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Abstract: The compression of images for efficient storage and transmission is crucial in handling
large data volumes. Lossy image compression reduces storage needs but introduces perceptible
distortions affected by content, compression levels, and display environments. Each compression
method generates specific visual anomalies like blocking, blurring, or color shifts. Standardizing
efficient lossy compression necessitates evaluating perceptual quality. Objective measurements offer
speed and cost efficiency, while subjective assessments, despite their cost and time implications,
remain the gold standard. This paper delves into essential research queries to achieve visually lossless
images. The paper describes the influence of compression on image quality, appropriate objective
image quality metrics (IQMs), and the effectiveness of subjective assessment methods. It also provides
an overview of the existing literature, surveys, and subjective and objective image quality assessment
(IQA) methods. Our aim is to offer insights, identify challenges in existing methodologies, and assist
researchers in selecting the most effective assessment approach for their needs.
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1. Introduction

Image compression is essential for efficiently storing and distributing massive amounts
of data, including photographs and videos. While producing distortions in picture data
that may be perceptible to the human eye based on the content and degree of compression,
lossy image compression lowers storage needs [1]. All compression methods result in
different visual artifacts, including color shift, blocking, blurring, or ringing irregularities,
among others.

It is essential to undertake perceptual quality evaluation studies to determine the
severity of the added visual artifacts to standardize a new and efficient lossy compression
approach [2,3]. Nowadays, it is normal to share and gather a lot of photos every day.
Consequently, the necessity for creative picture compression methods to reduce storage
space is constant. A sound approach to assessing the effectiveness of compression methods
is crucial in this situation. Such performance is often evaluated using objective quality
measurements, which are quick and affordable but not necessarily accurate [4]. However,
subjective image quality evaluation experiments, which are costly and time-consuming but
trustworthy because they rely on the subjective judgment of many subjects, are the most
effective means of assessing how well image compression techniques work [5]. Notwith-
standing their advantages and disadvantages, both techniques are equally important for
the IQA of the pictures that have been compressed using various compression standards,
including JPEG 1 [6], JPEG 2000 [7], JPEG XL [8], JPEG AI [9], etc. This leads to several
research questions to find visually lossless images.

• What is the impact of compression on image quality? This question explores how
various compression algorithms influence key visual elements and how these changes
affect user perception and application usability.
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• Which objective IQMs are suitable for finding visually lossless compressed images?
We investigate the metrics that best correlate with human perception, highlighting
their effectiveness in different scenarios.

• Which subjective method is the most efficient and robust? This inquiry assesses the
practicality of subjective methods, comparing their reliability and resource demands
in diverse usage contexts.

To answer these questions, we present a review of the impact of the different JPEG im-
age compression standards on image quality in this paper. We also summarize the existing
reviews and surveys on the image quality assessment. We analyze existing subjective IQA
methods as well as objective IQMs. We also present knowledge gained and our insights
from the analysis. We highlight open research challenges in the existing methods. This
study will assist researchers in conducting subjective experiments to assess the quality of
compressed images and choose the best approach for their use case more effectively.

Figure 1 presents the organization of the paper. The rest of the paper is organized
as follows: Section 2 summarizes the existing literature reviews and surveys on image
quality assessment methods. Section 3 explains the impact of different image compression
standards, i.e., JPEG, JPEG 2000, JPEG XL, and JPEG AI, on perceptual image quality.
Section 4 focuses on the subjective IQA methods, whereas Section 5 focuses on the objective
IQA methods. Similarly, Section 6 describes objective IQMs. This section is followed
by Section 7, which focuses on the JPEG AIC framework. Then, Section 8 presents the
discussion about the key takeaways. After that, Section 9 presents IQA methods based
on deep learning (DL) and large language models (LLMs). After that, Section 10 provides
insight into open research challenges and future directions. Finally, Section 11 concludes
the work.
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Figure 1. Organization of the survey.
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2. Related Work

Numerous survey articles have delved into the realm of image quality assessment
(IQA) methods, offering valuable insights into both subjective and objective evaluation
methodologies. One such recent endeavor, undertaken by Leveque et al. [10], conducted a
comparative study specifically within the medical images domain, scrutinizing subjective
methodologies. Similarly, Opozda and Sochan conducted a comprehensive examination
of both subjective and objective methods for 2D and 3D image types [11]. Expanding this
domain, Ouni et al. explored existing subjective and objective evaluation methods for
images and videos [12]. Other studies, such as Lee et al. [13], have ventured into comparing
subjective quality evaluation approaches, even in controlled laboratory settings, while
Pinson et al. [14] explored six different subjective video quality rating approaches. This
study’s distinctive contribution lies in its extensive review of subjective and objective qual-
ity evaluation approaches and standards, particularly focusing on the quality assurance of
compressed images. Furthermore, the paper delves into the assessment of subjective meth-
ods for identifying nearly visually lossless or just noticeable artifacts in compressed images.
It does not stop there, as it also addresses the impact of various testing environments, such
as controlled rooms, laboratories, or crowdsourced setups, on subjective testing outcomes.
Ultimately, the paper concludes with recommendations for effectively conducting both
subjective and objective evaluations of image quality tasks.

