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Abstract: Most of the allergenic proteins from fruits identified so far belong to different families
of pathogenesis-related (PR) proteins. These PR proteins have been classified in different families
of structurally and functionally unrelated proteins, but the majority of all fruit allergens belong to
three groups, in particular PR-5 thaumatin-like proteins (TLP), PR-10 Bet v 1-like proteins, and PR-14
non-specific lipid transfer proteins (nsTLP). Some allergenic proteins from fruits can also be found
among PR-protein families of PR-2 β1,3-glucanase proteins, PR-3 chitinases I, II, IV–VII, and PR-8
chitinases III. In addition, other important fruit allergens occur in protein families unrelated to the
PR-protein families, such as the profilins and the newly emerging group of gibberellin-regulated
proteins (GBRP). Finally, proteins that belong to seed storage proteins from higher plants, including
2S albumins, 7S globulins (vicilin), and 11S globulins (legumin), must be retained as possible potential
fruit allergens resulting from the unintended consumption of the seeds. Here, we present an overview
of the structural organization, functional properties, and phylogenetical relationships among these
different groups of fruit allergens, supporting the occurrence of cross-reactivity and cross-allergenicity
often described between fruit allergens, and the corresponding allergens from vegetables and pollens.

Keywords: edible fruit; fleshy fruit; allergen; allergen family; pathogenesis-related protein family;
thaumatin-like protein; lipid transfer protein; gibberellin-regulated protein; Bet v 1-like protein;
β1,3-glucanase; chitinase; seed storage protein

1. Introduction

Allergies to edible fruits have grown dramatically during the last years, due to in-
creased fruit consumption and the introduction of many exotic fruits into our eating habits.
Edible fruits, especially fleshy fruits, contain allergenic proteins that are responsible for
various allergic manifestations, ranging from a simple oral syndrome (OAS) to a more
severe anaphylactic shock. In this respect, fruits from the Rosaceae family, and kiwi fruits
from the Actinidiaceae family, have become a worrying source of food allergies largely
distributed in many countries.

Botanically, fruits are derived from the transformation and development of the ovary
from flower parts after pollination. Depending on the fruits, the transport of the pollen to
the pistil is either self-pollinated, or carried out by insects (entomophilous plants) or wind
(anemophilous plants). In fleshy fruits from the Rosaceae family, the edible part of the fruit
consists of the mesocarp and the exocarp, which develop from the ripened ovary or carpels
and the floral envelopes, respectively. The exocarp is limited by the skin or epicarp. The
seeds, derived from the pollinated ovules, are located in the endocarp (Figure 1). In many
fruits from the Rosaceae family, such as peach (Prunus persica), apricot (Prunus armeniaca),
or plum (Prunus dulcis), the mesocarp and endocarp are sclerified and form a kernel. A
similar organization occur in other fruits from the Solanaceae (tomato), Cucurbitaceae
(pumpkin), Musaceae (banana) or Lythraceae (pomegranate) families.
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kernel. A similar organization occur in other fruits from the Solanaceae (tomato), Cucur-
bitaceae (pumpkin), Musaceae (banana) or Lythraceae (pomegranate) families.  
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Figure 1. (a) Apple flower showing the central pistil surrounded by the stamens. (b) Cut-section of 
the fruit showing the different parts of the apple fruit including the epicarp (Ep), the exocarp (Ex), 
the mesocarp (M) delineated by a black dashed line, and the sclerified endocarp (En) containing the 
seeds (S). 

Besides the commonly consumed fleshy fruits, e.g., fruits from the Rosaceae family, 
a large diversity of edible fruits has been described, including the caryopses from Poaceae 
(maize, wheat, rice) which are, however, essentially made up of the seeds and are there-
fore considered more like seeds, or false fruits like strawberries (Fragaria vesca), resulting 
from the development of the calyx accrescent from the flowers covered with an aggregate 
of achenes containing tiny seeds. Accordingly, defining edible fruits is not an easy task 
because, in common language, some genuine fruits (tomato, bell pepper, cucumber) are 
often considered as vegetables and, vice versa, some so-called fruits (rhubarb stalks) read-
ily correspond to genuine vegetables [1]. 

Most of the allergenic proteins from fruits identified so far belong to different families 
of PR-protein [2]. PR proteins correspond to a disparate set of proteins, which differ in 
their structures and properties, and are all involved in various processes of plant defense 
against phytopathogens and, more generally, in all the stress situations that plants have 
to face. PR proteins have been classified in seventeen distinct families of structurally and 
functionally unrelated proteins [3], but the majority of all fruit allergens belong to three 
families, in particular PR-5 thaumatin-like proteins (TLP), PR-10 Bet v 1-like proteins, and 
PR-14 non-specific lipid transfer proteins (nsTLP) (Figure 2). Other PR-protein families, 
such as PR-2 β1,3-glucanase proteins, PR-3 chitinases I, II, IV-VII, and PR-8 chitinases III, 
also contain some allergenic proteins from fruits. However, other important fruit allergens 
are not related to the PR-protein families, such as the profilins and the newly emerging 
group of gibberellin-regulated proteins (GBR-protein). Although not restricted to fruits, 
the small knottin-folded defensins occur as food allergens susceptible to cross-reaction 
with their well-identified pollen allergen counterparts. In addition, a few allergens, in-
cluding Cuc m 3 of the PR-1 family, bromelain (Ana c 2) and kiwelin (Act c 5), belong to a 
single fruit or a restricted number of fruits. Finally, proteins that belong to the three classes 
of seed storage proteins from higher plants, 2S albumins, 7S globulins (vicilin), and 11S 
globulins (legumin) [4], should also be retained as possible potential fruit allergens result-
ing from the unintended consumption of the seeds of kernels [5]. Many of these fruit al-
lergens represent widely distributed pan-allergens, which are responsible for IgE-binding 
cross-reactivity often associated with some cross-allergenicity. 

Figure 1. (a) Apple flower showing the central pistil surrounded by the stamens. (b) Cut-section of
the fruit showing the different parts of the apple fruit including the epicarp (Ep), the exocarp (Ex), the
mesocarp (M) delineated by a black dashed line, and the sclerified endocarp (En) containing the seeds (S).

Besides the commonly consumed fleshy fruits, e.g., fruits from the Rosaceae family, a
large diversity of edible fruits has been described, including the caryopses from Poaceae
(maize, wheat, rice) which are, however, essentially made up of the seeds and are therefore
considered more like seeds, or false fruits like strawberries (Fragaria vesca), resulting from
the development of the calyx accrescent from the flowers covered with an aggregate of
achenes containing tiny seeds. Accordingly, defining edible fruits is not an easy task
because, in common language, some genuine fruits (tomato, bell pepper, cucumber) are
often considered as vegetables and, vice versa, some so-called fruits (rhubarb stalks) readily
correspond to genuine vegetables [1].

Most of the allergenic proteins from fruits identified so far belong to different families
of PR-protein [2]. PR proteins correspond to a disparate set of proteins, which differ in
their structures and properties, and are all involved in various processes of plant defense
against phytopathogens and, more generally, in all the stress situations that plants have
to face. PR proteins have been classified in seventeen distinct families of structurally and
functionally unrelated proteins [3], but the majority of all fruit allergens belong to three
families, in particular PR-5 thaumatin-like proteins (TLP), PR-10 Bet v 1-like proteins, and
PR-14 non-specific lipid transfer proteins (nsTLP) (Figure 2). Other PR-protein families,
such as PR-2 β1,3-glucanase proteins, PR-3 chitinases I, II, IV-VII, and PR-8 chitinases III,
also contain some allergenic proteins from fruits. However, other important fruit allergens
are not related to the PR-protein families, such as the profilins and the newly emerging
group of gibberellin-regulated proteins (GBR-protein). Although not restricted to fruits, the
small knottin-folded defensins occur as food allergens susceptible to cross-reaction with
their well-identified pollen allergen counterparts. In addition, a few allergens, including
Cuc m 3 of the PR-1 family, bromelain (Ana c 2) and kiwelin (Act c 5), belong to a single
fruit or a restricted number of fruits. Finally, proteins that belong to the three classes of seed
storage proteins from higher plants, 2S albumins, 7S globulins (vicilin), and 11S globulins
(legumin) [4], should also be retained as possible potential fruit allergens resulting from the
unintended consumption of the seeds of kernels [5]. Many of these fruit allergens represent
widely distributed pan-allergens, which are responsible for IgE-binding cross-reactivity
often associated with some cross-allergenicity.
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Figure 2. Overview of the different structural scaffolds and distributions of the different families of
fruit allergens.

Here we present a review on the molecular structures and properties of the main
categories of fruit allergen families, with some insights into the clinical aspects of the
corresponding food allergies.

2. Repertoire of the Main Fruit Allergen Families
2.1. PR-5 Thaumatin-like Proteins (TLP)

The group of PR-5 thaumatin-like proteins (TLP) is characterized by an extreme
homogeneity of both the molecular structure and the endo-β1,4-glucanase properties
associated with their structural fold. All TLPs possess a structure similar to that found in
thaumatin, the sweet-tasting protein isolated from the arils of Thaumatococcus daniellii [6],
made of three covalently associated domains: a central domain I with a β-sandwich
structure, flanked on both sides by a predominantly α-helical domain II, and a small
domain III which consists of a short β-hairpin (Figure 3A) [7]. Up to 16 extremely conserved
cysteine residues form 8 disulfide bridges that confer to this tightly structured fold a good
resistance to digestive proteases and heat denaturation, both properties susceptible to
enhance the allergenicity of protein allergens [8]. A highly electronegative cleft with an
endo-β1,4-glucanase activity, occurs between domains I and II (Figure 3B,C).
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minata) TLP, and the IgE-binding epitopes identified in the mountain cedar pollen TLP 
Jun a 3 [7]. These B-cell epitopes occur in the α-helical domain II of the TLP. More recently, 
three IgE-binding epitopes from Cup s 3, the green cypress (Cupressus sempervirens) TLP 
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[10]. The presence of common epitopes offers a molecular basis for the cross-reactivity and 
crossed allergenicity observed between fruit and pollen TLP allergens [11]. 
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Figure 3. (A). Ribbon diagram of Mus a 4 built from three a central β-sandwich domain (I) associated
with an α-helical domain II and a β-hairpin domain III. Up to 8 disulfide bridges (colored red)
contribute to the stability of the three-dimensional structure. (B). Molecular surface of Mus a 4.
The yellow line delineates the cleft occurring between domains I and II. (C). Electrostatic potentials
displayed on the molecular surface of Mus a 4, showing the electronegative character of the central
cleft (delineated by a yellow line). Electronegative and electropositive regions are colored red and
blue, respectively, and neutral regions are colored grey.

The allergenicity of fruit TLPs has been scarcely investigated and, thus, only a few
insights are available on the IgE-binding epitopic regions of fruit TLPs. An in silico
approach allowed the prediction of four IgE-binding epitopic areas corresponding to the
amino acid sequence stretches 36–48, 51–63, 58–70, and 73–85 on the surface of the sapodilla
(Manilkara zapota) fruit, that are essentially located around the electronegative cleft on
the front face of the allergen (Figure 4a) [9]. Previously, some overlap had been detected
between the predicted IgE-binding epitopes from Mus a 4, the banana (Musa acuminata) TLP,
and the IgE-binding epitopes identified in the mountain cedar pollen TLP Jun a 3 [7]. These
B-cell epitopes occur in the α-helical domain II of the TLP. More recently, three IgE-binding
epitopes from Cup s 3, the green cypress (Cupressus sempervirens) TLP allergen, and TLPs
from other phylogenetically related Cupressaceae species, strongly interacted with all the
tested allergic patient’s sera, using the Pepscan technique (Figure 4b) [10]. The presence of
common epitopes offers a molecular basis for the cross-reactivity and crossed allergenicity
observed between fruit and pollen TLP allergens [11].
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The multiple amino acid sequence alignments of TLP allergens show a high degree
of conservation that corresponds to a very conserved structural organization (Figure 5).
However, TLPs from the Rosaceae family slightly differ from TLPs of other families by
two additional insertions in regions corresponding to domain I (1st insertion) and III
(2nd insertion), respectively.
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indicated (from brown to yellow).

The TLPs of Rosaceae form a very homogeneous group of closely related proteins,
whereas TLPs from other families are clustered in a rather distant group within the phy-
logenetic tree of TLPs built from the amino acid sequence comparison. TLPs from the
Cupressaceae pollen form an intermediate cluster equidistant from the other two fruit
clusters (Figure 6). Depending on these phylogenetic affinities, the IgE-binding cross-
reactivities observed among the fruit TLPs, e.g., between Mal d 2, Pru av 2 and Mus a 4, are
so frequent than those observed between fruit and pollen TLPs, e.g., between Mal d 2, Pru
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like (TLP) allergens from fruits (Actinidia chinensis Act c 10, A. deliciosa Act c 2, Capsicum annuum Cap a 1,
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Malus domestica Mal d 2, Musa acuminata Mus a 4, Olea europaea Ole e 13, Prunus avium Pru av 2, P.
domestica Pru d TLP, P. persica Pru p 2, Pyrus pyrifolia Pyr py LTP, Thaumatococcus daniellii thaumatin,
Vitis vinifera TLP), seeds (Castanea sativa Cas s TLP, Prunus dulcis Pru du TLP, Triticum aestivum Tri a
TLP), other vegetative parts (Nicotiana tabacum osmotin, Zea mays zeamatin), and pollen (Cryptomeria
japonica Cry j TLP, Cupressus arizonica Cup a TLP, C. sempervirens Cup s 3, Juniperus ashei Jun a 3, J.
virginiana Jun v 3, Thuya occidentalis Thu oc TLP) of higher plants. TLP allergens of fruits and pollen
are highlighted in red and green, respectively. TLP allergens located in vegetative organs of plants
are in bold letters.

