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Abstract: In recent years, swarm intelligence optimization methods have been increasingly applied
in many fields such as mechanical design, microgrid scheduling, drone technology, neural network
training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization
hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems
of slow optimization speed and being easily susceptible to falling into local extremum in the opti-
mization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole
algorithm more diverse by introducing the strong global search ability of particle swarm optimization
and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing).
The ascending and descending stages of dandelion also help to introduce more changes and explo-
rations into the search space, thus better balancing the global and local search. The experimental
results show that compared with other algorithms, the proposed PSODO algorithm greatly improves
the global optimal value search ability, convergence speed and optimization speed. The effectiveness
and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three
engineering design problems with different complexities in CEC 2005 and comparing it with other
optimization algorithms.

Keywords: dandelion algorithm; particle swarm optimization algorithm; function optimization;
multi-objective optimization; Levy flight

1. Introduction

With the continuous development of science and technology, the complexity and scale
of various practical application problems and optimization problems are increasing, and
the traditional optimization problem-solving methods are no longer suitable for solving
complex problems or make it difficult to meet the needs of high-precision solutions [1,2]. In
recent years, swarm intelligence algorithms inspired by various biological groups in nature
have been widely studied by international scholars, such as particle swarm optimization
(PSO) [3], the butterfly optimization algorithm (BOA) [4], the SALP Swarm Algorithm
(SALP) [5] and so on. This kind of algorithm has been widely used in solving optimization
problems and other scientific fields because of its simple principle, high flexibility and
high efficiency. Optimization algorithms provide a powerful tool for the engineering
field, as they can accelerate the design process, improve system performance, reduce costs,
optimize resource utilization and provide support for engineering decision-making [6,7].
Optimization algorithms have always been a hot topic in the field of engineering. With the
development of society, more and more complex optimization problems have emerged.
Traditional optimization algorithms can no longer meet requirements, and more efficient
intelligent optimization algorithms are urgently needed. Therefore, people are focusing on
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swarm intelligence optimization algorithms, such as gray wolf optimization (GWO) [8],
the Whale Optimization Algorithm (WOA) [9], Firefly FA (Firefly Algorithm) [10] and the
Sparrow Search Algorithm (SSA) [11]. These algorithms are not limited in search space
and objective function form and have good optimization ability, so they have been widely
used in real life and engineering fields [12,13]. However, as the constraints of practical
problems become more and more stringent, the applicability of many such algorithms
has been insufficient, which requires the higher performance and higher applicability of
optimization algorithms to deal with these complex application problems.

Dandelion Optimizer was first proposed by S. Zhao and T. Zhang in 2022, which
was inspired by the seed propagation of dandelion plants and the fluffy structure of the
flowers [14]. The DO algorithm is designed to solve engineering and scientific optimization
problems, and its goal is to search the global optimal solution by simulating the growth and
propagation mechanism of dandelion plants [15,16]. The algorithm has been successfully
applied in engineering applications of artificial intelligence, antenna arrays, the design of
independent microgrid systems and economic analyses [17]. However, due to the limitation
of its own population, dandelion is still weak in global search ability, and it can easily fall
into local optimum [18]. The long-distance flight process of dandelion seeds by wind was
simulated, and two main factors, wind speed and weather, were added. Brownian motion
and Levy flight were introduced to describe the trajectory of seeds.

In the original PSO and DO algorithms, there is a defect of easily falling into local
optima when solving complex problems such as multidimensional problems and nonlin-
ear optimization. In order to address these issues, this paper proposes a multi-strategy
improved PSODO algorithm. The main contributions of our algorithm are as follows:

1.  Combining the particle-updating rules of the DO algorithm with the particle position
and velocity-updating rules of the PSO algorithm, thereby expanding its search range
in the solution space.

2. Introducing a velocity decay strategy. In the early stages of algorithm optimization,
higher velocities help particles explore the search space more widely to find the global
optimal solution. However, as the iterations progress, excessively high velocities may
cause the algorithm to skip some potentially excellent solutions. The velocity decay
strategy is used to control the particle velocities in the population, providing a finer
nutrient search for the later stages of the algorithm search process, thus balancing
exploration and exploitation.

3.  Improving the stability of solutions. By mixing these two algorithms and reducing
the learning rate of PSO, the stability of solutions can be further improved, reducing
oscillation problems during the solving process.

The organization of the subsequent sections in this paper is as follows: Section 2
introduces the related works. Section 3 provides a detailed introduction to the dandelion
optimization algorithm, including its rising, falling and landing phases. Section 4 elaborates
on the PSODO algorithm, including the background and pseudocode of the PSO algorithm,
the concept of combining PSO and DO algorithms, the process and the pseudocode of the
PSODO algorithm. Section 5 presents the simulation results of the PSODO algorithm and
six other algorithms, including optimal values, averages and variances of 22 benchmark
functions; convergence curves of seven algorithms; the feasibility of the velocity decay
strategy; and three typical engineering problems such as the three-bar truss design problem
(TTD), pressure vessel design problem (PVD) and compression spring design problem
(CSD). Finally, the paper concludes with conclusions and future prospects.