While several surveys in the field of image quality evaluation have honed in on either
subjective or objective methodologies, these studies often pertain to different domains like
medical images, image restoration, or image inpainting. Howev er, there remains a gap in
the literature: a comprehensive exploration of both the subjective and objective aspects of
image analysis approaches.

Lin et al. [15], for example, conducted a comprehensive evaluation of perceptual
visual quality factors with the goal of predicting picture quality based on human per-
ception. Through their work, several computational modules were introduced, such as
frequent feature and artifact detection, visual attention, barely noticeable distortion, and
signal breakdown.

In a similar vein, Mantiuk1 et al. [16] examined crucial steps in image analysis,
including posterior power analysis, statistical testing, and confidence interval establishment.
They examined two approaches to rating findings, with a focus on information of practical
and statistical value. The forced-choice pairwise comparison approach had the least
measurement variation and, thus, the best accurate results among the four major subjective
quality evaluation methods they studied.

Furthermore, Lui et al. [17] investigated the use of visual quality grading in per-
ceptual coding, evaluating the performance of cutting-edge visual quality metrics
through benchmarking.

Looking ahead, the future of visual quality rating is contemplated. Kamble et al. [18]
presented an overview of existing approaches for evaluating no-reference image quality.
Their study encompassed various aspects such as the types of noise and distortions ad-
dressed, the algorithmic techniques and parameters employed, the databases used for
algorithm assessment, and benchmarking against both other algorithms and the human
visual system.

Chow et al. [19] contributed to this landscape by offering an overview of methods
for evaluating no-reference image quality. They considered factors like the types of noise
and distortions addressed, the approaches and settings used by these algorithms, the
databases utilized for their evaluation, and their benchmarked performance relative to
other algorithms and human visual perception.

The summary of the surveys and review articles discussed in this section is presented
in Table 1.
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Table 1. Summary of image quality assessment studies

Study Focus Key Findings Limitations

[10] Medical Images • Comparative study of subjective
methodologies. • Limited to the medical images domain.

[11] 2D and 3D Images • Comprehensive analysis of subjective
and objective methods.

• May not cover all possible image types
and scenarios.

[12] Images and Videos • Review of existing subjective and
objective evaluation methods.

• Applicability to specific image domains
not discussed.

• Temporal limitations in findings.

[13] Controlled Lab Setting • Comparison of three subjective quality
evaluation approaches. • Limited to controlled laboratory settings.

[14] Video Quality Ratings • Examination of six subjective video
quality rating approaches.

• Limited to video content assessment.
• Potential subjectivity in viewer

preferences.

[15] Perceptual Quality • Assessment of perceptual visual quality
parameters.

• May not cover all aspects of image
quality perception.

• Subjective nature of perceptual
assessments.

[17] Visual Quality Metrics • Evaluation of visual quality metrics for
perceptual coding.

• Applicability to perceptual coding
scenarios.

[18] No-Reference IQA • Overview of approaches for evaluating
no-reference image quality.

• Limited to no-reference image quality
assessment.

[19] No-Reference IQA • Overview of methods for evaluating
no-reference image quality.

• Limited to no-reference image quality
assessment.

Based on the selection criteria outlined in Algorithm 1, we selected papers for analysis.

Algorithm 1 Article Selection Criteria

Require: Search databases
Ensure: Articles from 2017 to 2024

while keyword: image quality assessment (IQA) for compressed images or JPEG AIC or
image quality assessment methods do

if Discusses IQA methods|Evaluate IQA|Analyze IQA based on LLMs then
Consider for analysis

else if Does not discuss IQA for compressed images then
Exclude from the analysis

end if
end while

3. Impact of Compression on Image Quality

This section briefly discusses the types of distortions that are being introduced by the
different JPEG standards.

3.1. JPEG 1 (ISO/IEC 10918)

JPEG 1 is a DCT-based image compression standard; all DCT-based compression
techniques result in “block artifacts” or visible distortions in the compressed image that
resemble squares. These artifacts arise from the division of the image into blocks for the
DCT process; when the image is compressed, the boundaries between these blocks become
visible, degrading the overall visual quality of the image [6].
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3.2. JPEG 2000 (ISO/IEC 15444)

JPEG 2000 uses DWT instead of DCT, as opposed to JPEG 1, in order to provide
superior compression efficiency and handling of high-resolution images. DWT-based
compression techniques, such as JPEG 2000, however, frequently result in blur problems.
These artifacts degrade the image’s overall quality by causing a loss of sharpness or
detail. JPEG 2000 also has particular problems with ringing and halo effects, as well as
tiling artifacts. When images are processed, they are divided into smaller parts or tiles,
which might result in obvious seams or discontinuities. This is when tiling artifacts arise.
Additional distortions that affect an image’s visual fidelity are ringing and halo effects,
which show up as strange, oscillating patterns or bright outlines surrounding things.
Even though these abnormalities differ from those in the original JPEG standard, they
nevertheless jeopardize the compressed images’ integrity and beauty [7].