2.2. PR-10 Bet v 1-like Proteins

Bet v 1, the major pollen allergen of birch (Betula verrucosa), has been identified for
a long time as the essential component of the birch pollen allergy [13]. Bet v 1 and other
closely related PR-10 Bet v 1-like allergens consist of a homogeneous group of polypeptide
chains of about 150 amino-acid residues, typically folded as an αβ protein made of a large
curved β-sheet associated with a long α-helix (Figure 7A), exhibiting an overall cylindrical
shape (Figure 7B,C) [14]. These loosely structured proteins exhibit a weak resistance to
digestive proteases and heat denaturation, so they are quickly inactivated upon the cooking
of PR-10 Bet v 1 like protein-containing foods and food products [15].

Allergies 2023, 3, FOR PEER REVIEW 7 
 

 

frequent than those observed between fruit and pollen TLPs, e.g., between Mal d 2, Pru 
av 2 and Cup a 3 [12].  

 
Figure 6. Unrooted phylogenetic tree built from the amino acid sequence alignment of PR-5 thau-
matin-like (TLP) allergens from fruits (Actinidia chinensis Act c 10, A. deliciosa Act c 2, Capsicum 
annuum Cap a 1, Malus domestica Mal d 2, Musa acuminata Mus a 4, Olea europaea Ole e 13, Prunus 
avium Pru av 2, P. domestica Pru d TLP, P. persica Pru p 2, Pyrus pyrifolia Pyr py LTP, Thaumatococcus 
daniellii thaumatin, Vitis vinifera TLP), seeds (Castanea sativa Cas s TLP, Prunus dulcis Pru du TLP, 
Triticum aestivum Tri a TLP), other vegetative parts (Nicotiana tabacum osmotin, Zea mays zeamatin), 
and pollen (Cryptomeria japonica Cry j TLP, Cupressus arizonica Cup a TLP, C. sempervirens Cup s 3, 
Juniperus ashei Jun a 3, J. virginiana Jun v 3, Thuya occidentalis Thu oc TLP) of higher plants. TLP 
allergens of fruits and pollen are highlighted in red and green, respectively. TLP allergens located 
in vegetative organs of plants are in bold letters. 

2.2. PR-10 Bet v 1-like Proteins 
Bet v 1, the major pollen allergen of birch (Betula verrucosa), has been identified for a 

long time as the essential component of the birch pollen allergy [13]. Bet v 1 and other 
closely related PR-10 Bet v 1-like allergens consist of a homogeneous group of polypeptide 
chains of about 150 amino-acid residues, typically folded as an αβ protein made of a large 
curved β-sheet associated with a long α-helix (Figure 7A), exhibiting an overall cylindrical 
shape (Figure 7B,C) [14]. These loosely structured proteins exhibit a weak resistance to 
digestive proteases and heat denaturation, so they are quickly inactivated upon the cook-
ing of PR-10 Bet v 1 like protein-containing foods and food products [15]. 

 
Figure 7. (A) Ribbon diagram of Pru av 1 built from a bundle of β-sheet associated with α-helices. 
N and C correspond to the N- and C-terminal ends of the polypeptide chain, respectively. (B) Mo-
lecular surface of Pru av 1. (C) Electrostatic potentials displayed on the molecular surface of Pru av 
1 (electronegative and electropositive regions are colored red and blue, respectively, and neutral 
regions are colored grey). 

Structural and mutational analyses of Pru av 1 showed that the amino acid sequence 
stretch 44LEGDGGPGT52, forming the so-called P-loop of Pru av 1 and other PR10 Bet v 

 
 
 

C up s 3 
C up a TLP 

Jun v 3 
Jun a 3 

Thu oc TLP 

C ry j 3 

Cas s TLP 
M al d 2 

Pru av 2 Pru du TLP 

Pru p 2 

Pru d TLP 

Pyr py TLP 

Tri a TLP 
zeamatin 

thaumatin 
M us a 4 

V it v TLP 

O le e 13 
C ap a 1 

osmotin 

A ct c 10 

A ct d 2  

Sol l TLP 

 A               B                                              C  

 

                     
N 

C 

Figure 7. (A) Ribbon diagram of Pru av 1 built from a bundle of β-sheet associated with α-helices. N and
C correspond to the N- and C-terminal ends of the polypeptide chain, respectively. (B) Molecular surface
of Pru av 1. (C) Electrostatic potentials displayed on the molecular surface of Pru av 1 (electronegative
and electropositive regions are colored red and blue, respectively, and neutral regions are colored grey).

Structural and mutational analyses of Pru av 1 showed that the amino acid sequence
stretch 44LEGDGGPGT52, forming the so-called P-loop of Pru av 1 and other PR10 Bet v
1-like protein allergens, played a key role in the IgE-binding capacity of Pru av 1, together
with two other residues N28 and P108, located in other parts of the protein (Figure 8) [16,17].
In addition, the residue stretch 142–156 of Bet v 1 was identified as the dominant T-cell
epitope of the major birch pollen allergen [18]. All these key residues participating in
the discontinuous IgE-binding epitopes and T-cell epitopes should be responsible for the
cross-reactivity between food and pollen Bet v 1-like proteins [19].
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The multiple amino acid sequence alignment of PR10-Bet v 1-like allergens show
a high degree of conservation (Figure 9), which results in a very conserved structural
organization for all the members of the PR10 family (Figure 8).
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Figure 9. Amino acid sequence comparison of PR-10 Bet v 1-like protein allergens from Actini-
dia chinensis (Act c 8), A. deliciosa (Act d 8), Alnus glutinosa (Aln g 1), Apium graveolens (Api g 1),
Arachis hypogaea (Ara h 8), Betula verrucosa (Bet v 1), Cannabis sativa (Can s 5), Carpinus betulus (Car b 1),
Castanea sativa (Cas s 1), Corylus avellana (Cor a 1), Daucus carota (Dau c 1), Fagus sylvatica (Fag s 1),
Fragaria ananassa (Fra a 1), Glycine max (Gly m 4), Juglans regia (Jug r 5), Malus domestica (Mal d 2),
Ostrya capinifolia (Ost c 1), Prunus armeniaca (Pru ar 1), P. avium (Pru av 1), Prunus dulcis (Pru du PR10),
P. persica (Pru p 1), Pyrus communis (Pyr c 1), Quercus acutissima (Que ac 1), Rubus idaeus (Rub i 1),
Solanum lycopersicum (Sola l 4), and Vigna radiata (Vig r 1). Conserved amino acids are colored blue,
and the degree of conservation along the amino acid sequences is indicated (from brown to yellow).

Bet v 1 allergens from the Fagaceae pollen form a homogeneous group of proteins
sharing conserved amino acid sequences and closely-related three-dimensional structures
(Figure 10) [20]. However, Bet v 1-like allergens exhibiting very close amino acid sequences
and structural scaffolds also occur in various fruits from the Rosaceae family (Fra a 1, Mal
d 1, Pru p 1, Pru ar 1, Pru av 1), seeds (Gly m 4, Jug r 5), and vegetables (Api g 1, Dau c 1),
that account for possible cross-reactivities and cross-allergies with these food products.
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Figure 10. Unrooted phylogenetic tree built from the amino acid sequence alignment of PR-10 Bet v
1-like protein allergens from fruits (Fragaria ananassa Fra a 1, Malus domestica Mal d 2, Prunus armeniaca
Pru ar 1, P. avium Pru av 1, P. persica Pru p 1, Pyrus communis c 1, Rubus idaeus Rub I 1, Solanum
lycopersicum Sola l 4), seeds (Arachis hypogaea Ara h 8, Glycine max Gly m 4, Juglans regiz Jug r 5,
Prunus dulcis Pru du TLP, Vigna radiata Vig r 1), other vegetative parts (Apium graveolens Api g 1,
Daucus carota Dau c 1), and pollen (Actinidia chinensis Act c 8, A. deliciosa Act d 8, Alnus glutinosa Aln
g 1, Betula verrucosa Bet v 1, Cannabis sativa Can s 5, Carpinus betulus Car b 1, Castanea sativa Cas s 1,
Corylus avellana Cor a 1, Fagus sylvatica Fag s 1, Ostrya capinifolia Ost c 1, Quercus acutissima Que ac 1)
of higher plants. PR-10 allergens of fruits, seeds and pollen are highlighted in red, yellow and green,
respectively. PR-10 allergens located in vegetative organs of plants are in bold letters. For clarity,
PR-10 allergens Que a 1 from Quercus alba, Que I 1 from Q. ilex and Que m 1 from Q. mongolica, were
not represented.

2.3. PR14 Non-Specific Lipid Transfer Proteins (nsLTP)

Non-specific lipid transfer proteins (nsLTPs) are small polypeptides of about 90 amino
acids, which consist of a tightly packed core of four α-helices (α1–α4) extended by a C-
terminal tail, which adopt the so-called “saxophone-like” conformation (Figure 11) [21].
Four disulfide bridges occurring between 8 conserved cysteine residues contribute to creat-
ing a compact structure extremely resistant to digestive proteases and heat denaturation
that probably accounts for their high allergenic potential [22,23]. In fleshy fruits like peach,
apple or apricot, once synthesized in the pulp cells, nsLTPs migrate into the epidermic cells
to accumulate in the fuzzy covering the peach or the outer cuticular cells of the apple [24].
As a practical consequence of this surface localization, peeling the skin off the peach and
apple allows the removal of most of the allergens contained in these fruits.
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chain, respectively. (B) Molecular surface of Pru p 3. (C) Electrostatic potentials displayed on the
molecular surface of Pru p 3 (electronegative and electropositive regions are colored red and blue,
respectively, and neutral regions are colored grey).

Three-major IgE-binding epitopic regions have been identified on the surface of the
Rosaceae nsLTPs, Pru p 3 [25] and Mal d 3 [26], probing synthetic peptides spanning the
nsLTP sequences with specific IgE-containing sera from allergic patients. Although few
in number, these IgE-binding epitopic regions cover an extended area of the molecular
surface, which could explain the enhanced allergenicity of both allergens (Figure 12). In
addition, most of these IgE-binding regions are well conserved in nsLTPs from other fruits
and other sources, like seeds and pollen [27].
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Figure 12. (A) Superposition of Pru p 3 (colored pink) and Mal d 3 (colored green), showing the
very conserved overall conformation of the Prunoideae nsLTP. The conserved disulfide bonds are
colored red. (B,C) Localization of the IgE-binding epitopic regions 1 (colored red), 2 (colored blue)
and 3 (colored green) on the molecular surface of Pru p 3 (B) and Mal d 3 (C). (D) Comparison
of the amino acid sequences of Pru p 3 and Mal d 3, showing the similar localization of the IgE-
binding stretches 1 (highlighted in red), 2 (highlighted in blue), and 3 (highlighted in green) along
the sequences.

A high degree of conservation of their amino acid sequences characterizes the nsLTP
allergens, as shown in the amino acid sequence alignment (Figure 13).