2. Related Works

The dandelion optimization algorithm is a heuristic algorithm based on dandelion
falling reproduction. It is not easy for the algorithm itself to fall into local extremum and it
has strong robustness. However, the falling operation of the algorithm adopts a fixed step
size, which may wander around the optimal position and consume time, resulting in the
loss of dandelion individuals with high fitness [19]. The dandelion optimization algorithm
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is a new optimization algorithm, which is based on the diffusion process of dandelions in
nature and finds the optimal solution through population synergy [20]. Compared with
other algorithms, the dandelion algorithm has the advantages of fast convergence and easy
implementation [21,22]. Therefore, the dandelion algorithm has a wide application prospect
in solving single-objective optimization problems. The dandelion optimization algorithm
has been paid attention by a large number of researchers, and many improved algorithms
have been proposed to solve complex engineering application problems. Erda s et al. [23]
proposed the application of the dandelion optimization algorithm to the optimization
design and production process of seat brackets to optimize the production process, reduce
costs and improve production efficiency. Wang et al. [24] proposed a multi-threshold seg-
mentation method for breast cancer images based on an improved dandelion optimization
algorithm, which achieved the highest fitness value and the fastest convergence speed
when using the same threshold number. Han et al. [25] proposed an improved dandelion
algorithm UAV path planning strategy. The algorithm proposes a new coding strategy, in
which each dandelion represents a foothold of UAV, and the whole dandelion population
is regarded as a whole deployment, which improves the efficiency of data collection.

However, after further study, the dandelion optimization algorithm does not have
a high enough convergence accuracy, too easily falls into local optimum, and so on, for
solving complex optimization problems. According to the theorem of “no free lunch”,
there is no algorithm suitable for solving any optimization problem. Therefore, it is
very meaningful to improve the algorithm from different angles. Relevant scholars have
made some improvements in view of its shortcomings. For example, in reference [25]
proposed a dandelion optimization algorithm based on insanity self-adaptation, which uses
a chaotic map to initialize the population to improve individual diversity and introduces
an insanity operator to update the leader position to improve the development ability of
the algorithm. Reference [26], differential mutation operation is introduced into the leader
position update mechanism of the standard dandelion optimization algorithm, which
improves the global optimization ability of the algorithm and accelerates the convergence
speed of the algorithm. Khalil et al. [27] proposed a new cascaded loop controller based on
the dandelion optimization algorithm, which combines fractional proportional derivatives
with filters and fractional proportional skewed integral derivatives (FPDN-FPTID) to
improve the LFC of single region and multi region IMGs. Reference [28] proposed a
dandelion optimization algorithm based on an adaptive normal cloud model, which uses
a normal cloud model mechanism to help the algorithm jump out of local optimum and
improve the diversity and search accuracy of the algorithm.

In 1995, Dr. Eberhart and Dr. Kennedy proposed the particle swarm optimization
algorithm (PSO), which was inspired by birds’ foraging behavior. Compared with other
algorithms, these two algorithms are easy to implement, simple in principle and strong
in optimization ability. However, with the further development of research, it is found
that there are still some shortcomings in the application process, but these two algorithms
provide improved ideas for later researchers. To solve the above problems, this paper pro-
poses a multi-strategy particle swarm hybrid dandelion optimization algorithm (PSODO).
The algorithm first uses particle swarm optimization to update the population in the initial
stage of population, then calculates the fitness value of each particle and dandelion, that
is, the objective function value, then updates the individual and global optimum, updates
the individual optimal solution (pp.s) for each particle and dandelion and then updates
the global optimal solution (gpes;) according to the individual optimal solution (pp,st). It is
compared with the PSO, GWO, WDO, SCA, TSA and DO algorithms. The effectiveness and
feasibility of PSODO are verified by solving 22 benchmark functions and three engineering
design cases of CEC2005 and comparing it with other optimization algorithms.

3. Dandelion Optimization Algorithm

Dandelion optimizer (DO) was proposed by Shijie Zhao et al. in 2022, which simulates
the long-distance flight of dandelion seeds by wind and includes three stages, namely, the
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ascending stage, descending stage and landing stage [29]. The algorithm considers two
main factors, wind speed and weather, and introduces Brownian motion and Levy flight to
describe the trajectory of seeds [30]. In the ascending stage, according to different weather
conditions, seeds move in a spiral ascending way in the community or flow locally [31]. In
the descent stage, by constantly adjusting the flight direction in the global space, the seeds
descend steadily after rising to a certain height; in the landing phase, under the influence of
wind and weather, seeds randomly select positions to land. Dandelion seed transmission
experiences three stages and realizes population evolution [32].