3.3. JPEG XL (ISO/IEC 18181)

JPEG XL is a more recent and sophisticated image compression standard that expands
upon the capabilities and flexibility of JPEG 1. It uses a DCT-based variable and modular
method, which makes the compression process more flexible and effective. The fact
that JPEG XL supports both lossy and lossless compression modes is one of its primary
characteristics. As observed in the original JPEG 1 standard, block artifacts are a prevalent
problem with DCT-based techniques, and JPEG XL can still create them in its lossy form.
In the photograph, these artifacts can be seen as obvious distortions that resemble blocks.
However, a notable improvement in JPEG XL is that the intensity of these block artifacts is
significantly reduced compared to JPEG 1, resulting in better image quality.

Apart from causing block distortions, JPEG XL compression may result in additional
kinds of image deterioration. These include color bleeding (where colors appear to leak or
extend beyond their bounds), ringing (the appearance of spurious or oscillating patterns
around edges), and softening (a small blurring or loss of sharpness). Though the degree to
which each of these artifacts degrades the image’s overall visual quality varies according to
the compression setting and type of image being compressed, all of them have an impact.
The improvements in JPEG XL are designed to strike a compromise between compression
effectiveness and image quality, offering a contemporary approach that overcomes some of
the drawbacks of previous JPEG standards [8].

3.4. JPEG AI (ISO/IEC 6048)

JPEG AI is the most recent advancement in image compression technology, using a
cutting-edge, learning-based methodology. In contrast to conventional JPEG standards,
which rely on mathematical formulas such as DCT or DWT, JPEG AI makes use of a deep
learning model called a convolutional auto-encoder. Convolutional auto-encoders are
made to learn patterns and features straight from the input, which allows them to compress
and subsequently decompress (reconstruct) images effectively.

The auto-encoder in this sophisticated model initially reduces the image’s size consid-
erably by compressing it into a compact representation. This procedure works especially
well at low bit rates, which is important for applications with constrained bandwidth or
storage. But utilizing this method has a significant trade-off: the reconstructed image
will have a particular kind of distortion called “striped region distortion”, especially at
these lower bit rates [20]. The visual quality and integrity of a picture can be impacted by
striped region distortion, which appears as bands or stripes in patterns. This artifact, which
arises from the way the convolutional auto-encoder interprets and reconstructs the picture
input, illustrates the difficulties of learning-based approaches in striking a balance between
image integrity and compression efficiency. In spite of this, JPEG AI represents a major
advancement in picture compression by utilizing machine learning to attain high degrees
of effectiveness and versatility [9].

Key Takeaways: From the above discussion, it is evident that the most common type of
artifact introduced by JPEG 1 is a blocking artifact, whereas the most common type of artifact
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introduced by JPEG 2000 is a ringing artifact. Similarly, JPEG XL mostly introduces softening and
ringing artifacts, and finally, the most common artifact introduced by JPEG AI is striped region
distortion at an extremely low bit rate.

4. Subjective IQA Methods

Subjective methods for assessing image quality are regarded as reliable approaches.
These methods involve human subjects observing images on displays and expressing their
opinions about image quality using various predefined scales [21]. These subjective tests
adhere to several standards that ensure the credibility of image quality evaluations [22,23].

Standards for subjective tests with television pictures have been established by the
International Telecommunication Union Radio Communication Sector (ITU-R) BT.500-11.
Testing conditions, presentation techniques, and test result assessment are all covered by
these standards [11]. Furthermore, testing parameters for the subjective evaluation of video
data quality have been established by ITU-T P.910 [12].

While ITU-R BT.1129-2 has defined procedures for standard video sequences, ITU-R
BT.814-1 has standardized display device contrast and brightness settings for subjective
testing [23,24]. Based on the stimulus used in subjective testing, ITU-R essentially offers a
variety of standards that may be generally divided into two categories: stimulus and double-
stimulus approaches. In single-stimulus testing, participants see just one image; in double-
stimulus tests, they see two images side by side, each with a different grading scheme.

4.1. Single Stimulus

Subjects assess individual pictures in single-stimulus techniques. They go on to
the next image after rating each one’s quality. Simple assessments that need minimal
steps might benefit from this method. The quality of images was evaluated using single-
stimulus tests by Cheng et al. [25] and Sheikh et al. [26]. Figure 2 is an example of a
single-stimulus approach.

Figure 2. An example of the single-stimulus IQA method.

A kind of single-stimulus approach called absolute category rating (ACR) asks par-
ticipants to rank the quality of images on a five-point scale: terrible, poor, fair, good, and
outstanding. For a large number of photographs, this approach may be time-consuming,
and the substance of the images may affect subjective judgments. Furthermore, to lessen the
variance resulting from subject judgments regarding picture content, an absolute category
rating with a hidden reference (ACR-HR) incorporates the original, undistorted image with-
out the subject’s awareness. ACR-HR has been utilized in certain research studies [22,27]
to assess learning-based image codecs. A different variation uses a continuous scale for
grading and is called single-stimulus continuous quality assessment (SSC-QE).
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4.2. Double Stimulus

Double-stimulus techniques include presenting participants with two distinct stimuli
in order to assess image distortion (Figure 3). Although these tests take longer to complete
than tests with a single stimulus, they are thought to be more accurate and efficient in
detecting picture distortion. Double-stimulus tests were used by Testolina et al. [28] to
assess coding performance.