In this respect, the phylogenetic tree built for nsLTPs of different origins shows some
rather close relationships of fruit nsLTPs with other seeds and pollen nsLTPs, irrespective
of their phylogenetic relationships (Figure 14). In this regard, nsLTP allergens from the
Rosaceae family form a very homogeneous group with a high degree of cross-reactivity
among the members, e.g., strong cross-reactivity of Pru p 3 with Mal d 3, Pru av 3, and Pru
ar 3, and lower cross-reactivity with nsLTP allergens from other families, e.g., low cross-
reactivity of Pru p 3 with Jug r 3 (Juglandaceae), Ara h 9 (Fabaceae), Cor a 8 (Betulaceae),
Zea m 14 (Poaceae), Cit s 3 (Rutaceae), and Art v 3 (Asteraceae) [27]. These IgE-binding
cross-reactivities depend on very similar three-dimensional conformations and exposed
molecular surfaces.
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Figure 13. Multiple amino acid sequence alignment of nsLTP allergens from Actinidia chinensis
(Act c 10), A. deliciosa (Act d 10), Ambrosia artemisiifolia (Amb a 6), Apium graveolens (Api g 2),
Arabidopsis thaliana (Ara t LTP), Arachis hypogaea (Ara h 9), Artemisia vulgaris (Art v 3), Brassica oleracea
(Bra o 3), Cannabis sativa (Can s 3), Castanea sativa (Cas s 8), Cicer arietinum (Cic a LTP), Citrus sinensis
(Cit s 3), Corylus avellana (Cor a 8), Cryptomeria japonica (Cry j LTP), Daucus carota (Dau c LTP), Fragaria
ananassa (Fra a 3), Helianthus annuus (Hel a 3), Hevea brasiliensis (Hev b 12), Hordeum vulgare (Hor v
LTP), Juglans regia (Jug r 3), Lactuca sativa (Lac s 1), Lens culinaris (Len c 3), Malus domestica (Mal d 3),
Morus nigra (Mor n 3), Musa acuminata (Mus a 3), Oryza sativa (Ory s LTP), Parietaria Judaica (Par j 2),
Phaseolus vulgaris (Pha v 3), Pisum sativum (Pis s 3), Platanus acerifolia (Pla a 3), Prunus avium (Pru av 3),
P. armeniaca (Pru ar 3), P. domestica (Pru d 3), P. dulcis (Pru du 3), P. persica (Pru p 3), Punica granatum
(Pun g 1), Pyrus pyrifolia (Pyr c 3), Rubus idaeus (Rub i 3), Sinapis alba (Sin a 3), Solanum lycopersicum
(Sol l LTP), Triticum aestivum (Tri a 14), Zea mays (Zea m 14), and Vitis vinifera (Vit v 1). Conserved
amino acids are colored blue, and the degree of conservation along the amino acid sequences is
indicated (from brown to yellow).
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For clarity, many other nsLTP allergens listed in the official WHO/IUIS database have not been in-
cluded in the tree (Act c 10 from Actinidia chinensis, Api g 6 from Apium graveolens, Asp o 1 from 
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ifying the allergenicity of nsLTPs and PR10 Bet v 1-like protein allergens [29–31], these 
small molecule ligands have an adjuvant effect, and participate in the activation and reg-
ulation of the allergic and inflammatory responses via the activation of signaling path-
ways common to innate immunity and allergic responses [32–34]. 

Figure 14. Unrooted phylogenetic tree built from the amino acid sequence alignment of nsLTP
allergens from fruits (Actinidia chinensis Act c 10, A. deliciosa Act d 10, Ambrosia artemisiifolia Amb a 6,
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Apium graveolens Api g 2, Arabidopsis thaliana Ara t LTP, Arachis hypogaea Ara h 9, Artemisia vulgaris
Art v 3, Brassica oleracea Bra o 3, Cannabis sativa Can s 3, Castanea sativa Cas s 8, Cicer arietinum Cic a
LTP, Citrus sinensis Cit s 3, Corylus avellana Cor a 8, Cryptomeria japonica Cry j LTP, Daucus carota Dau c
LTP, Fragaria ananassa Fra a 3, Helianthus annuus Hel a 3, Hevea brasiliensis Hev b 12, Hordeum vulgare
Hor v LTP, Juglans regia Jug r 3, Lactuca sativa Lac s 3, Lens culinaris Len c 3, Malus domestica Mal
d 3, Morus nigra Mor n 3, Musa acuminata Mus a 3, Oryza sativa Ory s LTP, Parietaria Judaica Par j 2,
Phaseolus vulgaris Pha v 3, Pisum sativum Pis s 3, Platanus acerifolia Pla a 3, Prunus avium Pru av 2,
P. armeniaca Pru ar 3, P. domestica Pru d TLP, P. dulcis Pru du 3, P. persica Pru p 3, Punica granatum
Pun g 1, Pyrus pyrifolia Pyr c 3, Rubus idaeus Rub i 3, Sinapis alba Sin a 3, Solanum lycopersicum (Sol
l LTP), Triticum aestivum Tri a 14, Vitis vinifera (Vit v 1), and Zea mays (Zea m 14), and Vitis vinifera
(Vit v 1). For clarity, many other nsLTP allergens listed in the official WHO/IUIS database have not
been included in the tree (Act c 10 from Actinidia chinensis, Api g 6 from Apium graveolens, Asp o
1 from Asparagus officinalis, Ara h 16 and Ara h 17 from Arachis hypogaea; Art an 3, Art ar 3, Art c 3, Art
gm 3, Art la and Art si 3 from Artemisia annua, A. argyi, A. capillaris, A. gmelinii, A. lavandulifolia and
A. sieversiana, respectively; Cit l 3 from Citrus limon and Cit r 3 from C. reticulata; Jug r 8 from Juglans
regia, Par j 1 from Parietaria judaica and Par o 1 from P. officinalis, Pla or 3 from Platanus orientalis).

The nsLTP allergens and PR10 Bet v 1-like protein allergens possess internal cavities,
which usually accommodate a set of small molecules ligands including unsaturated fatty
acids and other lipidic compounds (nsLTPs), polyphenols, and alkaloids (PR10 Bet v 1-like
proteins) (Figure 15) [28]. In addition to enhancing the stability and eventually modifying
the allergenicity of nsLTPs and PR10 Bet v 1-like protein allergens [29–31], these small
molecule ligands have an adjuvant effect, and participate in the activation and regulation of
the allergic and inflammatory responses via the activation of signaling pathways common
to innate immunity and allergic responses [32–34].
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Figure 15. (A,B) Cut planes of Pru p 3 (A) and Zea m 14 (B) in complex with oleic acid (colored green).
(C) Cut plane of Bet v 1 in complex with naringenin (colored green). Tunnel wall limits are highlighted
in red. Cartoons rendered with PyMol software (W.L. DeLano, http://pymol.sourceforge.net) (accessed
on 14 March 2023).

2.4. Profilins

Profilins are typical pollen allergens that also occur in the vegetative organs of plants
and fruits. They correspond to small polypeptides of ~130 amino-acid residues exhibit-
ing a canonical structural organization made of a central β-sheet flanked on both sides
by a few α-helices (Figure 16A) that gives a rather flattened shape to these molecules
(Figure 16B,C) [35].

http://pymol.sourceforge.net
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Figure 16. (A) Ribbon diagram of Cuc m 2 built from a central bundle of β-sheet surrounded by
a-helices α1–α3. N and C correspond to the N- and C-terminal ends of the polypeptide chain,
respectively. (B) Molecular surface of Cuc m 2. (C) Electrostatic potentials displayed on the molecular
surface of Cuc m 2 (electronegative and electropositive regions are colored red and blue, respectively,
and neutral regions are colored grey).

This rather loose structural organization, not sustained by disulfide bridges, accounts
for a low resistance to thermal denaturation, that explains why profilins lose their allergenic
potency after cooking [36]. However, despite the cooking of profilin-containing foods
destroying their IgE-binding epitopes, the remaining continuous epitopes keep some cross-
reactive T cell activity in vitro [37].

Using synthetic peptides spanning the full Cuc m 2 amino acid sequence, the IgE-
binding epitopes of the muskmelon profilin, Cuc m 2, were identified to stretches
66–75 + 81–93 (E1) and 95–99 + 121–131 (E2) of the amino acid sequence, which col-
lapses in two patches (E1 and E2) well exposed on the molecular surface of the profilin
(Figure 17). An additional stretch corresponding to residues 2–10 + 35–45 forms another
discontinuous epitope E3 on the molecular surface of Cuc m 2 [38]. A discontinuous mimo-
tope was further identified on the Cuc m 2 surface, corresponding to the sequence stretch
2SW + 5AY + 9DH + 111TPGQ + 116NM + 121RL, which plays a role in the cross-reactivity
of Cuc m 2 with pollen profilins [39].
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Similarly, the IgE-binding activity of a recombinant soybean profilin, rGly m 3, is
mediated by extended conformational epitopes, since three overlapping profilin fragments
comprising amino acid residues 1–65, 38–88, and 50–131 displayed no significant IgE-
binding activity towards the sera from soybean allergic patients [40]. In addition, plant
food profilins and pollen profilins exhibited an equivalent IgE-binding reactivity, which
suggests that food and pollen profilins share most of their IgE-binding epitopes [41].

Recently, the distribution of negative charges on the molecular surface of various
profilins, including Amb a 4 and Amb a 8 from Ambrosia artemisiifolia, Art v 4 from Artemisia
vulgaris, Bet v 2 from Betula verrucosa, Fra e 2 from Fraxinus excelsior, Hev b 8 from Hevea
brasiliensis, Phl p 2 from Phleum pratense, and Zea m 12 from Zea mays, was relevant for
the recognition of profilins by monoclonal antibodies, and should participate in their
IgE-binding cross-reactivity [42].
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The alignment of their amino acid sequences shows a high degree of conservation
for the profilin allergens, independent of their botanical origin (Figure 18). Accordingly,
all these allergens exhibit a very conserved three-dimensional structure. As widely dis-
tributed among fruits, seeds and pollens, profilins constitute a very homogenous family of
phylogenetically related pan-allergens.
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(Art v 4), Betula verrucosa (Bet v 2), Cannabis sativa (Can s 2), Capsicum annuum (Cap a 2), Chenopodium
album (Che a 2), Citrullus lanatus (Citr l 2), Citrus sinensis (Cit s 2), Corylus avellana (Cor a 2), Crocus
sativus (Cro s 2), Cucumis melo (Cuc m 2), Cynodon dactylum (Cyn d 12), Daucus carota (Dau c 4),
Fragaria ananassa (Fra a 4), Glycine max (Gly m 3), Helianthus annuus (Hel a 2), Hevea brasiliensis (Hev b
8), Hordeum vulgare (Hor v 12), Juglans regia (Jug r 7), Kochia scoparia (Koc s 2), Ligustrum vulgare (Lig v
2), Litchi chinensis (Lit c 1), Malus domestica (Mal d 4), Mangifera indica (Man i 4), Mercurialis annua (Mer
a 1), Musa acuminata (Mus a 1), Olea europaea (Ole e 2), Oryza sativa (Ory s 12), Parietaria judaica (Par j
3), Phleum pratense (Phl p 13, Phoenix dactylifera (Pho d 2), Populus nigra (Pop n 2), Proposopis juliflora
(Pro j 2), Prunus avium (Pru av 4), Prunus dulcis (Pru du 4), P. persica (Pru p 4), Pyrus communis (Pyr c
4), Quercus acutissima (Que ac 2), Salsola kali (Sal k 4), Sinapis alba (Sin a 4), Solanum lycopersicum (Sola l
1), S. melongena (Sola m 1), Triticum aestivum (Tri a 12), and Zea mays (Zea m 12). Conserved amino
acids are colored blue, and the degree of conservation along the amino acid sequences is indicated
(from brown to yellow).

The close phylogenetic relationships clearly appear in the phylogenetic tree built from
the amino acid sequences of profilins (Figure 19). Consequently, IgE-binding cross-reactivity
commonly occurs between apparently distantly related plant sources, e.g., between melon
(Cuc m 2) and mugwort (Art v 4), between celery (Api g 4) and chestnut (Cor a 2), between
peach (Pru p 4) and birch (Bet v 2), etc. [43]. However, due to their weak resistance to heat
denaturation (cooking), profilins usually behave as mild allergens.
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series of three disulfide bonds interconnecting helices α1-α2 and helices α2-α3, respec-
tively (Figure 20A). The resulting three-dimensional structure consists of a dome-shaped 
molecule, crossed by a deep cleft located at its bottom. Depending on the GRPs, the cleft 
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Figure 19. Unrooted phylogenetic tree built from the amino acid sequence alignment of profilin
allergens from fruits (Actinidia deliciosa Act d 9, Ananas comosus Ana c 1, Capsicum annuum Cap a 2,
Citrullus lanatus Citr l 2, Citrus sinensis Cit s 2, Cucumis melo Cuc m 2, Fragaria ananassa Fra a 4,
Litchi chinensis Lit c 1, Malus domestica Mand d 4, Mangifera indica Man I 4, Musa acuminata Mus a 1,
Phoenix dactylifera Pho d 2, Prunus avium Pru av 4, P. persica Pru p 4, Pyrus communis Pyr c 4, Solanum
lycopersicum Sola l 1, S. melongena Sola m 1), seeds (Arachis hypogaea Ara h 5, Corylus avellana Cor a 2,
Glycine max Gly m 3, Hordeum vulgare Hor v 12, Juglans regia Jug r 7, Prunus dulcis Pru du 4, Sinapis alba
Sin a 4, Triticum aestivum Tri a 12, Zea mays Zea m 12), other vegetative parts (Apium graveolens Api g
4, Daucus carota Dau c 4, Hevea brasiliensis Hev b 8), and pollen (Acacia farnesiana Aca f 2, Amaranthus
retroflexus Ama r 2, Ambrosia artemisiifolia Amb a 4, Artemisia vulgaris Art v 4, Betula verrucosa Bet v 2,
Cannabis sativa Can s 2, Chenopodium album Che a 2, Crocus sativus Cro s 2, Cynodon dactylum Cyn d 12,
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Helianthus annuus Hel a 2, Kochia scoparia Koc s 2, Ligustrum vulgare Lig v 2, Mercurialis annua Mer
a 1, Olea europaea Ole e 2, Oryza sativa Ory s 12, Parietaria judaica Par j 3, Phleum pratense Phl p 13,
Populus nigra Pop n 2, Proposopis juliflora Pro j 2, Quercus acutissima Que ac 2, Salsola kali Sal k 4) of
higher plants. Profilin allergens of fruits, seeds and pollen are highlighted in red, yellow and green,
respectively. TLP allergens located in vegetative organs of plants are in bold letters.

