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Abstract: Osteoporosis is a skeletal disorder marked by compromised bone integrity, predisposing
individuals, particularly older adults and postmenopausal women, to fractures. The advent of
bioceramics for bone regeneration has opened up auspicious pathways for addressing osteoporosis.
Research indicates that bioceramics can help bones grow back by activating bone morphogenetic
protein (BMP), mitogen-activated protein kinase (MAPK), and wingless/integrated (Wnt)/β-catenin
pathways in the body when combined with stem cells, drugs, and other supports. Still, bioceramics
have some problems, such as not being flexible enough and prone to breaking, as well as difficulties in
growing stem cells and discovering suitable supports for different bone types. While there have been
improvements in making bioceramics better for healing bones, it is important to keep looking for new
ideas from different areas of medicine to make them even better. By conducting a thorough scrutiny
of the pivotal role bioceramics play in facilitating bone regeneration, this review aspires to propel
forward the rapidly burgeoning domain of scientific exploration. In the end, this appreciation will
contribute to the development of novel bioceramics that enhance bone regrowth and offer patients
with bone disorders alternative treatments.
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1. Introduction

Living organisms acquire their strength, durability, and some degree of flexibility
from bones, which consist of collagen and calcium phosphate apatite crystals [1]. Bone, a
mineralized connective tissue, has four distinct cell types: osteoblasts, bone lining cells,
osteocytes, and osteoclasts [2]. It holds pivotal roles within the body, including facilitating
locomotion, providing structural support, and safeguarding delicate tissues, as well as
serving as a reservoir for calcium and phosphate while also hosting bone marrow [3].
Despite that, conditions such as osteoporosis, osteoarthritis, and fractures become more
common as people grow older, posing substantial challenges in clinical settings with
increased demand for materials to repair bones. Efforts to address these bone-related
issues have evolved from traditional autogenous and allogeneic bones to modern polymer
materials and tissue-engineered bones. Ongoing scientific and clinical research in related
fields is dedicated to advancing solutions for bone-related diseases [4,5]. In a clinical
context, bone defects are typically treated with autologous bone grafts and allograft bone
grafts. Autologous bone grafting is often regarded as the “gold standard” due to its
biological benefits and cost-effectiveness [6]. Nevertheless, these methods encounter issues
such as limited donor bone volume, complications after autologous bone graft procedures,
and a relatively high occurrence of immune rejection associated with allograft [7,8].

Subsequently, it is crucial to have a comprehensive understanding of the intricate
biomechanics of natural bone and a basic knowledge of commercially available bone grafts
to facilitate successful treatment planning [9]. As a consequence, bone stands as the second

Biomimetics 2024, 9, 230. https://doi.org/10.3390/biomimetics9040230 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9040230
https://doi.org/10.3390/biomimetics9040230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-2383-6444
https://doi.org/10.3390/biomimetics9040230
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9040230?type=check_update&version=2


Biomimetics 2024, 9, 230 2 of 22

most commonly transplanted tissue on a global scale, with a minimum of four million
surgeries annually employing bone grafts and substitute materials [10–12]. Therefore,
bone tissue engineering has become a promising alternative to traditional approaches to
treating bone defects, offering solutions to overcome their drawbacks. Several techniques,
including the utilization of bioceramics; mesenchymal stem cells; and the incorporation of
diverse drugs within bioceramic substrates, employing advanced methodologies such as
3D printing and laser sintering, have been devised to fabricate composite scaffolds [13,14].

The term ‘bioceramics’ denotes biocompatible ceramic materials that find applica-
tion in biomedical or clinical contexts [15]. Their chemical composition influences the
degradability, biocompatibility, and bioactivity of bioceramics when implanted in vivo [16].
Various biomaterials have been employed as scaffolds, providing an option for the re-
generation of bone. An ideal scaffold should exhibit an interlinked porous configuration,
controlled biodegradability, mechanical characteristics akin to the bone, biocompatibil-
ity, and pores sized to facilitate cell proliferation and nutrient diffusion. The porosity of
the scaffold significantly impacts cellular adherence, proliferation, revascularization, opti-
mal nourishment, and other factors influencing cellular behavior [17–19]. The limitations
encompass brittleness, inadequate fracture toughness, exceptionally low elasticity, and
exceedingly high stiffness [19,20].

Some reports suggest that between 5% and 10% of all bone fractures, and even in some
cases, up to 50%, lead to delayed or unsuccessful healing [21]. To address these challenges,
several research studies have concentrated on improving bone regeneration by applying
mesenchymal stromal cells (MSCs) derived from different connective tissues [22]. Methods
for in vivo processing and culture have been developed to acquire an ample quantity of
MSCs for therapeutic purposes [23]. Moreover, researchers have integrated MSCs with
diverse scaffolds and signaling factors to engineer viable “bone substitutes” that mimic
the essential characteristics of autologous bone grafts, thereby promoting enhanced bone
regeneration (Figure 1) [24].

Figure 1. A schematic representation of the action of bioceramic scaffolds, mesenchymal stem cells,
and drug delivery for bone regeneration.

In the treatment of bone fractures and bone diseases, numerous beneficial therapeutic
agents exist. However, since bones are distributed throughout the entire body, maintaining
the blood concentration of therapeutic agents within a specific range is crucial to exerting
their pharmacological effects at the intended peripheral site. This often leads to undesirable
systemic side effects, creating a narrow toxic–therapeutic window for the treatment of bone
diseases. Consequently, there is a petition for the expansion of innovative drug delivery
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systems to mitigate these issues [25]. In the context of treating bone fractures, sustained
drug delivery systems are gaining attention. These systems consist of biocompatible and
biodegradable composites, incorporating bioactive materials and ceramic implants. They
are currently undergoing successful evaluation in animal models as a promising approach
for sustained drug release in the treatment of bone fractures [26]. In the jurisdiction of
biomaterial application, meticulous attention must be directed toward the pivotal factors
governing the genesis of replacement bone tissue. These factors are bifurcated into biologi-
cal determinants and mechanical stability requisites. Four fundamental components stand
out in bone repair and rejuvenation: osteogenic cells, MSCs, growth factors facilitating
osteoinduction, and scaffolding essential for osteoconduction.

