOs as feed additives to improve animals’
immune competence in the current context of more sustainable livestock production and
the “One Health” vision. Furthermore, the stimulatory action exerted by EOs on PBMC
proliferation and cytokine secretion, could be an appropriate solution to treat immunocom-
promised animals involved in livestock production.
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