2.5. Gibberellin-Regulated Proteins (GRPs)

The GRPs (also known as snakins) sequenced so far share a superposable canonical
structural organization made of three short α-helices α1, α2, and α3, tightly linked by two
series of three disulfide bonds interconnecting helices α1–α2 and helices α2–α3, respectively
(Figure 20A). The resulting three-dimensional structure consists of a dome-shaped molecule,
crossed by a deep cleft located at its bottom. Depending on the GRPs, the cleft is enlarged,
e.g., in the peach peamaclein Pru p 7 (Figure 20B), or narrower, e.g., in the potato snakin-1.
The distribution of electronegatively charged residues Asp and Glu are primarily located
at the top of the dome, while other parts of the GRPs, especially the cleft, exhibit an
electropositive character, due to the high concentration of electropositive Arg and Lys
residues on the molecular surface (Figure 20C). Accordingly, GRPs behave as predominantly
basic proteins, displaying a high pI value (calculated pI of 8.52 for Pru p 7).
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Figure 20. (A) Ribbon diagram of the modelled Pru p 7, built from three α-helices α1–α3 (colored
orange), linked by 6 disulfide bridges (colored red). N and C correspond to the N- and C-terminal
ends of the polypeptide chain, respectively. (B) Molecular surface of Pru p 7. (C) Electrostatic
potentials displayed on the molecular surface of Pru p 7 (electronegative and electropositive regions
are colored red and blue, respectively, and neutral regions are colored grey).

By virtue of their extremely tightly packed structure, sustained by a high number of
conserved disulfide bridges, peamaclein (Pru p 7) and other GRPs from fruit or pollen
consist of small proteins resistant to digestive proteases and heat denaturation. In this
regard, Pru p 7 was shown to become sensitive to the digestive proteolytic degradation
only after heat denaturation [44].

Although no data on the allergenicity of GRPs are available, a hydrophobic cluster
analysis (HCA) of GRPs, together with a surface analysis of the modeled proteins, al-
lows one to predict the presence of exposed areas rich in hydrophilic and electropositive
residues [45,46] that are susceptible to participate in the IgE-binding activity of these al-
lergens. The three predicted potential IgE-binding epitopic regions are located on the
bottom of the dome-shaped GRPs, essentially around the cleft, and roughly coincide with
electropositively charged areas (Figure 21). In contrast, no potential IgE-binding areas
were predicted to occur on the dome face opposite to the cleft. In addition, all of the GRP
allergens share a very similar distribution of these predicted potential IgE-binding areas,
which could account for the cross-reactivity observed between GRP allergens from fruits
and pollens.
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Figure 21. (A) Bottom view of the ribbon diagram of the modelled Pru p 7, showing the localization
of the predicted IgE-binding epitopic regions 1 (colored red), 2 (colored blue), and 3 (colored green).
N and C indicate the N- and C-termini of the polypeptide chain of Pru p 7. (B) Bottom view of the
molecular surface of Pru p 7 showing the extent of the predicted IgE-binding epitopic regions 1 (red
patch), 2 (blue patch), and 3 (green patch). (C). Bottom view of the molecular surface of Pru p 7
showing the distribution of the electronegative (colored red) and electropositive (colored blue) areas.
Neutral areas are colored white.

The alignment of amino acid sequences of GRP allergens shows a high degree of
conservation of GRPs from fruits and pollens (Figure 22).
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Figure 22. Multiple amino acid sequence alignment of GRP allergens from Ananas comosus (Ana co
GRP), Capsicum annuum (Cap a 7), Citrus sinensis (Cit s 7), Cryptomeria japonica (Cry j 7), Cupressus
sempervirens (Cup s 7), Fragaria vesca (Fra v GRP), Juniperus ashei (Jun a 7), Morus notabilis (Mor no
GRP), Malus domestica (Mal d GRP), Musa acuminata (Mus a GRP), Prunus avium (Pru av 7), Prunus
mume (Pru m 7), P. persica (Pru p 7), Punica granatum (Pun g 7), Pyrus bretschneideri (Pyr br GRP), Vitis
vinifera (Vit v GRP), and Ziziphus jujuba (Ziz ju GRP). Conserved amino acids are colored blue and
the degree of conservation along the amino acid sequences is indicated (from brown to yellow).

Fruit GRPs constitute a homogeneous group of phylogenetically related proteins,
except for GRPs from ananas (Ana co GRP), banana (Mus a GRP) and Japanese plum (Pru
m 7), which are less closely related to the fruit clade (Figure 23). In addition, GRP from
the Cupressaceae pollen, Cry j 7, Cup s 7 and Jun a 7, are phylogenetically close to the
fruit GRPs. Accordingly, it is not surprising that GRPs are highly immunochemically cross-
reactive allergens from fruit (Pru p 7, Pun g 7) and pollen (Cup s 7, Cry j 7) sources [47,48].



Allergies 2023, 3 151

Allergies 2023, 3, FOR PEER REVIEW 18 
 

 

The alignment of amino acid sequences of GRP allergens shows a high degree of con-
servation of GRPs from fruits and pollens (Figure 22). 

 
Figure 22. Multiple amino acid sequence alignment of GRP allergens from Ananas comosus (Ana co 
GRP), Capsicum annuum (Cap a 7), Citrus sinensis (Cit s 7), Cryptomeria japonica (Cry j 7), Cupressus 
sempervirens (Cup s 7), Fragaria vesca (Fra v GRP), Juniperus ashei (Jun a 7), Morus notabilis (Mor no 
GRP), Malus domestica (Mal d GRP), Musa acuminata (Mus a GRP), Prunus avium (Pru av 7), Prunus 
mume (Pru m 7), P. persica (Pru p 7), Punica granatum (Pun g 7), Pyrus bretschneideri (Pyr br GRP), 
Vitis vinifera (Vit v GRP), and Ziziphus jujuba (Ziz ju GRP). Conserved amino acids are colored blue 
and the degree of conservation along the amino acid sequences is indicated (from brown to yellow). 

Fruit GRPs constitute a homogeneous group of phylogenetically related proteins, ex-
cept for GRPs from ananas (Ana co GRP), banana (Mus a GRP) and Japanese plum (Pru 
m 7), which are less closely related to the fruit clade (Figure 23). In addition, GRP from 
the Cupressaceae pollen, Cry j 7, Cup s 7 and Jun a 7, are phylogenetically close to the fruit 
GRPs. Accordingly, it is not surprising that GRPs are highly immunochemically cross-
reactive allergens from fruit (Pru p 7, Pun g 7) and pollen (Cup s 7, Cry j 7) sources [47,48]. 

 
Figure 23. Unrooted phylogenetic tree built from the amino acid sequence alignment of Gibberellin-
regulated protein (GRP) allergens from fruits (Ananas comosus Ana co GRP, Capsicum annuum Cap 
a 7, Citrus sinensis Cit s 7, Fragaria vesca Fra v GRP, Morus notabilis Mor no GRP, Malus domestica Mal 
d GRP, Musa acuminata Mus a GRP, Prunus avium Pru av 7, Prunus mume Pru m 7, P. persica Pru p 7, 
Punica granatum Pun g 7, Pyrus bretschneideri Pyr br GRP, Vitis vinifera Vit v GRP, Ziziphus jujuba Ziz 
ju GRP), and pollen (Cryptomeria japonica Cry j 7, Cupressus sempervirens Cup s 7, Juniperus ashei Jun 
a 7) of higher plants. GRP allergens of fruits and pollen are highlighted in red and green, respec-
tively. 

2.6. Defensins 
The plant defensin PR-12 family comprises small acidic molecules of about 110 amino 

acid residues, exhibiting the canonical knottin fold, a structural αβ motif made of an α-

Figure 23. Unrooted phylogenetic tree built from the amino acid sequence alignment of Gibberellin-
regulated protein (GRP) allergens from fruits (Ananas comosus Ana co GRP, Capsicum annuum Cap a 7,
Citrus sinensis Cit s 7, Fragaria vesca Fra v GRP, Morus notabilis Mor no GRP, Malus domestica Mal d
GRP, Musa acuminata Mus a GRP, Prunus avium Pru av 7, Prunus mume Pru m 7, P. persica Pru p 7,
Punica granatum Pun g 7, Pyrus bretschneideri Pyr br GRP, Vitis vinifera Vit v GRP, Ziziphus jujuba Ziz ju
GRP), and pollen (Cryptomeria japonica Cry j 7, Cupressus sempervirens Cup s 7, Juniperus ashei Jun a 7)
of higher plants. GRP allergens of fruits and pollen are highlighted in red and green, respectively.

2.6. Defensins

The plant defensin PR-12 family comprises small acidic molecules of about 110 amino
acid residues, exhibiting the canonical knottin fold, a structural αβ motif made of an
α-helix linked to an antiparallel three-standed β-sheet, stabilized by 3 or 4 disulfide
bridges which adopt a disposition known as the so-called “disulfide through disulfide knot”
(Figure 24) [49]. Genuine defensins, e.g., brazzein from the Pentadiplandra brazzeana, are
restricted to the knottin domain, whereas the closely related defensin-like proteins, e.g., Art
v 1 from mugwort (Artemisia vulgaris) and Amb a 4 from ragweed (Ambrosia artemisiifolia),
possess a knottin domain extended at the C-terminus by a long prolin-rich tail (Figure 25).
With the exception of brazzein, a sweet-tasting and taste-modifying protein of fruits from
the African shrub Pentadiplandra brazzaeana [50,51], whose the sweetening power is 500 to
2000 times greater than that of sucrose [52], other defensins essentially occur in the pollen
(Art v 1, Amb a 4), vegetative parts (defensins from pea (Pisum sativum), and fenugreek
(Trigonella foenum-graecum) of the plants.
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The IgE-binding activity of the pollen defensin allergens Art v 1 (Artemisia vulgaris), 
Amb a 4 (Ambrosia artemisiifolia), and Par h 1 (Parthenium hysterophorus), which all consist 
of extended defensin-like proteins comprising a N-terminal defensin domain of about 50 
amino acid residues associated with a C-terminal proline-rich domain of >60 amino acid 
residues, was investigated using sera from Austrian, Canadian and Korean allergic pa-
tients [53]. Both domains participated in the defensin allergenicity (defensin domain) and 
IgE-binding cross-reactivity (proline-rich domain). In fact, structurally altered defensin-
like proteins are still capable of IgE-binding capacity, suggesting that continuous epitopes 
in the defensin domain should be responsible for the IgE-binding activity (Figure 25). In-
teraction of Art v 1 with the corresponding IgE allowed identification of some surface ex-
posed amino acid residues (S3, K4, K8, S14, R40, E41, E45, S46, K55, A63) involved in the 
binding of antibodies (Figure 26) [49]. Cross-inhibition experiments showed that the pro-
line-rich domain is also involved in the IgE-binding cross-reactivity, but different degrees 

   A      B      C  

   N C 

β1 

β2 

β3 

α 

Figure 24. (A) Ribbon diagram of Ara h 13 built from three β-strands (β1–β3), linked to a single
α-helix (α). N and C correspond to the N- and C-terminal ends of the polypeptide chain, respectively.
(B) Molecular surface of Ara h 13. (C) Electrostatic potentials displayed on the molecular surface
of Ara h 13 (electronegative and electropositive regions are colored red and blue, respectively, and
neutral regions are colored grey).
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Figure 25. Ribbon diagram of Art v 1 (A) and modelled Amb a 4 (B) allergens. In both structures, the
defensin-fold domain and the proline-rich domain are colored violet and green, respectively. The
four disulfide bonds responsible for the knottin-fold of the defensin-like proteins are colored red.
N and C indicate the N- and C-terminal ends of the polypeptide chains of Art v 1 and Amb a 4.