In this review, we will explore the function of bioceramics for bone regeneration.
Initially, we delve into the historical background and categorization of bioceramics. Subse-
quently, we examine the reactions observed in laboratory settings and the bone-forming
capabilities observed in living organisms regarding the porous scaffolds’ ability to promote
bone growth. Following this, we recognize how different biomolecules delivered within the
scaffolds impact the integration of bone implants and the formation of new blood vessels.
Lastly, we address the impact of environmental factors on bioceramics and the incorpo-
ration of drug delivery mechanisms, and we speculate on forthcoming advancements in
scaffold technology for advancing bone tissue engineering practices.

2. History of Bioceramics

In 1920, the first documented successful use of a calcium phosphate reagent to treat
a bone defect in a human patient was reported [27]. In the 1950s, the focus was on using
inert materials to avoid tissue interaction, solely based on non-toxicity [28]. However,
ceramics like zirconia and alumina trigger foreign body reactions, leading to encapsula-
tion [29]. The 1960s saw significant progress in bioceramics, with notable contributions
from various researchers worldwide [30]. In the 1980s, there was a shift toward using
ceramics that interacted with the body, promoting bone formation [31–33]. Today, the
aim is to create porous ceramics serving as scaffolds for tissue self-regeneration [34–36].
Calcium orthophosphates, especially hydroxyapatite, have been key materials since the
1980s [37]. Currently, a range of biodegradable bioceramics has been effectively applied,
although with certain limitations. Consequently, further research is warranted to address
these constraints.

3. Classification of Bioceramics

The first generation of inert ceramics aimed to substitute natural bone; hence, the
research was only focused on inert materials (e.g., titanium, alumina, and polyethylene).
The second one was aimed at mimicking some biomineralization-related functions, and sol–
gel chemistry plays a paramount role in their synthesis and properties (e.g., hydroxyapatite
or bioactive glasses). Finally, the purpose of third-generation bioceramics is basically
to provide an adequate scaffolding system that helps bone cells perform their natural
processes, such as biodegradable ceramics (e.g., peptide or protein-modified, degradable
polymers). Tissue engineering attempts to develop artificial materials able to replace
biological tissues in situations where the human body cannot perform said replacement by
itself (Figure 2 and Table 1) [38].
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Figure 2. The three generations of bioceramics are laid out.

Table 1. Different types of bioceramics and their applications with biological behavior.

Name of the Materials Applications Biological Behavior References

Alumina
Femoral balls, inserts of acetabular cups,
artificial heart valves, dental roots, bone

screws, and endoscope
Bioinert [39]

Al2O3 Coatings for tissue growth: orthopedic Bioinert [39]

Zirconia (Y-TZP) Femoral balls, dental veneers, and
tooth inlays Bioinert [39]

Titanium nitride Antiwear coating of femoral balls and
knee prostheses Bioinert [40]

Zirconium nitride Antiwear coating of femoral balls and knee
prostheses, and coating for coronary stents Bioinert [40]

Silicon nitride Antiwear coatings of femoral balls Bioinert [41,42]

Hydroxyapatite
Bone cavity fillings, ear implants, vertebrae

replacement, hip implant coatings, bone
scaffolds, and orthopedic

Bioactive [43,44]

Bioglass Bone replacement Bioactive [45]

Tricalcium phosphate Bone replacement Bioactive/biodegradable [46]

Hydroxyapatite/PCL Tissue engineering scaffolds Biodegradable [46]

β-Tricalcium phosphate (β-TCP) Bone regeneration, bioactivity Biodegradable [47]

Dicalcium phosphate dehydrate
(DCPD) Bone regeneration, osteoconductivity Biodegradable [47]

Calcium phosphate Promotes tissue ingrowth and
vascularization Biodegradable [48]

4. Relationship of Different Types of Bioceramics

First-generation biomaterials include alumina and zirconia, which are exemplary for
their inert bioceramic properties. These materials are still utilized in certain prosthesis
components, particularly when low friction coefficients are necessary. However, these
components can lead to micromovements at the bone-to-implant interface, which can
escalate over time and ultimately result in prosthesis failure. In general, ceramics are
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inorganic materials that have a combination of ionic and covalent bonding. Bioceramics
can be derived from various substances such as alumina, zirconia, magnesia, carbon,
silica-containing compounds, calcium-containing compounds, and several other chemicals.
Hence, compounds like calcium phosphates, calcium sulfates, specific glasses, and glass
ceramics are recognized as authentic examples of bioceramics. Despite carbon being an
element and exhibiting electrical conductivity in its graphite state, it is also classified as
a ceramic due to its numerous ceramic-like properties. Presently, research is focused on
developing new advanced bioceramics, including ordered mesoporous silica materials and
specific compositions of organic–inorganic hybrids. These compounds can be manufactured
in dense or porous forms, either in bulk or as crystals, powders, particles, granules, scaffolds,
and/or coatings [49–51].