Figure 3. Example of double-stimulus method.

The double-stimulus impairment scale (DSIS) is one kind of double-stimulus technique
in which participants assess picture impairment using a predetermined quality scale.
Another variation is the double-stimulus continuous quality scale (DSCQS), in which
participants rate both pictures’ quality on a fixed scale. Subjects evaluate the test image on
a predetermined scale after comparing it to the reference image using a double-stimulus
comparison scale (DSCS). When it comes to performance reviews, DSCS is thought to be
the most trustworthy.

These methods are generally conducted in controlled environments with normal
lighting to avoid uncertainties caused by external factors. However, crowdsource-based
methods, where subjects conduct tests remotely, have gained popularity. Egger et al. [29]
and Chen et al. [30] reviewed crowdsourced-based methodologies, and recent studies
like Testolina et al. [28] used crowdsourcing for subjective tests on online platforms like
Amazon Mechanical Turk.

Key Takeaways: Subjective methods are valuable for assessing image quality, involving
human observers who use predefined scales to express their opinions. ITU has established standards
for credible subjective evaluations, including stimulus and double-stimulus methods, addressing
factors like testing environments and display settings. While single-stimulus tests are simpler
but time-consuming, double-stimulus tests are more reliable for evaluating image distortion, with
both types generally conducted in controlled environments but increasingly explored through
crowdsource-based methods for remote testing.

4.3. Subjective Assessment of Nearly Visually Lossy Images

The subjective methods discussed earlier are primarily suitable for images with notice-
able visual distortions that are easily perceivable by humans. However, recent advance-
ments in high-performance image compression techniques allow for the reconstruction of
visually lossless images.

With the progress in storage devices and advanced networks, handling large amounts
of data has become more manageable. This has resulted in a growing demand for effective
image compression algorithms that can achieve lossless reconstruction of image data.
The previously discussed subjective methods are ill-suited for standardizing these high-
performing compression techniques, as they cannot detect subtle distortions or color shifts
in images.
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JPEG members have introduced standardized methodologies for assessing high-
performance, visually lossless images to address this need. In one approach, subjects
are presented with two test images alongside the original image. They are tasked with se-
lecting the image least similar to the original at a given time. In another method, the original
and reconstructed images are displayed simultaneously, with intermittent interleaving.

When noticeable distortion is present in the test image, subjects perceive flickering.
Conversely, when the distortion is imperceptible, no flickering is observed. For instance,
Willeme et al. [31] used the flickering test methodology to evaluate the JPEG XS standard.
It is worth noting that the concept of visually lossless image compression is relatively
new, and as a result, this subjective method is not as widely adopted as the previously
established subjective methodologies [1].

According to JPEG AIC, three methods are currently being used for this task. These
methods are the flicker test, boosted triplet comparison, and remote expert viewing.

5. Objective IQA Methods

These mathematical models serve the purpose of automatically estimating image
quality in qualitative terms, mirroring the evaluation made by human observers. These
metrics offer a practical advantage in real-time applications when compared to the costly
and time-consuming subjective tests mentioned in the reference [11]. The realm of image
processing and computer vision is where these metrics find versatile applications. They
prove invaluable in systems designed for image quality control, allowing for the selection
of image quality based on these precise metrics.

Furthermore, these metrics also play a pivotal role in evaluating image processing
algorithms. By employing these metrics, it becomes possible to rank different algorithms
based on their ability to produce the highest-quality images as output. This is particularly
useful when making choices among multiple algorithms for specific tasks.

In addition to these applications, image quality metrics (IQMs) find applications in
visual network-based image communication systems. In such systems, these IQMs are
instrumental in optimizing filtering procedures at both the encoder and decoder ends, as
outlined in reference [32].

The field has seen the emergence of several intelligent image quality measurement
metrics, as highlighted in various evaluation studies [27]. These metrics can be categorized
based on the requirement of an absolute quality reference or a distortion-free original
image for quality assessment. This categorization gives rise to three main categories: null-
reference-based metrics, fused full-reference-based metrics, and full-reference-based quality
metrics, as elucidated in reference [24].

5.1. Null-Reference-Based IQMs

Null-reference-based image quality metrics possess a distinctive feature in that they
do not necessitate the original referenced picture for the purpose of determining image
quality [23]. To anticipate picture quality, they instead depend on calculations using image
properties like brightness, contrast, and other factors. These metrics are used in a number
of image communication systems, where they evaluate the quality of the picture based just
on the test image, eliminating the necessity for the original image to serve as a reference.

Null-reference-based measurements are more complicated to forecast picture quality
than complete-reference-based measures, though. The assessment procedure itself is further
complicated by this, especially when handling missing original photos.

5.2. Reduced-Reference-Based IQMs

Shifting to reduced-reference-based image quality metrics, these algorithms evaluate
the distorted picture quality by utilizing just a subset of the reference image’s attributes
instead of the whole reference image. The test picture quality may be predicted with the
use of these particular attributes. These selected characteristics embody representations of
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the reference pictures and are perceptually significant, which is important for assessing
image quality.