The IgE-binding activity of the pollen defensin allergens Art v 1 (Artemisia vulgaris),
Amb a 4 (Ambrosia artemisiifolia), and Par h 1 (Parthenium hysterophorus), which all consist
of extended defensin-like proteins comprising a N-terminal defensin domain of about
50 amino acid residues associated with a C-terminal proline-rich domain of >60 amino
acid residues, was investigated using sera from Austrian, Canadian and Korean allergic
patients [53]. Both domains participated in the defensin allergenicity (defensin domain) and
IgE-binding cross-reactivity (proline-rich domain). In fact, structurally altered defensin-like
proteins are still capable of IgE-binding capacity, suggesting that continuous epitopes in the
defensin domain should be responsible for the IgE-binding activity (Figure 25). Interaction
of Art v 1 with the corresponding IgE allowed identification of some surface exposed
amino acid residues (S3, K4, K8, S14, R40, E41, E45, S46, K55, A63) involved in the binding
of antibodies (Figure 26) [49]. Cross-inhibition experiments showed that the proline-rich
domain is also involved in the IgE-binding cross-reactivity, but different degrees of cross-
reactivity depend on the origin of sera with a high, medium, and low cross-reactivity for
sera from Austrian, Canadian and Korean allergic patients, respectively.
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The alignment of defensin allergens shows a dichotomy between short and long amino
acid sequences (Figure 27). In addition, the highly conserved defensins from pollens differ
from the rather less conserved defensins from fruits.
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Ara h 13), Artemisia vulgaris (Art v 1), A. annua (Art an 7), A. argyi (At ar 7), A. capillaris (Art c 7),
A. gmelinii (Art gm 7), A. lavandulifolia (Art la 7), A. sieversiana (Art si 7), Avena sativa (Ave s DEF),
Brassica napus (Bra na DEF), Capsicum annuum (Cap a DEF), Cicer arietinum (Cic a DEF), Citrus sinensis
(Cit si DEF), Cucumis sativus (Cuc sa DEF), Cucurbita maxima (Cuc ma DEF), Helianthus annuus
(Hel a DEF), Lens culinaris (Len c DEF), Malus domestica (Mal d DEF), Mangifera indica (Man i DEF),
Pentadiplandra brazzeana (Brazzein), Persea americana (Per a DEF), Petunia integrifolia (Pet i DEF),
Olea europaea (Ole e DEF), Pachyrhizus erosus (Pac e DEF), Parthenium hysterophorus (Par h DEF),
Phaseolus vulgaris (Pha v DEF), Prunus persica (Pet h DEF), Pyrus pyrifolia (Pyr py DEF), Raphanus sativus
(Raph s DEF), Ricinus communis (Ric c DEF), Saccharum officinarum (Sac o DEF), Sinapis alba (Sin a
DEF), Solanum lycopersicum (Sol l DEF), Solanum tuberosum (Sol t DEF), Triticum aestivum (Tri a DEF)
and Vigna radiata (Vig r DEF). Conserved amino acids are colored blue, and the degree of conservation
along the amino acid sequences is indicated (from brown to yellow).

The phylogenetic tree built up from the amino acid sequences of plant defensins
suggests that possible cross-reactivities and cross-allergies could occur between defensins
of pollens, fruits, seeds, and vegetables (Figure 28) [54].
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Figure 28. Unrooted phylogenetic tree built from the amino acid sequence alignment of defensin aller-
gens from fruits (brazzein from Pentadiplandra brazzeana, Capsicum annuum Cap a DEF, Magifera indica
Man I DEF, Persea americana Per a DEF, Petunia integrifolia Pet i DEF, Prunus persica DEF, Pyrus pyrifolia
Pyr py DEF, Solanum lycopersicum Sol l DEF), seeds (Arachis duranensis Ara d DEF, Arachis hypogaea Ara
h 12 and Ara h 13, Brassica napus Bra na DEF, Cicer arietinum Cic a DEF, Helianthus annuus Hel a DEF,
Lens culinaris Len c DEF, Phaseolus vulgaris Pha v DEF, Raphanus sativus Raph s DEF, Ricinus communis
DEF, Sinapis alba Sin a DEF, Triticum aestivum Tri a DEF, Vigna radiata Vig r DEF), other vegetative
parts (Apium graveolens Api g 7, Avena sativa Ave s DEF, Citrus sinensis Cit si DEF, Cucumis sativus
Cuc sa DEF, Cucurbita maxima Cuc ma DEF, Malus domestica Mal d DEF, Olea europaea Ole e DEF,
Pachyrhizus erosus Pac e DEF, Saccharum officinarum Sac o DEF, Solanum tuberosum Sol t DEF), and
pollen (Ambrosia artemisiifolia Amb a 4, Artemisia vulgaris Art v 1, Parthenium hysterophorus DEF) of
higher plants. GRP allergens of fruits, seeds and pollen are highlighted in red, yellow, and green,
respectively. GRP allergens located in vegetative organs of plants are in bold letters. For clarity, many
other pollen defensin allergens listed in the official WHO/IUIS database have not been included
in the tree (Art an 7, Art ar 7, Art c 7, Art gm 7, Art la 7 and Art si 7 from Artemisia annua, A. argyi,
A. capillaris, A. gmelinii, A. lavandulifolia and A. sieversiana, respectively).

2.7. PR3 Chitinases

Plant chitinases essentially consist of endo chitinases that are classically divided into
five classes, including class-I, class-II, class-III, class-IV, and class-V [55]:

- Class-I and class-IV chitinases exhibit a structural organization in two domains, com-
prising a N-terminal chitin-binding domain made of a cysteine-rich polypeptide,
similarly folded as the hevein domain of the latex from rubber tree Hevea brasiliensis
(Hev b 6), linked by an extended linker loop to a C-terminal α-helical folded domain
with a chitin-cleavage activity (Figure 29a). Class-I and class-IV chitinases use an in-
verting mechanism for cleaving the β1,4-GlcNAc linkage of chitin to generate shorter
fragments of chitobiose (GlcNAc)2, chitotriose (GlcNAc)3 and chitotetraose (GlcNAc)4.
The chitinase allergens from banana (Mus a 2), avocado (Pers a 1), and Hev b 11 from
the latex of rubber tree, belong to this group of chitinases.

- Class-III chitinases readily differ from class-I chitinases by a different α8β8 β-barrel
organization made of a central crown of eight β-strands, linked to a peripheral crown
of eight α-helix by interconnecting loops (Figure 29b) [56]. In addition, class-III
chitinases use a different retaining mechanism for the cleavage of chitin chains in
shorter fragments. The chitinase allergens from pomegranate (Pun g 14) and jujuba
fruit (Ziz m 1), belong to the class-III chitinase group.
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Figure 29. Comparison of the different structural organizations of chitinase-I from banana fruit (Mus
a 2) (a) and chitinase-III from pomegranate (Pun g 14) (b). A. The different domains forming the
chitinase of class-I from Mus a 2 are colored purple (N-terminal hevein-like domain), gold (linker), and
slate blue (C-terminal catalytic domain). B. The central β-barrel (colored violet) linked by extended
loops (colored green) to the peripheral α-helix crown (colored gold) form the α8β8 organization of
the class-III chitinase Pun g 14. N and C correspond to the N- and C-termini of the polypeptide chains
of Mus a 2 and Pun g 4.

Hevein (Hev b 6), consists of a short polypeptide chain of 43 amino acids folded made
of two short β-strands associated with two α-helical stretches, folded via four disulfide
bridges into a tightly packed three-dimensional structure (Figure 30A) [57]. Both B- and
T-epitopes have been identified on the molecular surface of Hev b 6, and show some overlap
(Figure 30B,C). A N-terminal hevein-like domain exhibiting a similar fold occurs in class-I
and class-IV chitinase allergens, including Hev b 11, Mus a 2, and Per a 1.

1 

 

 
Figure 30. (A) Ribbon diagram and molecular surface shown in transparency of hevein (Hev b 6).
(B) Localization of IgE-binding epitopic regions (colored cyan and violet) on the molecular surface
of hevein. (C) Localization of epitopes T (colored magenta and green) on the molecular surface
of hevein.

The alignments of PR3 chitinase allergens from higher plants clearly discriminate
between class-I/class-IV and class-III chitinase (Pun g 14, Ziz m 1) groups (Figure 31).
However, class-I and class-IV chitinases exhibit rather different amino acid sequences,
particularly in their N-terminal part.
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from the class-I and class-III groups. In this respect, class-I chitinases, which are closely 
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Figure 31. Multiple amino acid sequence alignment of chitinase allergens from Actinidia chinensis
(Actc.CHIT-I, Actc.CHIT-IV), Castanea sativa (Cas s 5), Cryptomeria japonica (Cry jCHIT), Diospyros kaki
(Dioka.CHIT), Hevea brasiliensis (Hev b 11), Musa acuminata (Mus a 2), Persea americana (Pers a 1),
Punica granatum (Pun g 14), Solanum lycopersicum (Solal.CHIT), Triticum aestivum (Tria.CHIT), Vitis vinifera
(Vitv.CHIT), Zea mays (Zea m 8), and Ziziphus mauritiana Ziz m 1). Conserved amino acids are colored
blue, and the degree of conservation along the amino acid sequences is indicated (from brown
to yellow).

According to the discrepancies observed in the amino acid sequences of the different
classes of chitinases, class-I, -III, and -IV chitinases cluster in three distinct groups in the
phylogenetic tree built from the amino acid sequence alignment (Figure 32). Depending
on these phylogenetic relationships, some cross-reactivity should be predicted among the
chitinases from class-I group, whereas no cross-reactivity should occur between chitinases
from the class-I and class-III groups. In this respect, class-I chitinases, which are closely
related to Hev b 11, should participate in the latex-fruit syndrome [58].
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enzymatic activity is indicated by a black dashed line on the front face of the molecules. N and C 
correspond to the N- and C-termini of the polypeptide chains of Mus a 5 and Hev b 2, respectively. 

Probing synthetic peptides spanning the amino acid sequence of Hev b 2 with specific 
IgE-containing sera from allergic patients allowed identification of up to eight continuous 
IgE-binding epitopes. They correspond to different stretches of amino acid sequences ar-
rayed on the molecular surface, essentially located on the back face opposite to the cata-
lytic groove [62] (Figure 34A,B). Compared to Hev b 2, the continuous IgE-binding 
epitopic regions identified in the banana glucanase Mus a 5, are similarly located on the 

Figure 32. Unrooted phylogenetic tree built from the amino acid sequence alignment of chitinase
allergens from fruits (Act c.CHIT-I, Act c.CHIT-IV, Dio k.CHIT, Mus a 2, Per s 1, Pun g 14, Sola l.CHIT,
Vit v.CHIT, Ziz m 1), seeds (Cas s 5, Tri a.CHIT, Zea m 8), pollen (Cry j.CHIT), and rubber tree latex
(Hev b 11). Chitinases from fruits, seeds, pollen, and latex are highlighted in red, yellow, green, and
white, respectively.

2.8. PR2 Glucanases

The β1,4-endoglucanases from higher plants all exhibit the α8β8 β-barrel organization,
made of an internal crown of eight β-strands connected by loops to a peripheral crown of
eight α-helices. A short additional β-hairpin completes the three-dimensional structure
(Figure 33). A long catalytic groove centered on the β-strand crown contains the active
site responsible for the cleavage of the β1,4-linked glucan chains by plant glucanases. This
three-dimensional organization pattern is conserved in all the β1,3-endoglucanases from
higher plants, especially in the glucanase allergens identified so far, e.g., Mus a 5 from
banana [7], Pru av 2 cherry [59], VVTL-1 from grape [60], and Hev b 2 from the latex of
rubber tree [61].
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Figure 33. (A,B) Cartoons showing the molecular organization in α8β8 β-barrel structure of Mus
a 5 (PDB code 2CYG) (A), and Hev b 2 (PDB code 4HPG) (B). The catalytic groove responsible for
the enzymatic activity is indicated by a black dashed line on the front face of the molecules. N and
C correspond to the N- and C-termini of the polypeptide chains of Mus a 5 and Hev b 2, respectively.

Probing synthetic peptides spanning the amino acid sequence of Hev b 2 with specific
IgE-containing sera from allergic patients allowed identification of up to eight continuous
IgE-binding epitopes. They correspond to different stretches of amino acid sequences
arrayed on the molecular surface, essentially located on the back face opposite to the
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catalytic groove [62] (Figure 34A,B). Compared to Hev b 2, the continuous IgE-binding
epitopic regions identified in the banana glucanase Mus a 5, are similarly located on the back
face of the allergen, and exhibit a very similar conformation on the molecular surface [7]
(Figure 34C,D). The similar distribution and conformation of the epitopic regions in both
allergens suggests the occurrence of a rather high degree of cross-allergenicity between
these fruit and latex allergens that should participate in the latex-fruit syndrome [58].
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allergen, which differs from other fruit and seed glucanases by a quite different amino 
acid sequence and an additional long C-terminal expansion, other fruit allergens display 
closely related amino acid sequences. Accordingly, they are distributed in two closely re-
lated clusters; the first cluster groups Hev b 2, Rosaceae and other fruit allergens, and the 
second cluster contains most of the seed glucanase allergens. Another heterogeneous clus-
ter contains Ole e 9, Mus 5, and other Solanaceae glucanases (Figure 36). The close vicinity 
of these different clusters points out the phylogenetic relationships that should occur 
among the fruit and seed allergens, and between Hev b 2 and fruit glucanase allergens 
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Figure 34. (A,B) Localization of continuous IgE-binding epitopes 1 (pink), 2 (green), 7 (cyan), and
8 (violet) on the ribbon diagram (A) and molecular surface (B) of Hev b 2. (C,D). Localization of
continuous IgE-binding epitopes 1 (pink), 2 (green), 4 (cyan), and 5 (violet) on the ribbon diagram (C)
and molecular surface (D) of Mus a 5. N and C correspond to the N- and C-termini of the polypeptide
chains of Heb b 2 and Mus a 5, respectively.