5. Mechanism of Action
5.1. The Signaling Pathway of MAPK

The signaling pathways involved in osteogenic differentiation and bone regeneration
focus on MAPK pathways and the effects of biomaterials [52]. The role of extracellular
stimulation in activating MAPK cascades has been highlighted, with extracellular signal-
regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 pathways playing essential
parts in inflammation, apoptosis, and growth [53–55]. Nano-HA accelerates osteogenic
gene expression via ERK signaling, while Mg2+ promotes bone regeneration by activating
the ERK1/2 and p38 pathways [56–58]. Calcium silicate (CS) releases ions that stimulate
osteoblast proliferation through MAPK pathways, with silicon ions enhancing ERK and
p38 activity [59–62]. Additionally, CS induces a proinflammatory response through the
Toll-like receptor 2 (TLR2)-mediated JNK pathway [63]. Overall, the interaction between
biomaterials and MAPK signaling pathways plays a key role in bone tissue engineering
and regeneration [63].

5.2. The Signaling Pathway of BMP

BMPs, part of the transforming growth factor-β (T_G_F_-beta) superfamily, are essen-
tial for bone formation and stem cell differentiation [64]. They activate signaling pathways
by binding to bone morphogenetic protein receptor-I (BMPR-I) and bone morphogenetic
protein receptor-II (BMPR-II) receptors, leading to phosphorylation events in the small
mother against decapentaplegic (SMAD) complex [65]. This activation ultimately stimu-
lates the expression of runt-related transcription factor 2 (Runx2), a critical transcription
factor controlling osteogenesis-related genes [66,67]. Bioceramics like HA and CS activate
the BMP signaling pathway, promoting the osteogenic differentiation of bone marrow
stem cells (BMSCs). This is evidenced by the increased expression of BMP2 and BMP4,
along with key molecules in the SMAD pathway [68]. These pathways play a key role
in osteoblast migration and differentiation. The inhibition of BMP2 activity leads to the
downregulation of downstream cascades involving bone morphogenetic proteins [69]. On
the other hand, a bioinert ceramic known as zirconium, when utilized at the nanoscale, was
discovered to boost the formation of apatite when combined with polymeric scaffolds [70].
This interaction triggers BMP2 signaling by facilitating the movement of phosphorylated
SMADs into the nucleus, thereby promoting osteogenesis [71].

5.3. The Signaling Pathway of Wingless/Integrated (Wnt)/β-Catenin

The Wnt signaling pathway is crucial for osteoblast differentiation and bone devel-
opment in mesenchymal stem cells (MSCs). In the classical pathway, Wnt ligands bind
to Frizzled receptors and low-density lipoprotein receptor-related protein 5 (LRP5) and
low-density lipoprotein receptor-related protein 6 (LRP6), preventing β-catenin degrada-
tion and promoting osteogenic gene expression [72]. Bioceramics release ions like calcium,
phosphate, and silicate to activate this pathway, aiding bone repair [73,74]. Strontium-
substituted bioactive glass increases β-catenin levels in hBMSCs, while Wnt pathway
inhibitors block β-catenin expression [75]. Boron-containing BG (bioactive glass) scaffolds
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enhance osteogenesis via transcription factor 7-like 2 and mediate the upregulation of
lipocalin-2. Overall, activating the Wnt/β-catenin pathway promotes osteogenic differenti-
ation, offering therapeutic potential in bone regeneration [76].

Furthermore, the heightened surface area facilitated by the nanocrystal trigger facili-
tated a greater release of calcium ions, leading to the elevated expressions of angiopoietin-1
(Ang-1) and angiopoietin-2 (Ang-2). These proteins play crucial roles in maintaining the
structural integrity of blood vessels and exert antagonistic effects on each other. Ang-1 also
plays a role in influencing bone formation, the production and mineralization of osteocalcin
(OC), and the activity of alkaline phosphatase (ALP) (Figure 3) [77].

Figure 3. Diagram illustrating the traditional bioceramics’ cellular route.

6. Uses of Porous Bioceramics

Porosity plays a key role in the fields of scaffolding and biomaterial engineering [78].
The dimensions, configurations, and arrangement of pores influence the behavior of im-
planted materials through biological mechanisms such as colonization, angiogenesis, vas-
cularization, complete resorption, and replacement of implants by newly formed tissues.
Therefore, cellular activities necessitate adequate space for proliferation, multiplication, the
removal of toxic byproducts, and the regeneration of normal body tissues. Achieving this
entails taking care to select materials that can support the desired cells, along with appro-
priately designed voids to facilitate penetration into biomaterials implanted in vivo [79].
However, in cases of pathological fractures or extensive bone defects, the process of bone
healing and repair may be compromised. Factors such as inadequate blood supply, bone or
tissue infections, and systemic diseases can adversely affect bone healing, leading to delays
in unions or non-unions [80,81]. Calcium phosphates and bioactive glasses are excellent
materials for constructing scaffolds intended to serve as a three-dimensional porous frame-
work, facilitating new bone formation within their pore structure [82]. Several techniques
have been employed to regulate the porosity of scaffolds (Figure 4). One effective approach
involves combining freeze-drying with leaching template techniques to produce porous
structures. In this method, the pore size is adjustable by controlling parameters such as the
gap space of the leaching template, temperature fluctuations, and altering the density or
viscosity of the polymer solution concentration during the freeze-drying process [83,84].
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Figure 4. There are different approaches to manufacturing porous scaffolds: (A) porogen leach-
ing; (B) solution electrospinning; (C) gas foaming; (D) freeze-drying; (E) melt electrowetting and
3D printing.