5.3. Full-Reference-Based IQMs

Lastly, target image quality is evaluated using complete-reference-based image quality
criteria by contrasting it with its original, unaltered counterpart. Measuring the distortion
divergence between the reference and distorted pictures utilized in the measure yields the
value for the whole reference metric.

6. Objective IQMs
6.1. Multi-Scale Structural Similarity Index (MS-SSIM)

A well-known technique for assessing picture quality is MS-SSIM. It functions by
evaluating characteristics over a range of resolutions to determine the relative quality of
pictures. This method produces excellent results, particularly when used with machine
learning-based image codecs. MS-SSIM is more versatile than single-scale approaches like
SSIM since it accounts for variations in viewing circumstances and picture resolution.

The MS-SSIM metric’s capacity to include image synthesis for adjusting the parameters
that establish the relative significance of various scales in the analysis is one of its advan-
tages. In essence, it modifies its assessment standards according to the particular features
of the images that are being compared. In practical terms, a higher MS-SSIM score indicates
superior image quality, making it a valuable tool for assessing and comparing images.

6.2. Video Multimethod Assessment Fusion (VMAF)

The quality measuring method known as VMAF was first created by Netflix. Finding
artifacts resulting from compression and rescaling procedures is its main goal. VMAF uses
a special way to calculate scores using many quality evaluation techniques, and then it
combines these values using a support vector machine (SVM) to produce the quality score.

Even though VMAF was first developed to evaluate the quality of movies and videos,
it has also shown to be a highly useful tool for analyzing individual images. It works
especially well with image codecs that use machine learning methods. The input photos
must, however, be in the YUV color space format for VMAF to function. FFMPEG, which
follows the BT.709 primaries, can convert PNG pictures in the RGB color space into the
necessary YUV 4:4:4 format.

Better picture quality is indicated by a higher VMAF score, just as in other image
quality metrics. Therefore, despite the fact that its initial intent was to evaluate movies, it is
an invaluable tool for evaluating and comparing the quality of photos [33].

6.3. Visual Information Fidelity (VIF)

The VIF metric is a technique used to measure the amount of information lost during
procedures such as picture compression that is seen by humans. The main objective of VIF
is to evaluate the degree to which an image’s information is accurately retained during
deterioration. By examining natural scene data and creating a link using the Shannon
mutual information shared by the original, perfect image and the degraded image, it
does this.

The VIF metric functions in the wavelet domain, which is one of its noteworthy
characteristics. As a result, it analyzes the information content of the picture across a range
of frequency ranges, which can offer important insights into how deterioration affects
certain image characteristics.

Numerous studies have shown that the values of the VIF measure closely correspond
with how people perceive the quality of a picture. This is valid for both contemporary
learning-based image codecs and conventional picture compression. VIF is a valuable
technique for quantitatively evaluating and comparing the quality of pictures that have
experienced different sorts of degradation, including compression [34]. In practical words,
a higher VIF score denotes greater image quality.
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6.4. Normalized Laplacian Pyramid (NLPD)

Two essential components of NLPD are local contrast gain control and local luminance
subtraction. It makes use of both a local normalizing factor and a Laplacian pyramid
decomposition. When comparing the deformed picture to its reference, the resultant metric
value is computed inside the normalized Laplacian domain, thereby quantifying the root
mean squared error in a weight-normalized Laplacian domain. Practically speaking, better
image quality is indicated by a lower NLPD score [35].

6.5. Feature Similarity (FSIM)

Two low-level characteristics are used by FSIM to assess picture quality. These charac-
teristics stand for several facets of the visual system in humans. Phase congruency (PC) is a
dimensionless property that is used to measure the importance of local structure. Secondly,
contrast information is taken into consideration by the picture gradient magnitude (GM).
FSIM is a flexible tool for evaluating many features of images because it may be used in
both color and luminance versions. Superior picture quality is indicated by a higher FSIM
metric value [36].

6.6. Peak Signal-to-Noise Ratio (PSNR)

A metric called PSNR is used to compare an image’s maximum achievable power to
the amount of noise or distortion that is impacting it in order to determine the image’s
quality. It basically quantifies a picture’s proximity to the perfect, spotless image with the
best possible quality.

A picture’s PSNR is determined by comparing it to this perfect, clean image and
measuring the power difference. The PSNR is frequently used to evaluate the performance
of several image processing methods, including compressors, filters, and related apparatus.
A higher PSNR value in this case denotes a more effective compression or filtering method
for maintaining image quality. The PSNR is a useful statistic for assessing the effectiveness
of image processing techniques since, in essence, a greater value corresponds to a better
degree of fidelity to the original picture [37].

6.7. CIEDE2000

CIEDE2000 includes the weighting factors for the lightness, chroma, and hues in L*, a*,
and b* perceptual space. It also includes factors for dealing with the relationship between
chroma and hue [38].