The glucanase allergens exhibit a high degree of identity in the multiple alignments of
their amino acid sequences (Figure 35). With the exception of Ole e 9 [63], the olive tree
allergen, which differs from other fruit and seed glucanases by a quite different amino
acid sequence and an additional long C-terminal expansion, other fruit allergens display
closely related amino acid sequences. Accordingly, they are distributed in two closely
related clusters; the first cluster groups Hev b 2, Rosaceae and other fruit allergens, and
the second cluster contains most of the seed glucanase allergens. Another heterogeneous
cluster contains Ole e 9, Mus 5, and other Solanaceae glucanases (Figure 36). The close
vicinity of these different clusters points out the phylogenetic relationships that should
occur among the fruit and seed allergens, and between Hev b 2 and fruit glucanase allergens
(latex-fruit syndrome).
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Figure 35. Multiple amino acid sequence alignment of glucanase allergens from Arachis duranensis
(Ara d.GLUC), Arachis hypogaea (Ara h.GLUC), Cajanus cajan (Caj c.GLUC), Cannabis sativa (Can
s.GLUC), Capsicum annuum (Cap a.GLUC), Carya illinoinensis (Car i.GLUC), Cicer arietinum (Ci
car.GLUC), Fragaria x ananassa (Fra an.GLUC), Fragaria vesca (Fra v.GLUC), Glycine max (Gly m.GLUC),
Hevea brasiliensis (Hev b 2), Juglans regia (Jug r.GLUC), Lens culinaris (Len c.GLUC), Lupinus albus
(Lup a.GLUC), Macadamia indica (Mac i.GLUC), Manihot esculenta (Man e.GLUC), Morella rubra
(Mor ru.GLUC), Morus alba (Mor al.GLUC), Morus notabilis (Mor no.GLUC), Musa acuminata (Mus
a 5), Olea europaea (Ole e 9), Phaseolus vulgaris (Pha vu.GLUC), Pisum sativum (Pis s.GLUC), Prunus
armeniaca (Pru ar.GLUC), Prunus avium (Pru av.GLUC), Prunus dulcis (Pru du.GLUC), Prunus mume
(Pru mu.GLUC), Prunus persica (Pru p.GLUC), Punica granatum (Pun g.GLUC), Solanum lycopersicum
(Sola l.GLUC), Solanum tuberosum (Sol tu.GLUC), Theobroma cacao (Theo c.GLUC), Vigna radiata (Vig
r.GLUC), Vitis vinifera (Vit v.GLUC), and Zizyphus jujuba (Ziz j.GLUC). Conserved amino acids are
colored blue, and the degree of conservation along the amino acid sequences is indicated (from brown
to yellow).

Figure 35. Multiple amino acid sequence alignment of glucanase allergens from Arachis duranensis
(Ara d.GLUC), Arachis hypogaea (Ara h.GLUC), Cajanus cajan (Caj c.GLUC), Cannabis sativa (Can
s.GLUC), Capsicum annuum (Cap a.GLUC), Carya illinoinensis (Car i.GLUC), Cicer arietinum (Ci
car.GLUC), Fragaria x ananassa (Fra an.GLUC), Fragaria vesca (Fra v.GLUC), Glycine max (Gly m.GLUC),
Hevea brasiliensis (Hev b 2), Juglans regia (Jug r.GLUC), Lens culinaris (Len c.GLUC), Lupinus albus
(Lup a.GLUC), Macadamia indica (Mac i.GLUC), Manihot esculenta (Man e.GLUC), Morella rubra (Mor
ru.GLUC), Morus alba (Mor al.GLUC), Morus notabilis (Mor no.GLUC), Musa acuminata (Mus a 5),
Olea europaea (Ole e 9), Phaseolus vulgaris (Pha vu.GLUC), Pisum sativum (Pis s.GLUC), Prunus arme-
niaca (Pru ar.GLUC), Prunus avium (Pru av.GLUC), Prunus dulcis (Pru du.GLUC), Prunus mume (Pru
mu.GLUC), Prunus persica (Pru p.GLUC), Punica granatum (Pun g.GLUC), Solanum lycopersicum (Sola
l.GLUC), Solanum tuberosum (Sol tu.GLUC), Theobroma cacao (Theo c.GLUC), Vigna radiata (Vig r.GLUC),
Vitis vinifera (Vit v.GLUC), and Zizyphus jujuba (Ziz j.GLUC). Conserved amino acids are colored blue,
and the degree of conservation along the amino acid sequences is indicated (from brown to yellow).
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Figure 36. Unrooted phylogenetic tree built from the amino acid sequence alignment of glucanase
allergens from Arachis duranensis (Ara d.GLUC), Arachis hypogaea (Ara h.GLUC), Cajanus cajan (Caj
c.GLUC), Cannabis sativa (Can s.GLUC), Capsicum annuum (Cap a.GLUC), Carya illinoinensis (Car
i.GLUC), Cicer arietinum (Ci car.GLUC), Fragaria x ananassa (Fra an.GLUC), Fragaria vesca (Fra v.GLUC),
Glycine max (Gly m.GLUC), Hevea brasiliensis (Hev b 2), Juglans regia (Jug r.GLUC), Lens culinaris
(Len c.GLUC), Lupinus albus (Lup a.GLUC), Macadamia indica (Mac i.GLUC), Manihot esculenta (Man
e.GLUC), Morella rubra (Mor ru.GLUC), Morus alba (Mor al.GLUC), Morus notabilis (Mor no.GLUC),
Musa acuminata (Mus a 5), Olea europaea (Ole e 9), Phaseolus vulgaris (Pha vu.GLUC), Pisum sativum
(Pis s.GLUC), Prunus armeniaca (Pru ar.GLUC), Prunus avium (Pru av.GLUC), Prunus dulcis (Pru
du.GLUC), Prunus mume (Pru mu.GLUC), Prunus persica (Pru p.GLUC), Punica granatum (Pun
g.GLUC), Solanum lycopersicum (Sola l.GLUC), Solanum tuberosum (Sol tu.GLUC), Theobroma cacao
(Theo c.GLUC), Vigna radiata (Vig r.GLUC), Vitis vinifera (Vit v.GLUC), and Zizyphus jujuba (Ziz
j.GLUC). Glucanases from fruits, seeds and latex (Hev b 2) are highlighted in red, yellow, and
violet, respectively.

2.9. Seed Storage Proteins from Fruit Kernels

Botanically, fruits from higher plants consist of seed-bearing structures derived from
the gynecium of the flowers. Accordingly, mature edible fruits contain seeds that corre-
spond to the modified ovules of the flowers. Depending on the size of the seeds distributed
in the flesh, additional allergic manifestations could result from seed allergens different
from the pericarp allergens, when seeds are consumed together with the pericarp, e.g.,
in the case of small sized seed-containing fruits like kiwi, tomato, grape, or the Japanese
lantern cherry (Physalis alkekengi) [64]. In addition, seeds or seed fragments of fruits from
the Rosaceae (apple, pear) or the Rutaceae (lemon, orange) families can be accidentally
consumed, and cause unexpected allergenic manifestations [5].

Seed allergens from seeds of higher plants belong to the so-called seed storages
proteins, which comprise the cupin allergens 7S globulins (vicilins) and 11S globulins
(legumins), and 2S albumins [65]. In addition, germins and germin-like proteins, recently
recognized as relevant allergens, also belong to the cupin family of proteins [66]. Some
nsLTPs proteins, e.g., Sola l 6 and Sola l 7, are located in tomato seeds [67].

Seed cupin allergens possess the canonical homotrimeric organization of their
monomers, containing two cupin motifs in a flat-shaped structure (Figure 37A,B). A single
homotrimer builds the 7S globulins, whereas two homotrimers associate face to face to
build the 11S globulins or legumin allergens. The non-covalent association of two ho-
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motrimers mainly results from electrostatic interactions occurring between the opposite
electropositive and electronegative charges of both faces of each homotrimers (Figure 37C).

Allergies 2023, 3, FOR PEER REVIEW 28 
 

 

(legumins), and 2S albumins [65]. In addition, germins and germin-like proteins, recently 
recognized as relevant allergens, also belong to the cupin family of proteins [66]. Some 
nsLTPs proteins, e.g., Sola l 6 and Sola l 7, are located in tomato seeds [67]. 

Seed cupin allergens possess the canonical homotrimeric organization of their mon-
omers, containing two cupin motifs in a flat-shaped structure (Figure 37A,B). A single ho-
motrimer builds the 7S globulins, whereas two homotrimers associate face to face to build 
the 11S globulins or legumin allergens. The non-covalent association of two homotrimers 
mainly results from electrostatic interactions occurring between the opposite electroposi-
tive and electronegative charges of both faces of each homotrimers (Figure 37C). 

 
Figure 37. (A) Ribbon diagram structure of the modelled homohexameric allergen Zan b 2, the Si-
chuan pepper (Xanthoxylum bungeanum) 11S globulin, made of two superimposed trimers of mono-
mers with a cupin fold. (B) Molecular surface of Zan b 2. (C) Electrostatic potentials displayed on 
the molecular surface of Zan b 2 (electronegatively and electropositively charged regions are colored 
red and blue, respectively, and neutral regions are colored grey). 

Due to the conservation of both the amino acid sequences and three-dimensional 
structures of the 11S globulin allergens, a few continuous IgE-binding epitopic regions 
have been identified as common IgE-binding epitopes shared by the seed 11S globulin 
allergens [68]. These well-exposed, common IgE-binding epitopic regions also occur in the 
11S globulin allergens Act d 12 from kiwi fruit and Fra v-Leg from strawberry (Fragaria 
vesca) (Figure 38), and could thus account for some allergic response in sensitized people 
[69,70].  

 
Figure 38. Distribution of four continuous IgE-binding epitopic regions 1 (colored red), 2 (colored 
orange), 3 (colored cyan), and 4 (colored magenta), shared in common by the 11S globulin allergens 
from fruits and seeds, on the molecular surface of the homodimeric structures of Act d 12 (A) and 
Fra v-Leg (B). 

The alignment of amino acid sequences of 11S globulin/legumin allergens exhibits a 
high degree of conservation with, however, some discrepancies, due to insertions/deletion 
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Figure 37. (A) Ribbon diagram structure of the modelled homohexameric allergen Zan b 2, the
Sichuan pepper (Xanthoxylum bungeanum) 11S globulin, made of two superimposed trimers of
monomers with a cupin fold. (B) Molecular surface of Zan b 2. (C) Electrostatic potentials displayed
on the molecular surface of Zan b 2 (electronegatively and electropositively charged regions are
colored red and blue, respectively, and neutral regions are colored grey).

Due to the conservation of both the amino acid sequences and three-dimensional
structures of the 11S globulin allergens, a few continuous IgE-binding epitopic regions
have been identified as common IgE-binding epitopes shared by the seed 11S globulin
allergens [68]. These well-exposed, common IgE-binding epitopic regions also occur
in the 11S globulin allergens Act d 12 from kiwi fruit and Fra v-Leg from strawberry
(Fragaria vesca) (Figure 38), and could thus account for some allergic response in sensitized
people [69,70].
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Figure 38. Distribution of four continuous IgE-binding epitopic regions 1 (colored red), 2 (colored
orange), 3 (colored cyan), and 4 (colored magenta), shared in common by the 11S globulin allergens
from fruits and seeds, on the molecular surface of the homodimeric structures of Act d 12 (A) and Fra
v-Leg (B).

The alignment of amino acid sequences of 11S globulin/legumin allergens exhibits a
high degree of conservation with, however, some discrepancies, due to insertions/deletion
events that have occurred in the medium part of the sequences (Figure 39). These sequence
homologies are in agreement with the very conserved three-dimensional structure of
these seed storage proteins. The phylogenetic tree built from the amino acid sequence
alignment of 11S globulins shows that the clustering of fruit and seed 11S globulins roughly
coincides with their distribution in the phylogenetically related families of higher plants
(Figure 40).
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Figure 39. Multiple amino acid sequence alignment of 11S globulin allergens from Actinidia chinensis (Act
c LEG), A. deliciosa (Act d 12), Anacardium occidentalis (Ana o 2), Arachis hypogaea (Ara h 3), Bertolletia excelsa
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(Ber e 2), Capsicum annuum (Cap a LEG), Carya illinoinensis (Car i 4), Castanea sativa (Cas s LEG), Cicer
arietinum (Cic a LEG), Citrus sinensis (Cit s LEG), Corylus avellana (Cor a 9), Cucurbita maxima (Cuc
ma 4), Fagopyrum esculentum (Fag e LEG), F. tataricum (Fag t LEG), Ficus pumila (Fic p LEG), Fragaria
ananassa (Fra a LEG), Juglans regia (Jug r 4), Lupinus albus (Lup a LEG), Malus domestica (Mal d LEG),
Morus alba (Mor a LEG), Pistacia vera (Pis v 2), Pisum sativum (Pis s LEG), Prunus dulcis (Pru du 6,
amandin), Prunus persica (Pru p LEG), Pyrus pyrifolia (Pyr pyr LEG), Pyrus x bretschneideri (Pyr b LEG),
Sesamum indicum (Ses I 6 and Ses I 7), Sinapis alba (Sin a 2), Solanum lycopersicum (Sol l LEG), Vitis
vinifera (Vit v LEG), and Zanthoxylum burgearum (Zan b 2). Conserved amino acids are colored blue,
and the degree of conservation along the amino acid sequences is indicated (from brown to yellow).
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excelsa Ber e 2, Carya illinoinensis Car I 4, Castanea sativa Cas s LEG, Cicer arietinum Cic a LEG, Corylus 
avellana Cor a 9, Cucurbita maxima Cuc ma 4, Fagopyrum esculentum Fag e LEG, F. tartaricum Fag t 
LEG, Juglans regia Jug r 4, Lupinus albus Lup a LEG, Pistacia vera Pis v 2, Pisum sativum Pis s LEG, 
Prunus dulcis Pru du 6 (amandin), Sesamum indicum Ses I 6 and Ses I 7, Sinapis alba Sin a 2). Legumin 
allergens of fruits and seeds are highlighted in red and yellow, respectively. 