The dimensions of osteoblasts typically range from approximately 10 to 50 µm
(µm) [85]. Indeed, osteoblasts exhibit a preference for larger pores, typically ranging
from 100 to 200 µm (µm), when regenerating mineralized bone post-implantation. This
size preference facilitates the infiltration of macrophages, which play a crucial role in elimi-
nating bacteria, as well as inducing the infiltration of other cells involved in colonization,
migration, and vascularization in vivo [86]. On the other hand, smaller pore sizes, typically
less than 100 µm (µm), are associated with the formation of non-mineralized osteoid or
fibrous tissue instead of mineralized bone [87]. Cheng et al. asserted that the utilization of
magnesium scaffolds featuring two pore sizes, 250 and 400 µm, revealed that the larger
pore size fosters the enhanced formation of mature bone by facilitating vascularization.
This is attributed to newly formed blood vessels, which deliver ample oxygen and nutrients
necessary for osteoblastic activity within the larger pores of the implanted scaffolds. Thus,
this upregulates the expression of osteopontin (OPN) and collagen type I, leading to the
subsequent generation of bone mass [88]. Shrestha et al. demonstrated that a phosphate-
enriched nanocomposite comprising titanium and zinc exhibited remarkable potential for
bone regeneration in vitro. This composite induces the robust activation of MC3T3-E1
and hBM-MSCs cells, thereby instigating a profound enhancement in cell viability and
fostering osteogenic differentiation. This is substantiated by the notable upsurge in the
expression levels of critical bone-related markers such as ALP, Col1a1, RUNX2, OPN/Spp1,
and OCN. Moreover, in vivo assessments further accentuate the significant augmenta-
tion of fresh bone formation observed within critical-size calvarial defects in a rat model,
thus underscoring the unprecedented efficacy of this bioceramic composite in facilitating
bone regeneration [89]. In another study, Cao et al. created porous composite scaffolds,
comprising polyglycolic acid/beta-tricalcium phosphate (PGA/β-TCP) in weight ratios
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of 1:1 and 1:3, using a sophisticated blend of solvent-forming and particulate leaching
methods. After their insertion into rats, these scaffolds underwent rigorous evaluation
through quantitative imaging analysis and qualitative histological assessments. Their
results revealed that bone regeneration commenced within 14 days post-surgery and pro-
gressed exceptionally well, with significant healing apparent by the 30-day mark. By
the 90-day milestone, bone replacement was nearing completion, showcasing a healthy
bone appearance. Remarkably, the scaffold with a 1:3 ratio of polyglycolic acid (PGA) to
beta-tricalcium phosphate (β-TCP) demonstrated remarkable osteogenic, mineralization,
and biodegradation properties [90]. Huang et al. proclaimed that porous poly(lactide-
co-glycolide/nanohydroxyapatite (PLGA/NHA) composite scaffolds use the thermally
induced phase separation technique. They examined the impacts of solvent composition,
polymer concentration, coarsening temperature, coarsening time, and nano-HA content on
the micromorphology and mechanical properties of the scaffolds. Their findings demon-
strated that the inclusion of nano-HA significantly enhanced the mechanical properties
and water absorption capacity of the scaffolds. Additionally, the PLGA/nano-HA scaf-
folds exhibited substantially greater cell growth and ALP activity compared to scaffolds
without nano-HA [91]. In a study by Lee et al., at the 6-month follow-up, a significant
fusion rate and positive clinical outcomes were observed in the reconstruction of malar
defects using patient-specific 3D-printed BGS-7 implants. Additionally, all participants in
the trial expressed satisfaction with both the aesthetic and functional outcomes following
the operation with BGS-7 implants. Consequently, this study underscores the safety and
potential efficacy of utilizing patient-specific 3D-printed BGS-7 implants for facial bone
reconstruction, suggesting promising value in this approach [92].

Torres et al. reported that three types of scaffolds were made from a combination
of β-TCP and HA nanopowder at different ratios (80/20%, 90/10%, and 99/1%). An
alginate coating was applied to enhance mechanical strength and mimic the native bone
matrix. The 80/20 scaffold had the highest porosity and mechanical properties. Coating
improved mechanical strength, with the 80/20/A scaffold showing the best performance.
All scaffolds demonstrated high biocompatibility with human osteoblast cells, with the
80/20 formulation being the most compatible. SEM analysis confirmed cell migration
within the coated scaffolds. Overall, the 80/20 scaffold, especially when coated with
alginate, showed promising properties for bone tissue engineering [93]. Fukuda et al.
implanted cylinders with a scaffold comprising longitudinal square channels of varying
diagonal widths (500, 600, 900, and 1200 µm) into the dorsal muscles of beagle dogs.
These implants were sterilized using ethylene oxide gas and observed over 16, 26, or
52 weeks. Their results showed excellent bone formation along the channels, with more
bone quantity in implants with smaller diagonal widths (p500 and p600). Significant
osteoinduction was observed in p500 and p600, with the greatest effect seen at 5 mm from
both ends of the implants. Thicker laminated bone formation was noted at later time
points (26 and 52 weeks), indicating a time-dependent increase in bone formation [94].
Nevertheless, second-generation biomaterials present promising forecasts for scaffold
fabrication. Specifically, bioceramic scaffolds must adhere to specific porosity standards,
aligning closely with those found in natural bone tissue [28].

7. Application of Adipose-Derived MSCs

Adipose-derived mesenchymal stem cells (ADMSCs) possess an undifferentiated im-
munophenotype and exhibit characteristics such as self-renewal and multipotency. This
means they express specific surface markers typical of MSCs and can undergo numerous
cell divisions while retaining their undifferentiated state, with the ability to differentiate
into various mesodermal cell types like adipocytes, osteoblasts, and chondrocytes. These
properties make ADMSCs promising candidates for applications in regenerative medicine
and tissue engineering owing to their abundant presence in adipose tissue, ease of isolation,
and potent regenerative capabilities [95–101]. Furthermore, ADMSCs can release numerous
anti-inflammatory proteins in response to inflammatory stimuli, including tumor necrosis
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factor-α (TNF-α), interleukin-4 (IL-4), IL-6, IL-10, and IL-1 receptor antagonists. Addi-
tionally, these cells can produce a diverse array of growth factors, such as T_G_F_-β1,
hepatocyte growth factor (HGF), vascular endothelial growth factor (V_E_G_F_), and stro-
mal cell-derived factor (S_D_F_-1). These factors play pivotal roles in tissue remodeling,
angiogenesis, and antiapoptotic processes [100–102].