6.8. VDP2

VDP2 [39] claims that it is more resilient to varying luminance circumstances and
performs better on photographs taken in low light. This measure, which is stated as a
mean opinion score, forecasts not only the quality deterioration with regard to the reference
picture but also the visibility of changes between the original and reference photos for an
average observer.

6.9. Butteraugli

To calculate the psycho-visual difference between two pictures, the Butteraugli metric [40]
is used. Google invented this statistic. Butteraugli produces a score that only takes into
account the portions of the degraded picture that are thought to include artifacts, disre-
garding variations that are not visually noticeable. This measure produces a heatmap that
illustrates the differences between two photos in addition to a quality metric.

6.10. Weighted Average Deep Image Quality Measure (WaDIQaM)

The complete reference quality metric based on deep neural networks is called the
WaDIQaM for full-reference IQAs [41]. The LIVE and TID2013 datasets are used to train
the network end-to-end. RGB pictures are used as input for this metric, which has also
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been computed across all available pre-trained models. With a score between 0 and 100, a
lower number indicates higher image quality.

6.11. LPIPS

LPIPS makes use of the fact that, even for distinct neural network topologies, deep
network activations may be used as a perceptual similarity metric. By “calibrating” net-
works linearly—that is, by superimposing a linear layer on top of pre-made classification
networks—this measure yields quality ratings.

6.12. Information Content-Weighted Structural Similarity Measure (IW-SSIM)

By adding the concept of information content-weighted pooling, the SSIM index can
be expanded upon to the IW-SSIM [42].

The JPEG has used all these metrics for the image quality assessment of the compressed
images using different JPEG standards [43].

7. JPEG AIC Framework

The primary goal of the AIC initiative is to identify and assess fresh advancements in
image coding research, focusing on areas such as new compression methods and quality
assessment procedures. It has three parts, as shown in Figure 4.

Figure 4. Different parts of JPEG AIC (https://jpeg.org/aic/aic3.html) (accessed on 30 Novem-
ber 2023).

The first two parts are the technical report, “Guidelines for image coding system
evaluation” in ISO/IEC TR 29170-1:2017, and a standard titled “Evaluation procedure for
nearly lossless coding” in ISO/IEC 29170-2:2015. These documents encapsulate the most
effective practices sanctioned and advised by the JPEG committee. They incorporate both
objective scoring and subjective evaluations to ensure that a codec’s quality assessment has
undergone rigorous testing to meet the demands of global deployment.

Recently, a renewed focus on the assessment of image coding (AIC) has commenced,
carrying forward the earlier standardization endeavors with the objective of crafting a
new standard, termed AIC Part 3 (or AIC-3). Significantly, this initiative has identified a
gap in visual quality assessments not adequately addressed by previous methodologies,
particularly in the range from high to nearly visually lossless. The AIC-3 standard aims
to introduce innovative criteria for evaluating images falling within this identified gap,
encompassing both subjective and objective assessment techniques.

8. Discussion

Through a comprehensive analysis of the JPEG working groups’ review and experi-
mental studies [43], specific metrics have emerged, showcasing a high correlation with the
mean opinion scores (MOSs) given by observers. Notably, MS-SSIM, VIF, and NLPD stand
out as key metrics in this regard. When focusing solely on classical compression metrics,
the top-performing scores, in sequence, are Butteraugli, MS-SSIM, and VDP2.

However, in the context of AI-based compressed images, a distinct set of metrics proves
to be more effective. MS-SSIM, VMAP, and VIF(P) demonstrate superior performance in
this scenario. Nonetheless, it is important to note that VMAF shows a lower performance
in terms of the Spearman correlation in these cases.

Overall, the dominance of MS-SSIM as a predictor of image quality across diverse com-
pression artifacts is evident. Its consistent performance sets it apart as a clear front-runner

https://jpeg.org/aic/aic3.html
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in effectively forecasting image quality. Further information and detailed experimental
results yielding these outcomes can be found in [43].

9. DL- and LLM-Based IQAs

As LLMs have been used in all the fields, in this section, we explored several DL- and
LLM-based IQA methods classified in different categories.

9.1. Unified IQA

In the study [44], the researchers tackled the limitations of traditional image quality
assessment (IQA) methods that typically require extensive fine-tuning for adaptation to
new scenarios. They introduced a novel approach called prompt-based IQA (PromptIQA),
which utilizes a small set of image–score pairs (ISPs) as prompts. This method allows the
system to adapt directly to diverse assessment requirements without the need for retrain-
ing. Trained on a mixed dataset with innovative data augmentation strategies, PromptIQA
demonstrated enhanced adaptability and outperformed state-of-the-art methods in terms
of performance and generalization across different applications. This advancement signifi-
cantly reduces the reliance on large, specialized datasets and speeds up the readiness of
IQA models for practical use.

Similarly, the Q-Align study [45] presented another significant advance in the field of
IQA. As the internet continued to swell with visual content, there emerged a critical need
for machines capable of evaluating this content both robustly and in a manner aligned with
human judgments. This study leveraged the capabilities of LMMs, which were previously
shown to be effective in various related fields. The researchers adopted a novel approach by
teaching these models using text-defined rating levels, simulating the subjective processes
employed by human raters, who typically assess visual content based on discrete, text-
defined levels rather than numerical scores.