The germin and germin-like allergens possess a single homotrimeric organization 
similar to that of vicilins, but differ from typical vicilins by their monomers, which contain 
a single cupin motif. Accordingly, the homotrimeric organization of germins consists of 
two superposerd dimers of homotrimers (Figure 41A,B). Like in other cupin proteins, both 
faces of the homotrimeric germins and germin-like allergens exhibit a complex distribu-
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Figure 40. Unrooted phylogenetic tree built from the amino acid sequence alignment of cu-
pin 11S/legumin allergens from fruits (Actinidia chinensis Act c LEG, A. deliciosa Act d 12,
Capsicum annuum Cap a LEG, Citrus sinensis Cit s LEG, Ficus pumila Fic p LEG, Fragaria ananassa Fra
a LEG, Malus domestica Mal d LEG, Morus alba Mor a LEG, Prunus persica Leg, Pyrus pyrifolia Pyr
py DEF, Pyrus x bretschneideri Pyr b LEG, Solanum lycopersicum Sol l LEG, Vitis vinifera Vit v LEG,
Zanthoxylum burgearum Zan b 2) and seeds (Anacardium occidentalis Ana o 2, Arachis hypogaea Ara h 3,
Bertolletia excelsa Ber e 2, Carya illinoinensis Car I 4, Castanea sativa Cas s LEG, Cicer arietinum Cic a LEG,
Corylus avellana Cor a 9, Cucurbita maxima Cuc ma 4, Fagopyrum esculentum Fag e LEG, F. tartaricum
Fag t LEG, Juglans regia Jug r 4, Lupinus albus Lup a LEG, Pistacia vera Pis v 2, Pisum sativum Pis s LEG,
Prunus dulcis Pru du 6 (amandin), Sesamum indicum Ses I 6 and Ses I 7, Sinapis alba Sin a 2). Legumin
allergens of fruits and seeds are highlighted in red and yellow, respectively.

The germin and germin-like allergens possess a single homotrimeric organization
similar to that of vicilins, but differ from typical vicilins by their monomers, which contain
a single cupin motif. Accordingly, the homotrimeric organization of germins consists of
two superposerd dimers of homotrimers (Figure 41A,B). Like in other cupin proteins, both
faces of the homotrimeric germins and germin-like allergens exhibit a complex distribution
of electrostatic charges (Figure 41C) [71].
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To date, with the exception of Cis s 1, the allergenic potential of germin-like proteins 
has not been clearly demonstrated. In addition, the localization of IgE-binding epitopes of 
germin-like protein allergens has not been investigated but IgE-binding experiments, 
ELISA inhibition assays and in vivo skin prick tests (SPT) performed with sera from aller-
gic patients showed that previous deglycosylation of Cis s 1 resulted in an important loss 
of IgE-binding reactivity [66,72]. These results suggest that N-glycans play a prominent 
role in the IgE-binding capacity of Cit s 1. In fact, the Cit s 1 allergen corresponds to a 
heavily N-glycosylated allergen, which contains several putative N-glycosylation sites. 
Assuming these N-glycans are occupied by N-glycans of the complex type allowed us to 
build a heavily glycosylated Cit s 1 allergen, using the GlyProt server facilities (Figure 42). 
These predictions agree with the IgE-binding results observed with Cit s 1 [72].  

 
Figure 42. Extended N-glycan chains of the complex type (colored cyan), associated with the front 
face (A) and back face (B) of Cit s 1. N-glycans of the complex type were modelled with the GlyProt 
server. 

The comparison of amino acid sequences of germin-like proteins shows a rather mod-
erate degree of conservation (Figure 43), in spite of a very conserved three-dimensional 
conformation. According to this amino acid sequence heterogeneity, the phylogenetic tree 
of germins and germin-like proteins built from the amino acid sequence alignment, shows 
a rather marked dispersion of the allergens, even though fruit and seed germin-like aller-
gens exhibit a tendency to clustering in well-individualized phylogenetically related 
groups (Figure 44). 
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Figure 41. (A) Ribbon diagram structure of the modelled germin-like protein Cit s 1 from orange
fruit, made of a trimer of dimers with a cupin fold. (B) Molecular surface of Cit s 1. (C) Electrostatic
potentials displayed on the molecular surface of Cit s 1 (electronegative and electropositive regions
are colored red and blue, respectively, and neutral regions are colored grey).

To date, with the exception of Cis s 1, the allergenic potential of germin-like proteins
has not been clearly demonstrated. In addition, the localization of IgE-binding epitopes
of germin-like protein allergens has not been investigated but IgE-binding experiments,
ELISA inhibition assays and in vivo skin prick tests (SPT) performed with sera from allergic
patients showed that previous deglycosylation of Cis s 1 resulted in an important loss of
IgE-binding reactivity [66,72]. These results suggest that N-glycans play a prominent role
in the IgE-binding capacity of Cit s 1. In fact, the Cit s 1 allergen corresponds to a heavily
N-glycosylated allergen, which contains several putative N-glycosylation sites. Assuming
these N-glycans are occupied by N-glycans of the complex type allowed us to build a
heavily glycosylated Cit s 1 allergen, using the GlyProt server facilities (Figure 42). These
predictions agree with the IgE-binding results observed with Cit s 1 [72].
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Figure 42. Extended N-glycan chains of the complex type (colored cyan), associated with the front face
(A) and back face (B) of Cit s 1. N-glycans of the complex type were modelled with the GlyProt server.

The comparison of amino acid sequences of germin-like proteins shows a rather
moderate degree of conservation (Figure 43), in spite of a very conserved three-dimensional
conformation. According to this amino acid sequence heterogeneity, the phylogenetic tree
of germins and germin-like proteins built from the amino acid sequence alignment, shows a
rather marked dispersion of the allergens, even though fruit and seed germin-like allergens
exhibit a tendency to clustering in well-individualized phylogenetically related groups
(Figure 44).
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Figure 43. Multiple amino acid sequence alignment of germin-like allergens from Arachis hypogaea 
(Ara h GERM), Capsicum annuum (Cap a GERM), Cicer arietinum (Cic a GERM), Citrus sinensis (Cit s 
1), Glycine max (Gly m GERM), Malus domestica (Mal d GERM), Morus alba (Mor a GERM), Musa 
acuminata (Mus a GERM), Phaseolus vulgaris (Pha v GERM), Pisum sativum (Pis s GERM), Prunus 
persica (Pru p GERM), Solanum lycopersicum (Sol l GERM), Theobroma cacao (The c GERM), Vigna ra-
diata (Vig r GERM), and Vitis vinifera (Vit v GERM). Conserved amino acids are colored blue, and 
the degree of conservation along the amino acid sequences is indicated (from brown to yellow). 

 
Figure 44. Unrooted phylogenetic tree built from the amino acid sequence alignment of germin-like 
protein allergens from fruits (Capsicum annuum Cap a GERM, Citrus sinensis Cit s 1, Malus domestica 
Mal d GERM, Morus alba Mor a GERM, Musa acuminata Mus a GERM, Prunus persica Pru p GERM, 
Solanum lycopersicum Sol l GERM, Vitis vinifera Vit v GERM) and seeds (Arachis hypogaea Ara h 3 
GERM, Cicer arietinum Cic a GERM, Glycine max Gly m GERM, Phaseolus vulgaris Pha v GERM, Pisum 
sativum Pis s GERM, Theobroma cacao The c GERM, Vigna radiata Vig r GERM). Germin allergens of 
fruits and seeds are highlighted in red and yellow, respectively. 

The extreme diversity of allergens in some fruits like kiwi and tomato (Figure 45) 
illustrates another aspect often observed in fruit allergies. A great number of fruit aller-
gens consist of pan-allergens widely distributed in different plant organs, including fruits, 
seeds, pollen and other vegetative parts of plants. According to such a distribution, a high 
degree of cross-reactivity often occurs between fruits, seeds, and pollen from apparently 
distantly related plant species. 
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Figure 43. Multiple amino acid sequence alignment of germin-like allergens from Arachis hypogaea
(Ara h GERM), Capsicum annuum (Cap a GERM), Cicer arietinum (Cic a GERM), Citrus sinensis
(Cit s 1), Glycine max (Gly m GERM), Malus domestica (Mal d GERM), Morus alba (Mor a GERM),
Musa acuminata (Mus a GERM), Phaseolus vulgaris (Pha v GERM), Pisum sativum (Pis s GERM),
Prunus persica (Pru p GERM), Solanum lycopersicum (Sol l GERM), Theobroma cacao (The c GERM),
Vigna radiata (Vig r GERM), and Vitis vinifera (Vit v GERM). Conserved amino acids are colored blue,
and the degree of conservation along the amino acid sequences is indicated (from brown to yellow).
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Figure 44. Unrooted phylogenetic tree built from the amino acid sequence alignment of germin-like
protein allergens from fruits (Capsicum annuum Cap a GERM, Citrus sinensis Cit s 1, Malus domestica
Mal d GERM, Morus alba Mor a GERM, Musa acuminata Mus a GERM, Prunus persica Pru p GERM,
Solanum lycopersicum Sol l GERM, Vitis vinifera Vit v GERM) and seeds (Arachis hypogaea Ara h 3
GERM, Cicer arietinum Cic a GERM, Glycine max Gly m GERM, Phaseolus vulgaris Pha v GERM,
Pisum sativum Pis s GERM, Theobroma cacao The c GERM, Vigna radiata Vig r GERM). Germin allergens
of fruits and seeds are highlighted in red and yellow, respectively.

The extreme diversity of allergens in some fruits like kiwi and tomato (Figure 45)
illustrates another aspect often observed in fruit allergies. A great number of fruit allergens
consist of pan-allergens widely distributed in different plant organs, including fruits, seeds,
pollen and other vegetative parts of plants. According to such a distribution, a high degree
of cross-reactivity often occurs between fruits, seeds, and pollen from apparently distantly
related plant species.
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Figure 45. Cartoon showing the diversity of potential allergens of pericarp and seeds from tomato
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red. Other tomato allergens were retrieved from Allergome (https://www.Allergome.org), accessed
on 16 April 2023, and either modelled or retrieved from the PDB (https://www.rcsb.org), accessed
on 16 April 2023.

In addition to proteins belonging to the different PR-protein families, such as the PR-10
Bet v 1 like proteins or the PR-14 LTPs, which have become prominent fruit allergens in
recent years, other fruit allergens, less known because they are less investigated, such as
the PR-5 TLPs [11,73], defensins and defensin-like proteins with a knottin fold [74], and
GRPs [45], are now considered as important emerging fruit allergens.

3. Cross-Reactivity of Fruit Allergens

Most of the fruit allergens consist of pan-allergens widely distributed in different plant or-
gans, which are thus responsible for cross-reactivities associated or not to cross-allergenicities
between fruits, vegetables, and pollens. All these fruit allergens exhibit closely related amino
acid sequences and quasi-identical folds. Fruit and pollen profilins display a high degree
of cross-reactivity (Figure 46A) [43]. Depending on the relatedness between their amino
acid sequences, their overall fold, and their IgE-binding epitope community, nsLTP al-
lergens from Rosaceae fruits, especially Pru p 3, display pronounced cross-reactivities
with other nsLTPs from vegetable, seed and pollen sources (Figure 46B) [11,15,27]. Due
to the widespread distribution of Bet v 1-like proteins closely related to the white birch
pollen Bet v 1 allergen in various tree pollens, vegetables, and seeds, extensive IgE-binding
cross-reactivity between the pollen of various trees and foods are frequently observed
(Figure 46D) [19]. Although less investigated as compared to profilins and PR10 Bet v 1-like
proteins, the recently identified GRP allergens fall apparently into the same category of
highly cross-reactive allergens (Figure 46C).

https://www.Allergome.org
https://www.rcsb.org
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Figure 46. (A). Cross-reactivity between profilins from fruit (Cit s 2, Cuc m 2, Pru p 4, Sola l 1),
vegetable (Api g 4), seed (Cor a 2), and pollen (Art v 4, Bet v 2, Phl p 2) sources. (B). Cross-reactivity
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Pun g 7) and pollen (Cry j 7, Cup s 7, Jun a 7) sources. (D). Cross-reactivity between PR10 bet v 1-like
proteins from fruit (Act c 8, Act d 8, Fra a 1, Mal d 1, Pru ar 1, Pru av 1, Pru p 1, Pyr c 1, Rub I 1, Sol a
4), vegetable (Api g 1, Dauc c 1), seed (Ara h 8, Cor a 1, Gly m 4, Jug r 5, Vig r 1), and pollen (Aln g 1,
Bet v 1, Carb 1, Cor a 1, Fag s 1) sources. IgE-binding cross-reactivities are indicated by blue lines.