Research on ADMSCs in the field of tissue engineering has shown significant promise.
In recent studies by Rivera-Izquierdo et al., it has been demonstrated that ADMSCs hold
potential applications in addressing various musculoskeletal disorders and cartilage-related
conditions. These include, but are not limited to, osteoporosis, osteonecrosis, fractures,
osteoarthritis, and cartilage lesions [103]. McCullen et al.’s results suggest that adding
10% tricalcium phosphate (TCP) to electrospun poly(L-lactic acid) (PLA) enhances the
proliferation of human adipose-derived stem cells (hASCs). Conversely, incorporating
20% TCP into electrospun PLA promotes osteogenic differentiation and boosts calcium
accumulation by hASCs when compared to pure electrospun PLA scaffolds [104]. School
et al. demonstrated that, after 8 weeks, histological examination revealed substantial
tissue regeneration in hypothyroid rats treated with ADMSC-conditioned media (ADMSC-
CM) compared to untreated rats. Specifically, the newly formed tissue almost completely
covered the defect caused by hypothyroidism in the group treated with ADMSC-CM.
Their findings suggest that combining ADMSC-CM with bioceramic collagen could effec-
tively promote bone repair in hypothyroid patients with compromised bone regeneration
capabilities [105]. Xia et al. demonstrated that highly interconnected macroporous HAp
scaffolds, characterized by diverse surface topographies such as nanosheets, nanorods, and
micro–nanohybrids, effectively promoted the attachment, spreading, proliferation, and
osteogenic differentiation of rat adipose-derived stem cells (ASCs). Additionally, these
scaffolds were found to upregulate the expression of angiogenic factors, indicating their
potential to enhance angiogenesis alongside osteogenesis. Subsequently, in vivo bone
regeneration assessments using rat critical-size calvarial defect models validated that the
combination of the micro–nanohybrid surface and ASCs significantly augmented both
osteogenesis and angiogenesis compared to the control HAp bioceramic scaffold possess-
ing a traditional smooth surface [106]. Daei-Farshbaf et al. investigated the efficacy of
combining Bio-Oss and collagen type I gel as a scaffold with human adipose tissue-derived
mesenchymal stem cells (AT-MSCs) for bone regeneration in rat critical-size defects. After
8 weeks, no adverse effects were observed, and imaging analysis revealed enhanced bone
regeneration in rats treated with Bio-Oss–gel compared to untreated rats. Additionally,
MSC-seeded Bio-Oss–gel showed the highest level of bone reconstruction, with histological
staining confirming impressive osseointegration. Overall, the combination of AT-MSCs,
Bio-Oss, and gel demonstrated synergistic effects in promoting bone regeneration, sug-
gesting potential applications in bone regenerative medicine and tissue engineering [107].
Sandor et al. mentioned that in 13 consecutive cases of craniomaxillofacial hard-tissue
defects across various anatomical sites, autologous adipose tissue was used to harvest
ASCs. These ASCs were cultured, expanded, and seeded onto resorbable scaffold materials
for implantation into the defects. The scaffolds were either bioactive glass or β-TCP, with
some cases supplemented by recombinant human bone morphogenetic protein-2, and
follow-up periods ranged from 12 to 52 months. Ultimately, ten patients were successfully
treated [108].

In a clinical study, Prins et al. investigated the efficacy of stromal vascular fraction
(SVF) without in vitro cell culture. Ten patients requiring maxillary sinus floor elevation
received treatment with freshly isolated SVF extracted from autograft fat tissue using a
Celution 800/CRS device. The SVF was transplanted with ceramics to increase vertical
bone height in the posterior maxilla. Panoramic radiographs showed no significant dif-
ference between the control and study sides. However, microcomputed tomography and
biopsy evaluations revealed significantly greater osteogenesis on the stem cell-transplanted
side [109].
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In summary, ASCs offer the advantages of easy access and abundant supply [110].
While ASCs offer benefits such as easy access and ample supply, ex vivo expansion is typi-
cally necessary to minimize contamination with other cell types. However, it is important
to note that ASCs cultivated in vitro have demonstrated reduced stemness, self-renewal,
or multipotency compared to their native state [111]. Furthermore, the safety of ASCs
has not been definitively established. Chromosomal abnormalities have been detected in
cultured ASCs, which raises concerns regarding their safety for therapeutic use [112]. When
compared to bone marrow-derived mesenchymal stem cells (BMSCs), ASCs have exhibited
inferior osteogenicity in laboratory settings (in vitro). However, their superiority in vivo
(in living organisms) is still uncertain and requires further investigation [113]. Despite
this, the clinical strategy for regeneration incorporating cell therapy and tissue engineering
relies on the utilization of third-generation materials [28].

7.1. Application of Bone Marrow-Derived MSCs

BM-MSCs have been thoroughly examined and understood regarding their phenotype
and biological characteristics. They have attracted considerable attention due to their abun-
dance in bone marrow and their well-documented capacity to differentiate into multiple
cell types, including osteoblasts, adipocytes, and chondrocytes. Scientists have extensively
studied the cell surface markers and immunomodulatory properties of BM-MSCs, as well
as their secretion of trophic factors. These findings have contributed to understanding their
potential therapeutic applications in various diseases and tissue regeneration approaches.
Overall, the detailed investigation of BM-MSCs has provided a strong basis for leveraging
their therapeutic potential in regenerative medicine and tissue engineering [114,115].