This method, named Q-Align, achieved state-of-the-art performance in IQA as well as
in image esthetic assessment (IAA) and video quality assessment (VQA). The researchers
made their code and pre-trained weights publicly available, encouraging further explo-
ration and application in the evolving field of visual content evaluation.

9.2. Explainable IQA

Multimodal large language models (MLLMs) have made significant progress in vi-
sual understanding, yet their potential in IQAs is still largely untapped. The paper [46]
explored various prompting systems combining standardized psychophysical tests and
NLP strategies to enhance MLLMs’ performance in IQAs. The authors assessed three
open-source and one close-source MLLM on several visual attributes of image quality.
The experimental results revealed that only the proprietary GPT-4V model somewhat
approximated human perception of image quality, although it struggled with fine-grained
distinctions and comparing multiple images, tasks easily handled by humans.

The paper [47] introduced VisualCritic, the first LMM designed for broad-spectrum
image subjective quality assessment and capable of operating across various datasets
without specific adaptations. VisualCritic demonstrated its effectiveness through extensive
testing, outperforming other LMMs and traditional models in assessing and describing the
quality of both AI-generated and photographic images.

The study in [48] introduced “Co-Instruct”, an open-source, open-ended visual quality
comparer, trained on the new Co-Instruct-562K dataset derived from LLM-based image
descriptions and GPT-4V responses. Additionally, a new benchmark called MICBench
was developed for multi-image comparison among LMMs. Co-Instruct demonstrated 30%
higher accuracy than leading open-source LMMs and also outperformed its “teacher”,
GPT-4V, in various benchmarks.

MLLMs are rapidly evolving, yet their capability in image esthetics perception remains
unclear but is crucial for real-world applications. To bridge this gap, the authors in [49]
introduced AesBench, a new benchmark designed to evaluate MLLMs’ esthetic perception
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capacities. AesBench included an Expert-labeled Aesthetics Perception Database (EAPD)
with diverse images and expert annotations and a set of criteria assessing MLLMs across
four dimensions: perception, empathy, assessment, and interpretation, revealing that
MLLMs currently possess only basic esthetic perception abilities.

The authors in [50] proposed DepictIQA. DepictQA descriptively and comparatively
interprets image content and distortions, aligning more closely with human reasoning. The
development of DepictQA involved establishing a hierarchical task framework and collect-
ing a multi-modal IQA dataset, showing enhanced performance over traditional methods
and demonstrating the potential for language-based IQA methods to be customized to
individual preferences.

Multi-modality foundation models like GPT-4V have introduced a new paradigm in
low-level visual perception and understanding, capable of responding to a broad range
of natural human instructions. Despite their potential, these models’ abilities in low-level
visual tasks remain preliminary and require enhancement. To improve these models, a
large-scale subjective experiment was conducted in [51], collecting 58K detailed human
feedbacks on 18,973 images, forming the Q-Pathway dataset, and converting these into
200 K diverse-format instruction–response pairs with the aid of GPT. Experimental results
show that the newly created Q-Instruct enhances low-level perception and understanding
across various foundational models, setting the stage for models that can evaluate visual
quality like humans.

9.3. No Reference (NR)

NR-IQA methods are developed to measure image quality in line with human percep-
tion without a high-quality reference image. The new QualiCLIP method, a CLIP-based
self-supervised approach, was proposed in [52] to overcome the limitations of relying on
annotated mean opinion scores (MOSs), which hampers scalability and applicability. Qual-
iCLIP, which aligns image–text representations to correlate with inherent image quality
and does not require MOSs, achieved superior performance across several datasets and
demonstrated robustness and improved explainability over supervised methods, especially
in diverse real-world scenarios.

The study in [53] explored the application of large-scale pretrained foundation models
to IQAs, questioning whether high-level task scaling laws apply to the predominantly low-
level IQA tasks. By integrating local distortion features into a pretrained vision transformer
(ViT) using a convolutional neural network (CNN) for local structure capture and training
only the local distortion extractor and injector, this approach leveraged foundational model
knowledge for enhanced IQA performance, demonstrating that IQA benefits from high-
level features and achieving state-of-the-art results on leading IQA datasets.

In [54], the authors introduced a self-supervised approach called ARNIQA, which
models the image distortion manifold to intrinsically obtain quality representations. The
method involves synthetically degrading images through an image degradation model
that applies sequences of distortions, training the model to maximize similarity between
patches of similarly distorted images regardless of content differences, and finally, mapping
image representations to quality scores using a simple linear regressor without fine-tuning
the encoder. The experiments demonstrated that ARNIQA achieves state-of-the-art perfor-
mance, showing improved data efficiency, generalization capabilities, and robustness over
other methods.

The authors in [55] proposed CFANet, which applies a top-down methodology, allow-
ing high-level semantic information to guide the focus towards semantically important
local distortion areas. This approach included a cross-scale attention mechanism that
enhances attention on key semantic regions, improving IQA performance. Tested with a
ResNet50 backbone, CFANet proved to be both more efficient and competitive on various
full-reference (FR)- and NR-IQA benchmarks compared to leading ViT-based methods.