Allergies 2023, 3 168

The cross-reactivities between fruit allergens and homologous proteins from other
vegetable, seed, and pollen sources account for different food-pollen syndromes. The aller-
gens responsible for these food-pollen syndromes essentially consist of the pan-allergens
nsLTPs, profilins, GRPs, β-1,3-glucanases, but also the seed storage proteins [4]. Most
often these pollen-food syndromes result in a benign oral allergy syndrome (OAS) but can,
less frequently, lead to a more severe systemic reaction, especially with the peach nsLTP
Pru p 3 [27,75].

However, it should be noted that many IgE-binding cross-reactivities measured in vitro
by IgE-binding activity tests, inhibition tests of the IgE-binding activity and, more rarely,
by the direct activation of previously sensitized basophil cells (BAT), have apparently no
clinical significance, and the consumption of fruit or vegetable allergens does not induce
any reaction in sensitized individuals [75].

4. Brief Clinical Aspects

Most of the fruit pan-allergens, like profilins, PR10 Bet v 1-like proteins, nsLTP, and
GRPs, are non-sensitizing allergens, which trigger allergic reactions if a previous contact
with a sensitizing homologous allergen has occurred. As an example, people sensitized by
inhalation of the pollen Bet v 1 allergen can trigger an allergic reaction after eating fruits
containing a cross-reactive Bet v 1 homologous allergen, e.g., peach (Pru p 1) or apple (Mal
d 1). In this case, the cross-reactivity between pollen allergens and the homologous fruit
or vegetable allergens has a clinical expression, which consists of various OAS syndromes
induced by fruits and vegetables containing allergens as varied as profilins, PR10 Bet v
1-like proteins, PR14 nsLTPs, GRPs, PR2 β1,3-glucanases, cysteine-proteases, and seed
storage proteins [27,75,76].

However, in addition this non-sensitizing character, some fruit allergens, such as the
nsLTPs from peach (Pru p 3) [27], maize (Zea m 14) [77], and seed storage proteins like 2S
albumins (Cor a 14) and 11S globulin (Cor a 9) [76], can act as sensitizers and trigger more
or severe systemic reactions. These discrepancies in the behavior of fruit allergens depend
on various factors, including:

- The structural characteristics of the allergens (allergens exhibiting tightly packed
conformation vs. allergens loosely structured) and some structure-associated prop-
erties, like the resistance to digestive proteases and heat (cooking) denaturation [36].
In this respect, fruit nsLTPs, like Pru p 3 and Mal d 3, possess a tightly packed
three-dimensional conformation stabilized by four disulfide bridges, the so-called
“saxophone-like conformation”, that contributes to the extreme resistance of these
protein to the degradation by digestive proteases and to heat denaturation [22]. Sim-
ilarly, the tightly packed GRPs offer an enhanced resistance to protease and heat
denaturation [44]. Conversely, profilins, such as Pru p 4 and Mal d 4, are more loosely
structured proteins and offer a weak resistance to both enzymatic digestion and heat
denaturation [36];

- The localization and accessibility of the allergens. In this regard, the surface localiza-
tion of Pru p 3 in the fuzzy covering the peel of the peach [78], and the localization
of Mal d 3 in the external cell layers forming the peel of the apple [24], favors the
contact of the allergens with the body. Accordingly, removing the peel from peaches
and apples is sufficient to eliminate most of the allergens from the fruits;

- The amounts of allergens present in fruits and vegetables. This is an important point to
consider, because many fruit allergens consist of PR proteins which interfere with the
defense of plants against phytopathogenic fungi, bacteria, and viruses [79]. In addition,
their synthesis can vary considerably, depending on the response of the plant to abiotic
stresses, for example water stress or heat stress [80]. Moreover, large variations in the
allergen content of fruits were measured in different varieties or cultivars of peach
and apple [81–83]. Large variations were also measured in the allergen content of
fruits, depending on the cultivation conditions [84,85], the degree of ripening of the
harvested fruits, and the shelf life of the postharvest fruit storage [86–90]. Other
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factors can influence the sensitizing propensity of the allergens, such as the route of
exposure [76] and the processing of fruits and fruit products before consumption [91].

In addition, some geographical discrepancies have been identified concerning, for
example, severe systemic reactions to Pru p 3 in people from Mediterranean countries,
compared to people from northern countries [92,93]. However, the risk for a severe allergic
response to Pru p 3, was also reported for people living outside the Mediterranean coun-
tries [15,94]. The high resistance of Pru p 3 to both the digestive and thermal degradation
largely accounts for the dangerous character of this nsLTP [22].

In general, most of the allergic symptoms following fruit consumption consist of
oropharyngeal symptoms, the so-called OAS, which usually occurs very quickly after
fruit consumption. The OAS includes various symptoms, but broadly consists of itch,
tearing, sneezing, lips swelling and, more rarely, difficulty swallowing, hives, and urticaria.
However, severe systemic symptoms can occur after consumption of nsLTP-containing
fruits, namely peach Pru p 3, which can require adrenaline injection(s) and emergency
hospital care [27,75]. A more detailed description of the clinical aspects of allergy to
profilins, nsLTPs, PR10 Bet v 1-like proteins, GRPs, and other allergens from fruits and
vegetables, is available in the recently published second edition of the Molecular Allergy
User’s Guide (MAUG2) [95]. Clinical aspects of Rosaceae fruit allergies and defensin-
related food allergies are presented in some recently published reviews [12,54].

5. Comparative Prevalence and Harmful Properties of Fruit Allergens

Fruit allergens responsible for the most frequent allergic manifestations correspond to
a rather limited number of structurally well-identified protein families, including profilins,
GRPs, defensins, and various PR-protein families such as nsLTPs (PR14), Betv v 1-like PR10,
TLPs (PR5), chitinases (PR3) and endoβ1,3-glucanases (PR2) [3]. The relationship between
the structure and harmfulness of fruit allergens is a complex matter, which apparently
depends on both intrinsic and extrinsic factors.

The availability of fruit allergens for the sensitization and subsequent elicitation of
an allergic reaction in sensitized people requires both their solubilization and structural
preservation during the digestion process. Depending on their structure and physicochem-
ical properties, fruit allergens can readily differ in this respect [96]. This ability to resist
protease denaturation is also valid in case of dermal sensitization because all tissues contain
trypsin-like proteases that can degrade allergens. Furthermore, even in case of proteolytic
degradation, the allergens most resistant to denaturation can release peptide fragments
capable of retaining some of the allergenicity and harmfulness of native allergens [76].
Moreover, the cross-reactivity between fruit allergens and pollen homologous allergens
that explains many cases of prior inhalation sensitization observed in allergies to peach
and apple could also participate in their harmful character [97]. Recently, the ability of Pru
p 3 to interact with its natural lipidic ligand camptothecin, associated with phytosphingo-
sine, has been characterized as an adjuvant for promoting the sensitization to Pru p 3 [97].
Previously, the interaction of Pru p 3 with free fatty acids had been shown to enhance the
Pru p 3 IgE-binding activity [29].

Among the extrinsic factors, the localization and abundancy of allergens in the fruits
is another important factor for their availability. As an example, the localization and
abundancy of Pru p 3 in the fuzzy covering the peach, and Mal d 3 in the cuticular
cell layers of apple [97,98], favor the allergenicity and harmful properties of Rosaceae
fruits [98]. Other relevant factors, such as the existence of a marked atopic terrain or ethnic
predispositions, are to be considered.

Depending on all the factors that contribute to the allergenic potential and harmful
potential of fruit allergens, the prevalence and severity of fruit allergies in Europe, in
particular, can vary widely between countries. According to [99], the overall prevalence
of fruit allergies varies between 0.1% and 4.3%. The most frequent fruit sensitizations in
Europe concern peach (7.9%), apple (6.5%), and kiwi fruit (5.2%) [100,101]. In northern
countries and Italy, apple allergy is frequently mild and depends on prior sensitization to
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birch pollen PR10 Bet v 1-like protein allergen homologous to Mal d 1, whereas in Spain,
sensitization to apple allergen Mal d 3 (nsLTP) predominates in Mediterranean countries
and frequently provokes severe anaphylaxis responses [92,102–104]. Similarly, allergen
sensitization patterns to kiwi fruit differ across Europe [105]. Sensitization to kiwi fruit
mostly depends on Act d 8 (PR10 Bet v 1-like protein allergen) in western, central and
eastern Europe, while it depends on Act d 9 (profilin) and Act d 10 (nsLTP) in southern
Europe. Symptoms range from mild OAS (Act d 8, Act d 9) to severe systemic reactions
(Act d 10). In general, allergy to fruit profilins is mild, and results in OAS symptoms.
Sensitization to fruit profilins is evenly distributed in Europe, but is more frequent in
Mediterranean countries, particularly in Spain [106]. Sensitization to Pru p 7, the GRP
from peach, was reported as the predominant cause of severe cypress pollen-associated
peach allergies in southern France [107]. Recently, a high prevalence of mango allergy was
reported from a self-reported food allergy survey performed in Jiangxi (China), but no
indication is available on the causative allergen(s) [108]

6. Conclusions

Some general conclusions can be drawn from this review on fruit allergens:

1. Allergens from edible fruits, especially fleshy fruits, correspond to pan-allergens
that are widely distributed in vegetables, seeds, and pollen from other apparently
unrelated plants;

2. Fruit allergens essentially belong to different PR-proteins, which play a role in the
defense of plants against phytopathogenic fungi, bacteria, and viruses. Accordingly,
their biosynthesis is largely influenced by the stress conditions to which the plants are
subjected. The allergen content of fruits can also vary considerably, depending on the
ripening stage and storage conditions of the fruits after harvest;

3. The different families of allergenic PR-proteins exhibit highly conserved amino
acid sequences and three-dimensional structures and display close phylogenetic
relationships;

4. Depending on their large distribution and their sequential, structural, and phylogenet-
ical relationships, a high degree of cross-reactivity usually occurs between allergens
from fruits and the counterparts from other sources like vegetables, seeds, or pollens.
This cross-reactivity is at the origin of various clinical syndromes including, e.g., the
apple-birch syndrome, the peach-cypress syndrome, and the peach-latex syndrome.
However, many cross-sensitizations with pollen allergens are not clinically relevant;

5. The allergenicity and toxicity vary largely among fruit allergens. Although all fruit
allergens are potentially dangerous, some of them, like nsLTPs and GRPs, are re-
sponsible for food allergies, and provoke severe systemic reactions, especially in
Mediterranean countries;

6. In general, the consumption of allergen-containing fruits only results in mild oropha-
ryngeal symptoms that corresponds to the so-called oral allergic syndrome, OAS. In
some cases, however, more severe systemic reactions can develop, especially upon
consumption of Rosaceae fruits or kiwi fruit.

7. Bioinformatics

The amino acid sequences of fruit allergens were retrieved from the WHO/IUIS
database and the nr NCBI database (accessed on 18 August 2022). Multiple amino acid
sequence alignments were performed with ClustalX [109]. Unrooted phylogenetic trees
were built from the multiple amino acid sequence alignments using the neighbor joining
method, and were represented with TreeView [110].

The atomic coordinates of the endo-β1,3-glucanase from banana (Musa acuminata)
(PDB code 2CYG) [7], Pru av 2 from cherry (Prunus avium) (PDB code 2AHN) [14], Bet v 1
from birch (Betula verrucosa) (PDB code 4A88) [111], and Pru p 3 from peach (Prunus persica)
(PDB code 2ALG) [21] were retrieved from the Protein Data Bank (https://www.rcsb.org)
(accessed on August 2022) [112].

https://www.rcsb.org
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Homology modeling of other allergens, including the potential allergens from the
tomato fruit, was performed with the YASARA Structure program [113] using various three-
dimensional structures of the PDB as templates. PROCHECK [114], ANOLEA [115], and the
calculated QMEAN scores [116,117] were used to assess the geometric and thermodynamic
qualities of the three-dimensional models.

The surface electrostatic potentials were calculated and rendered with YASARA, using
the Amber96 forcefield with dielectric constants applied to the protein and the solvent
fixed at 4.0 and 80.0, respectively. Electrostatic potentials were displayed on the molecular
surface as red (electro-negatively charged) and blue (electro-positively charged) patches.
Neutral surfaces are white.

Continuous (sequential) and discontinuous (conformational) IgE-binding epitopes
identified in various publications were mapped on the molecular surface of the correspond-
ing X-ray-solved or modelled fruit allergens.

Molecular cartoons were drawn with YASARA, Chimera [118], and ChimeraX [119].
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