Neen et al. carried out a prospective case–control study, in which the efficacy of a
collagen/hydroxyapatite matrix infused with BMSCs was compared to that of conventional
iliac autografts. The BMSC-infused matrix demonstrated similar effectiveness in promoting
posterolateral fusion but exhibited comparatively lower efficacy in facilitating underbody
and 360◦ fusions. Despite the potential drawbacks in fusion outcomes, the use of BM-MSCs
offered a significant advantage by reducing the risk of donor site complications such as
pain and neuroma formation [116]. In a study by Quarto et al., the initial documentation
of utilizing culture-expanded BM-MSCs in conjunction with hydroxyapatite biomaterial
for addressing substantial bone defects arising from traumatic fractures and unsuccessful
lengthening was reported. In this study, three patients were treated, and notable outcomes
included significant callus formation surrounding the implants and favorable integration
observed at the interfaces with the host bones within two months post-surgery. Further-
more, there were no reported adverse reactions to the implants, and all three patients
successfully regained full limb functionality [117]. Numerous registered clinical trials
have employed autologous bone marrow mononuclear cells (BM-MNCs), MSCs, or pre-
osteoblasts, either administered via injection or coapplied with bone auxiliary materials
as transporters, to address delayed unions and non-unions of extended bones. Among
these studies, Emadedin et al. documented the safety of injecting cultured MSCs, with
evidence of bone union observed in three out of the five treated patients [118]. Moreover,
Gomez-Barrena et al. documented that the surgical administration of culture-expanded
bone marrow MSCs in conjunction with bioceramic granules for addressing delayed unions
and non-unions was both safe and viable. Their study revealed that 26 out of 28 patients
showed radiological evidence of healing one year after treatment [119].

Xu et al. performed a study in which, initially, MSCs were cultured for two weeks
before being introduced into the damaged area. Subsequently, these cells were placed
onto a bioactive glass–collagen–hyaluronic acid phosphatidylserine scaffold. The presence
of MSCs notably boosted the generation of new bone tissue [120]. Zhang et al. reported
that, following a 7-day culture period, (Sr2ZnSi2O7) SZS and (Sr2MgSi2O7) SMS signifi-
cantly enhanced the osteogenic differentiation of BMSCs compared to conventional β-TCP.
Furthermore, in terms of their overall effectiveness, SZS and SMS exhibited comparable
abilities to akermanite (Ca2MgSi2O7) and CMS in promoting cell growth and stimulating
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cell differentiation. Their results collectively suggested that SZS and SMS hold promise for
use in bone regeneration applications [121].

Sun et al. demonstrated that, in addition to the enhancement of cell proliferation,
akermanite promoted the osteoblastic differentiation of hBMSCs in vitro by upregulating
osteogenic gene expression. Akermanite bioactive ceramics not only simply boosted the
osteoblastic differentiation of hBMSCs in osteogenic media (a-MEM supplemented with
ascorbic acid, glycerophosphate, and dexamethasone) but also improved cell prolifera-
tion in normal growth medium without osteogenic reagents. These results suggest that
akermanite may be used as a more promising bioactive ceramic for bone regeneration
and tissue engineering applications [122]. Xia et al. reported that akermanite bioceramics
have several benefits for bone regeneration in osteoporosis. They enhance cell growth and
differentiation, increase angiogenic factor expression, and suppress osteoclast activity. In
animal models, they outperform β-TCP bioceramics in promoting bone formation, angio-
genesis, and inhibiting osteoclastogenesis. The presence of magnesium and silicon ions in
akermanite bioceramics contributes to these positive effects, making them promising for
osteoporotic bone regeneration [123]. Maiti et al. performed a study on live rabbits using
a critical-size defect (CSD) model to confirm the application of BMSCs whether obtained
from the same individual (autogenous), a genetically distinct individual of the same species
(allogenous), or even from a different species (xenogenous) and elaborated that seeding
onto bioscaffolds accelerates the healing process of critical-size defects. Therefore, it can be
inferred that BMSCs show potential for promoting bone formation in situations like fracture
healing and non-unions [124]. Lin et al.’s studies involved creating macroporous scaffolds
using strontium-containing calcium silicate (SrCS) bioceramics. Their findings showed that
SrCS materials, which release bioactive strontium and silicon ions, created an environment
conducive to directing rBMSCs-OVX toward becoming osteoblasts and promoted angio-
genesis in endothelial cells (ECs). Both pure CS and SrCS inhibited osteoclastogenesis by
stimulating osteoprotegerin (OPG) and suppressing the receptor activator of nuclear factor
kappa-B ligand (RANKL). However, the inhibitory effect was stronger and longer-lasting
with SrCS compared to CS, which only showed early-stage inhibition [125]. Maiti et al.
demonstrated that cultivating autologous rabbit bone marrow-derived mesenchymal stem
cells (rBMSCs) on a bioscaffold made of silica-coated calcium hydroxyapatite (HASi) could
expedite the scaffold’s osteoconductive properties, presenting a potential substitute for
autogenous bone grafts in addressing substantial bone defects and non-healing fractures.
Additionally, introducing growth proteins, specifically recombinant human bone morpho-
genetic protein (rhBMP-2), to the autogenous MSC-seeded HASi bioceramic framework
could accelerate bone regeneration in a rigorously controlled study using a large critical-size
bone defect model [126].

