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Abstract: In this work, we underscore the significance of selecting an appropriate scaling to derive
dimensionless quantities that accurately reflect their dimensional counterparts, thereby enhancing the
comprehension of the underlying physics. For the loss of head in a pipe flow, we argue that employing
inertial force (or kinetic energy) to non-dimensionalized pressure force (or mechanical energy loss)
lacks physical justification. As a result, an anomalous trend emerges for the classical friction factor:
it decreases as the dimensionless flow rate (Reynolds number) increases, contrary to the behavior
observed in the corresponding dimensional quantities. Conversely, by non-dimensionalizing the
pressure force with the viscous force, a novel friction factor arises. In laminar flow, it is constant,
while in turbulent flow, it is a monotonically increasing function of the Reynolds number, mirroring
the behavior observed in the dimensional problem.

Keywords: Moody diagram; friction factor; inertia in pipe flow

1. Introduction

The steady flow of Newtonian fluids through tubes appears in a plethora of applica-
tions, including various fields of engineering, physics, and biology, to name a few. For this
reason, it was the topic of several studies in the nineteenth and twentieth centuries.

For laminar flow, G. H. L. Hagen (1797–1884) and J. L. M. Poiseuille (1797–1869)
independently performed analytical and experimental studies that led to the same relation
between the flow rate and the pressure drop, the so-called Hagen–Poiseuille equation.

For turbulent flow in tubes, prominent scientists like L. Prandtl, Th. von Kármán, J.
Nikuradse, H. Darcy, H. Basin, C. Colebrook, and others performed experiments for wide
ranges of Reynolds number and relative wall roughness. Colebrook [1,2] developed an
equation for the friction factor (i.e., dimensionless head loss) as a function of the Reynolds
number and relative roughness.

Since this equation is transcendental, it was not very practical for routine usage. In a
celebrated work, Moody [3] developed a diagram plotting both (a dimensionless version of)
the Hagen–Poiseuille and the Colebrook equations. Moody’s diagram became a basic and
indispensable tool that—since shortly after its publication nearly eighty years ago—has
been routinely used by engineers and scientists worldwide in the design of a wide range of
hydraulic systems.

Other friction factor expressions for the turbulent flow in pipes have been developed over
the years, all of them explicit, with the goal of avoiding the iterative procedure required while
using the Colebrook equation [4–10]. Brkić [4] proposed an approximation of the Colebrook
equation based on the Lambert W-function. Ćojbašić and Brkić [5] developed—with a basis on
previously existing models that were improved via genetic algorithms—two explicit alternatives
to the Colebrook equation that presented negligible error.

Offor and Alabi [6] applied artificial intelligence for the prediction of the friction factor.
They used a network having a 2-30-30-1 topology trained with the Levenberg–Marquardt
back propagation algorithm fed by 60,000 datasets of Reynolds number and relative rough-
ness, obtaining negligible deviation from the Colebrook equation prediction. Offor and Al-

Fluids 2024, 9, 98. https://doi.org/10.3390/fluids9040098 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids9040098
https://doi.org/10.3390/fluids9040098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0002-7813-3028
https://doi.org/10.3390/fluids9040098
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids9040098?type=check_update&version=1


Fluids 2024, 9, 98 2 of 6

abi [7] proposed an explicit non-linear regression model with two logarithmic functions that
reproduces with negligible error the Colebrook equation, with far less computational time.

Minhoni et al. [8] examined the performance of six explicit equations for calculating
the friction factor by comparing their predictions with the ones of the implicit Colebrook
equation. Based on the results, they observed that the equations of Vatankhah [9] and Offor
and Alabi [6] provided predictions closest to the ones of the Colebrook equation.

In this work, we propose an alternate scaling for the head loss whose characteristics
render more clear the role of inertia in this flow and ensure that the trends of the relationship
between dimensionless quantities are the same ones observed in the dimensional problem.

2. Analysis

A simple force balance in a fluid element in the steady, laminar, isochoric flow of a
Newtonian fluid through a horizontal tube of constant cross sectional area ultimately leads
to the well-known Hagen–Poiseuille equation, which gives the volumetric flow rate Q as a
function of the pressure gradient ∆p/L (∆p is the pressure difference between two axial
positions separated by a distance L):

Q =
πD4

128µ

∆p
L

(1)

where D is the tube’s inner diameter and µ is the viscosity of the fluid. Since, for the flow
in a horizontal tube, all fluid elements move at constant kinetic and potential energies,
the pressure drop is directly related to the total mechanical energy loss that a Lagrangian
particle of unit mass experiences as it travels along the tube length L. Therefore, we can
easily adapt Equation (1) to render it applicable to straight tubes of any orientation with
respect to gravity, just by replacing ∆p by ρgh f , where ρ is the fluid’s mass density, g is the
acceleration due to gravity, and h f is the loss of mechanical energy (or head) due to friction,
in length units. The result is as follows:

h f =
128µQL
πD4ρg

(2)