In study [56], the authors introduced two novel quality-relevant auxiliary tasks de-
signed to facilitate TTA for blind IQA: a group contrastive loss at the batch level and a
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relative rank loss at the sample level. These tasks were tailored to make the model quality-
aware and adapt it effectively to target data. The experiments demonstrated that updating
the batch normalization statistics of the source model with just a small batch of images
from the test distribution could significantly improve performance.

9.4. Full Reference (FR)

Existing perceptual similarity metrics, which assume well-aligned images, are often
sensitive to small alignment errors that are imperceptible to human eyes. The authors
in [57] investigated the impact of slight misalignments on these metrics and developed a
shift-tolerant similarity metric by building upon the LPIPS framework, a popular learned
perceptual similarity metric. The research involved exploring various neural network
elements like anti-aliasing filtering and skip connections, resulting in a new deep neu-
ral network-based metric that is tolerant to imperceptible shifts and aligns with human
similarity judgments.

The authors in [58] proposed to enrich the training process by introducing compar-
isons between images of differing content and using listwise comparisons to give a more
comprehensive perspective. Additionally, incorporating differentiable regularizers based
on correlation coefficients allowed models to better adjust their quality scores in relation
to each other. The effectiveness of this approach was demonstrated through evaluations
on multiple benchmarks, showcasing improved training for IQA models across various
distortions and content types.

The study in [59] explored SR image quality assessment (SR IQA) within a two-
dimensional space that contrasts deterministic fidelity (DF) with statistical fidelity (SF),
providing insights into the strengths and weaknesses of various SR techniques. Notably,
traditional SR algorithms typically focus on DF at the expense of SF, whereas recent
generative adversarial network (GAN)-based methods excel in SF but may underperform
in DF. To address these disparities, the authors introduced an uncertainty weighting scheme
that evaluated content-dependent sharpness and texture, merging DF and SF into a new
quality index, the Super Resolution Image Fidelity (SRIF) index. This index showed
superior performance over existing IQA models in evaluations with subject-rated datasets.

10. Open Research Challenges and Future Directions

Although there has been significant work on the evaluation of the image compression
standards using subjective and objective methods, there are still several challenges that
need to be addressed.

10.1. Generalized Standard Subjective and Objective Method

From the literature analysis, we observe that a specific subjective and objective method
works well for one compression standard but its performance deteriorates for other stan-
dards. So, the JPEG working group is trying to develop a standardized single evaluation
method that can be used for all the standards for nearly lossless purposes. In this regard,
the upcoming JPEG AIC Part 3 standard will be beneficial [60].

10.2. No Standardized Objective Metric

Through the analysis of the literature of the studies [1,28,61,62], it is evident that the
JPEG community is trying to use several quality metrics such as PSNR, MS-SSIM, IWSSIM,
NLPD, CIEDE2000, FSIM, VIF, etc. In the past, PSNR and MS-SSIM were considered
suitable metrics, but in recent research, other metrics such as FSIM have also performed
well, but the JPEG working group is still trying to standardize optimal metrics.

10.3. Effect of Content Variations

Although subjective and objective methods have been used for the evaluation of
compressed natural images, there is still a need for the evaluation of the methods for other
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images, such as remote sensing images, infrared images, medical images, etc., to observe
the effect of the content on the performance of the methods.

10.4. Low-Power Device Compatibility

From the literature, it has been observed that most of the methods are being tested
on computers or GPUs, but none of them are being evaluated on low-power devices such
as tablets and mobiles, so it will be an interesting research topic for future researchers to
explore the performance of the methods using low-power devices.

11. Conclusions

Image compression introduces multiple distortions, and these distortions impact the
visual quality of the image. In this review, we summarized and discussed the impact of
several JPEG image compression standards on the visual quality of the image. JPEG 1 and
JPEG XL introduce blocking and softening artifacts, respectively, whereas JPEG 2000 intro-
duces ringing artifacts. In contrast to these conventional standards, a recently developed
learning-driven JPEG AI solves these problems; however, it suffers from striped region
distortion at an extremely low bit rate. In this review, we discussed different subjective and
objective IQA methods used by JPEG experts to find the optimal values of the IQMs for the
nearly visually lossless images, which is the primary objective of the upcoming standard
JPEG AIC-3. We found that MS-SSIM is still considered to be the optimal objective metric
used by JPEG experts. We also found that the double-stimulus method works better for
the IQA, whereas for the nearly visually lossy and lossless compression, the JPEG working
group has defined a particular framework. All these are for the IQA of the specific standard.
However, from the detailed analysis, it is evident that there is no general framework that
can incorporate all types of distortions and artifacts introduced by the different JPEG stan-
dards. Moreover, there is still a need to explore the impact of the variation in the content
in the image on the performance of these metrics. One of the interesting areas of research
in this domain can be to test the methods on low-power devices such as cellular phones
and tablets, as JPEG images are widely used in web browsers and on low-power devices as
well. The impact of distortion on high-resolution devices can be easily detectable; however,
there is an open research topic to find optimal metrics for the nearly visually lossless image
compression in the context of low-power devices.
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