In the study by Gomez-Barrena et al., effective bone consolidation utilizing expanded
hBM-MSCs in combination with biomaterials, as assessed through clinical and radiological
examinations, was particularly emphasized during a 12-month assessment. Bone regen-
eration was additionally confirmed via bone biopsies. There were no notable disparities
observed in the consolidation of affected bones, although tibial non-unions displayed
slower consolidation rates. Individuals who smoked exhibited reduced consolidation
scores at both the 6- and 12-month intervals, while no noticeable impact was identified
based on gender or the duration since the initial fracture [127].

7.2. Application of Extracellular Vesicle-Derived MSCs

Intercellular communication, crucial for multicellular organisms, traditionally occurs
through direct cell–cell contact or the transfer of secreted molecules. However, a third
mode of communication has emerged in the last two decades, involving the exchange of
EVs between cells. These EVs, encompassing exosomes and microvesicles, have gained
prominence for their roles in liquid biopsy as biomarkers and their potential therapeutic
applications. EVs, by ferrying a diverse array of biomolecules, can influence the behavior
and function of recipient cells, impacting various physiological and pathological processes.
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Their presence in bodily fluids offers opportunities for non-invasive disease diagnosis and
monitoring. Moreover, EV-based therapies hold promise in regenerative medicine, drug
delivery, and immunotherapy. In essence, the discovery and understanding of EVs have
broadened our insights into intercellular communication and opened new avenues for
medical diagnostics and treatments [128]. Particularly, the therapeutic application of EVs
is involved in bone regeneration, thanks to the regulation of immune environments, the
enhancement of angiogenesis, the differentiation of osteoblasts and osteoclasts, and the
promotion of bone mineralization. Since naked EVs are vulnerable when transplanted
in vivo and difficult to target at bone defect sites, the approach of loading EVs with bioma-
terial systems possesses tremendous advantages, as shown in the schematic illustration in
Figure 5.

Figure 5. An illustrated synopsis of EVs’ role in bone regeneration.

Indeed, EVs delivered via biomaterials show great promise in the field of bone regen-
eration. These EVs can be immobilized within gels, actively linked to molecular binders,
or affixed to the surfaces of biomaterials, enabling precise control over their release. This
controlled release mechanism holds the potential for enhancing bone healing and regen-
eration processes [129]. Zhang et al. mentioned that the integration of exosome/β-TCP
combination systems enhanced osteogenesis ability compared to the utilization of β-TCP
scaffolds alone in a rat critical-size calvarial bone defect model [130]. Wiklander et al.
also illustrated that they attained alveolar bone regeneration using an exosome/β-TCP
system [131].

As reported in a recent review and research paper, EVs derived from osteoblasts, os-
teoclasts, osteocytes, monocytes, macrophages, and dendritic cells contain various miRNAs
and proteins. These components are implicated in either enhancing or inhibiting os-
teogenic activity [132]. Research has indicated that extracellular vesicle (EV)-borne miRNA
can be targeted by high-mobility group AT-hook 2 (HMGA2) [133], glycogen synthase
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kinase-3β/β-catenin [134], or the Wnt/β-catenin pathway [135], all of which are known to
contribute to osteogenic differentiation. Furthermore, EVs also carry abundant proteins
such as tissue non-specific alkaline phosphatase (TNAP6) and matrix metalloproteinase
(MMPs), which are essential for bone remodeling.

8. Impact of Environmental Factors on Bioceramics

In recent eras, a superfluity of groundbreaking biomaterials with the capacity for
remote activation has emerged, presenting an inimitable prospect to precisely and locally
treat diseases by modulating cell signaling pathways in vitro [136–139]. Ophthalmic, elec-
trical, ultrasound, and magnetic methodologies have been widely deployed to encourage
synthetic biomaterials to modulate cell signaling, leveraging their non-invasive attributes
and precise aptitude to regulate biological functions. These modalities reveal significant
potential for translation into in vivo surroundings [140–144]. Amid the assortment of ap-
proaches, near-infrared (NIR) light stimulation stands out for its expedient features, as it
imposes minimal detriment upon cells and organs.

Fu et al. elaborated that utilizing near-infrared (NIR) light to activate photoelectrons
within a bismuth sulfide/hydroxyapatite (BS/HAp) film effectively guides cellular fate to-
ward osteogenic differentiation in vitro and promotes improved bone regeneration in vivo.
The engineered Ti-BS/HAp composite demonstrated elevated photocurrent levels, credited
to the reduction in h+ ions and the transfer of interfacial charges facilitated by HAp. This
mechanism empowers the regulation of biological processes within deep tissues using NIR
light [145].

The physical and chemical features of bioceramics are subject to amendment in en-
vironments categorized by varying pH levels [146]. The instigation of hydration, the
formation of hydrate phases, and the reactions of cement clinkers can be obstructed by the
concentration of hydrogen ions and the pH level [147]. Acute mechanical and chemical
features of a biomaterial, such as setting reaction, compressive and tensile strength, hard-
ness, and microleakage, could be conceded in acidic or alkaline environments [148–150].
It appears that the pace of pH fluctuations during the initial stages of hydration might
influence the setting procedure and crystallization of bioceramics [151].

9. Drug Delivery

Poly(methyl methacrylate (PMMA), the primary material used for local antibiotic
carriers in clinical settings, has several disadvantages. Firstly, heat generated during
scaffold synthesis can lead to the degradation of the antibiotic and surrounding tissues.
Secondly, PMMA is non-absorbable, requiring surgical removal, which increases the risk
of infection. Additionally, PMMA may hinder bone regeneration and conduction, adding
complexity to clinical outcomes [152,153]. Hence, there is a growing interest in utilizing
absorbable and osteogenic novel materials for fabricating antibiotic-loaded carriers [154].