The most common dimensionless version of this equation is as follows:

f =
64
Re

(3)

where f is the so-called friction factor, and Re is the Reynolds number. These dimensionless
quantities are defined as

f :=
h f

L
D

V2

2g

(4)

and
Re :=

ρVD
µ

(5)

where V is the average axial velocity.
For turbulent flows, the also-famous Colebrook transcendental equation [1] is em-

ployed, instead of Equation (3):

f =
1

{
2 log10

(
e/D
3.7 + 2.51

Re
√

f

)}2 (6)

In this equation, e is the average rugosity of the tube’s inner wall. The transcendental
nature of Equation (6) requires iterations to obtain f as a function of Re and e/D. However,
the convergence is quite fast (2–4 iterations) and very weakly dependent on the initial guess
for f due to the appearance of f on the RHS of Equation (6) within a square root which, in
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turn, is part of the argument of a logarithm. Nevertheless, its transcendental nature posed
practical problems to users in the last century who did not have access to efficient computer
codes and spreadsheets. To address this problem, Moody [3] plotted Equations (3) and (6)
in a diagram like the one shown in Figure 1.
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Figure 1. The classical Moody diagram.

3. Discussion

A perhaps puzzling feature of the Moody diagram is the fact that the dimensionless
mechanical energy loss f decreases as the dimensionless flow rate Re is increased, both in
the laminar and in the turbulent flow regimes.

The reason for this counter-intuitive behavior is the fact that, in Equation (4), an inertial
force is used to non-dimensionalize the pressure force. However, in a steady laminar pipe
flow, all material particles flow at a constant velocity, so that there is no inertial force
involved, the pressure force being exactly balanced by the viscous force. In turbulent flow,
inertia plays an indirect role only, which is due to the velocity fluctuations around average
constant values experienced by the material particles.

Therefore, it seems more appropriate to use, in the non-dimensionalization of the
pressure force, a characteristic viscous force rather than an inertial force. The result is a
modified friction factor f ∗, defined as

f ∗ :=
ρgh f

32µ V
D

D
L

(7)
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Combining Equations (2) and (7), we obtain, for laminar flow,

f ∗ = 1 (8)

Regarding turbulent flow, it is not difficult to re-write the Colebrook Equation (Equation (6))
in terms of the modified friction factor:

f ∗ =
Re

{
16 log10

(
e/D
3.7 + 0.314√

Re f ∗

)}2 (9)

We now represent Equations (8) and (9) in a modified version of the Moody diagram,
shown in Figure 2. In this figure, we observe that the friction factor is constant for laminar
flow and increases monotonically with the Reynolds number for turbulent flow.
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Figure 2. The modified Moody diagram.

This behavior observed for the non-dimensional quantities is in agreement with the
one expected for the dimensional quantities because the new scaling is more consistent
with the physics involved in this problem.
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Moreover, for large-enough values of the Reynolds number Re, the modified friction
factor f ∗ becomes a linear function of the Reynolds number, as can be easily inferred
upon an inspection of Equation (9). It is easy to see that this region of linear dependence
on Re in the modified Moody diagram corresponds to the so-called “fully rough zone”
of the original Moody diagram, where the Moody friction factor is independent of the
Reynolds number.

4. Concluding Remarks

In this brief note, we exemplify the importance of choosing the appropriate scaling to
obtain dimensionless quantities that are faithful to their dimensional counterparts, thus
aiding the understanding of the physics involved.

Specifically, we argue that using the inertial force (or kinetic energy) to non-dimension-
alize the pressure force (or mechanical energy loss) is not physically justifiable because
inertia is irrelevant in laminar flow, and for turbulent flow, it is solely associated with the
velocity fluctuations.

As a result, an abnormal behavior is obtained for the friction factor, namely, it decreases
as the dimensionless flow rate (the Reynolds number) is increased, both in laminar and tur-
bulent flows, in contrast to what is observed for the corresponding dimensional quantities.

On the other hand, if we choose to non-dimensionalize the pressure force using
the viscous force, we obtain a new friction factor that is constant for laminar flow and
a monotonically increasing function of the Reynolds number, following the behavior
observed in the dimensional problem.

Of course, this alternate non-dimensionalization does not greatly change the procedure
of the solution of practical problems. This is so because the solution of engineering problems
basically involves dimensional quantities, namely, the loss of mechanical energy h f as a
function of the flow rate Q (or of the average velocity V), which is independent of the choice
of non-dimensionalization and can be evaluated either by Equation (4) or by Equation (7).

In summary, the main contribution of the non-dimensionalization presented in this
paper resides in the fact that it clearly exposes the true physics involved in the flow of
Newtonian fluids through straight conduits of a circular cross-section, a fluid mechanics
problem of paramount importance in a wide range of fields of knowledge.

Funding: This research was co-funded by Petrobras S.A. (2022/00183-7), CNPq (307976/2018-1),
CAPES (PROEX 0096/2022), and FAPERJ (E-26/010.001241/2016 and E-26/201.094/2021).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Colebrook, C.F. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe

laws. J. Inst. Civ. Eng. 1939, 11, 133–156. . [CrossRef]
2. Colebrook, C.F.; White, C.M. Experiments with fluid friction in roughened pipes. Proc. R. Soc. Ser. A Math. Phys. Sci. 1937,

161, 367–381.
3. Moody, L.F. Friction factors for pipe flow. Trans. Am. Soc. Mech. Eng. 1944, 66, 671–678. [CrossRef]
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