For that reason, the incorporation of antibiotics into osteoconductive materials such
as calcium sulfate, hydroxyapatite, and tricalcium phosphate for localized osteomyelitis
treatment has shown promise, effectively addressing the issue of dead space while simulta-
neously eradicating the infection [155–160]. Ongoing research aims to develop bioceramics
capable of releasing antibiotics over a sufficient duration to effectively treat the infection.
However, these bioceramics are designed to cease drug delivery at a specific time point to
prevent low antibiotic concentrations and the development of bacterial resistance. In in vivo
experiments using animal models with infected proximal tibial defects, the implantation of
the vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) (V-BHA/PAA) scaffold
after surgical debridement revealed several positive outcomes. Not only was the infection
effectively cleared, but the V-BHA/PAA scaffold was also closely integrated with the host
bone. Additionally, there was an observed ingrowth of new vessels and trabecular bone
around the scaffold. As the scaffold degraded over time, new bone formation gradually
replaced it, demonstrating excellent osteoconductive properties. Moreover, the absence
of necrosis in the surrounding bone indicated good osteogenic properties of the scaffold,
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with simultaneous new bone formation occurring at the defect site [161]. The vancomycin
released from the V-BHA/PAA scaffold, a novel vancomycin-loaded bone repair material,
demonstrated potent antibacterial activity both in vitro and in vivo against both regular S.
aureus and MRSA (methicillin-resistant Staphylococcus aureus) strains. Furthermore, the
antibacterial efficacy of the V-BHA/PAA scaffold surpassed that of V-PMMA significantly.
Given its biodegradability and ability to induce osteogenesis, V-BHA/PAA stands out
as a promising option for the treatment of chronic bone infections [162]. HAC is a bone
cement used in vivo that fully converts to hydroxyapatite and exhibits excellent biocom-
patibility. By incorporating antibiotic solutions, such as gentamicin, HAC can serve as
a carrier for various antibiotics. Mixing gentamicin into HAC does not compromise the
effectiveness of the antibiotic or the mechanical properties of the cement within the concen-
tration range typically used. This delivery system provides the sustained release of high
levels of antimicrobial agents, resulting in long-term local antibacterial efficacy. Our in vivo
study demonstrated a beneficial impact on bone infection resolution and regeneration [163].
In a rat model of debrided osteomyelitis, ceramic void filler containing gentamicin (CE-
RAMENT G) demonstrated a decreased rate of persistent infection and enhanced new
bone growth compared to the same void filler lacking antibiotics (CERAMENT) and an
empty defect. Additionally, tobramycin-incorporated calcium phosphate bone substitute
(CPB) effectively facilitated soft tissue and bone healing while preventing early bacterial
colonization by Staphylococcus aureus in infected tibia [164].

10. Limitations and Future Potential Development of Bioceramics

The primary drawback of bioceramics lies in their suboptimal mechanical properties,
particularly their limited reliability when subjected to tensile loads. Bioceramics exhibit low
toughness, inadequate fatigue resistance, brittleness, and impact resistance, which signifi-
cantly restricts their suitability for serving as bulk materials capable of withstanding tension
or impact forces [165–167]. Incorporating bioceramics into composite materials with other
reinforcements enhances mechanical properties. Techniques such as nanoparticle doping
and nanofiber reinforcement improve strength, toughness, and ductility at the nanoscale. In
addition, introducing dopant elements such as magnesium or strontium enhances mechan-
ical properties and bioactivity. The sintering process control during fabrication influences
microstructure and mechanical properties. The optimization of parameters, including
temperature and time, enhances density, strength, and fatigue resistance.

The drawback of scaffold research lies in the absence of specific recommendations
regarding which type of scaffold—whether macro, meso, or micro—is best suited for differ-
ent types of bones. Nevertheless, the choice of scaffold for bone fracture healing depends
on factors such as bone position, mechanical properties, and biological requirements, as
well as scaffold material features. Long bone fractures may require stable macroporous
scaffolds, while flat bones could benefit from microporous scaffolds with controlled pore
sizes. Irregular bones might need mesoporous scaffolds accommodating different cell types.
Customized scaffold designs tailored to specific pore structures and material properties
may be necessary for optimal healing. Researchers should carefully consider these factors
and conduct comprehensive studies to assess scaffold effectiveness across different bone
types and anatomical locations.

Additionally, a promising avenue for advancing bioceramics for bone regeneration
involves combining bioactive ceramics with drug delivery and biodegradable materials,
along with the use of extracellular vesicles. This innovative approach holds significant
potential for developing future generations of effective bioceramics for bone healing.

11. Conclusions

Our review thoroughly scanned the role of bioceramics in bone regeneration, covering
their history, classifications, and how they work. We explored how bioceramics combined
with scaffolds, cells, and drugs can aid regeneration, especially when used in porous forms.
Despite progress, research in this area still leaves so many gaps and many questions unan-
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swered. So it is crucial to keep investigating to unlock bioceramics’ full potential. Recent
studies have shown promise to utilize porous bioceramic scaffolds for bone regeneration,
but we need to determine which type of porous scaffold is best fit for different parts of
the body. Although bioceramics hold great promise for bone tissue engineering, they still
have weaknesses like being too brittle. Techniques like nanoparticle doping and nanofiber
reinforcement offer hope for making bioceramics stronger for clinical use. Ongoing research
is crucial for improving bioceramics and making them better at helping bone healing. In
conclusion, gaining a more profound comprehension of the involvement of bioceramics
would significantly enhance the development of more potent and efficacious therapeutic
approaches for bone regeneration.
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