The framework of the DO algorithm roughly consists of four parts: population ini-
tialization, population fitness calculation, population updating and global optimization
selection. It contains two main parameters, namely, seed propagation radius « and local
search coefficient K. Seed propagation radius « and local search coefficient K change with
time in the iterative process; o is used to adjust the global search step size and local search
coefficient K is used to adjust the process from exploration to development and avoid local
optimization by random numbers obeying normal distribution [33].

A dandelion population matrix seed with N seeds and d-dimensional decision space
is defined, and its i-th seed can be expressed as X; = [Xl.l, XZ.Z, Xi3, .., Xf], i=1,2,...,N.
The population is initialized as Formula (1):

Xi;=Lp+r; x (Ug—Lp) (1)

Among them, parameter r; is a random number between (0, 1) which obeys normal
distribution, Up is the maximum value in decision space, Lg is the minimum value in
decision space, N is the maximum row value of the population matrix, d is the maximum
column value of the population matrix, and the same characters in the following are
synonymous [34].

(1) Rising stage

Dandelion seeds disperse after reaching a certain height. Affected by wind speed,
temperature and humidity, the rising height of dandelion seeds is different, which can be
divided into two situations according to the weather. On a sunny day, the wind speed obeys
the normal distribution of logarithmic property InY ~ N (i, 0?) randomly and uniformly
distributed along the Y axis. Dandelion seeds have more opportunities to spread to distant
areas. In this process, the DO algorithm emphasizes exploration. In the exploration space,
dandelion seeds are randomly blown to different positions by the wind. Wind speed
determines the flying height of seeds. The stronger the wind, the farther the seeds are
scattered. The wind speed constantly adjusts the vortex above the seed, and the rising
posture is spiral. In this process, the expression corresponding to the seed ascending stage
is shown in Equation (2) [35].

Xip1 = X +avy0y InY(Xs — Xy) (2)

where X; is the position of the seed in t iterations. X; is the randomly selected location in
the search space during the iteration. The random locations selected by Xs are shown in
Equation (3).

Xs = rand(1)(Ug — Lp) + Lp (3)

where Up and Lp values are set to 1 and 0, respectively, and rand(1) is a random number.
The function InY obeys the lognormal distribution of 4 = 0 and ¢? = 1, and its formula is
shown in (4).

mexpl= g2 (Iny)’] ¥y >0
InY = {y\/ﬁ exp[—52(Iny)7] ,y= "
0, ,y<0
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Parameter Y is the standard normal distribution N (0, 1). The search step « is adjusted
as an adaptive parameter, as shown in Equation (5).

1, 2

a—rand()(ﬁt —TtJrl) (5)

Random perturbation factor « is in [0, 1]. With the increase in iteration times, «

nonlinearity decreases and tends to 0. In the initial stage of the algorithm, the disturbance

is relatively large, and the algorithm pays more attention to the global search. In the later

stage of the algorithm, & decreases and the algorithm turns to the local search. Turning

to a local search after a global search is more conducive to accurate convergence. When

the separation vortex acts on dandelion, the lift component coefficients v, and vy, will be
produced. The variable dimensional force formula is shown in Equation (6).

4

r=e"
vy = rcosf (6)
vy = rsin @

The parameter 6 is a random number [, 7t]. On rainy days, affected by air humidity,
air resistance and other factors, dandelion seeds cannot fully rise with the wind, and seeds
are developed in local areas. The corresponding formula is shown in Equation (7).

X1 = Xik 7)

The parameter k value adjusts the local search area of dandelion. The k value is
calculated as shown in Equation (8).

_ 1 1 1
9=l ~ Pttt o Tl )
k=1-—rand()g

In Equation (8), the value of k oscillates convexly downward. This is beneficial for the
algorithm to search the global region with a long step in the initial stage and develop the
local region with a short step in the later stage. With the increase in iteration times, the
parameter k value is closer and closer to 1, which can ensure that the population finally
converges to the optimal search individual. Based on the above analysis, the analytical
formula describing the ascending stage of dandelion seeds is shown in Formula (9).

{Xt + v, vy InY(Xs — Xt) ,rand(n) < 1.5
Xip1 = ©)
Xk ,others

where rand(n) is a random number that obeys the standard normal distribution. Equation (9)
gives the approximate position of dandelion seed evolution: under sunny weather, the
position information to update is randomly selected, the spiral movement direction of
seeds is corrected by vx and vy and the exploration process is emphasized. On rainy days,
dandelion seeds are developed in local areas. Using the exploration and development of
the normal distribution dynamic control algorithm of random numbers, the truncation
point value is set to 1.5, which makes the algorithm more global-oriented and traverses the
whole search space as much as possible in the initial stage, providing a correct direction for
the next iterative optimization.

(2) Descending stage

In this stage, the DO algorithm emphasizes the search and optimization of the algo-
rithm. Dandelion seeds descend steadily after rising to a certain height. The DO algorithm
uses Brownian motion obeying normal distribution to simulate the movement track of
dandelion seeds, so that individuals can easily traverse more search areas in the iterative
process. Average position information after the rising stage reflects the stability of dande-
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lion descent, which is helpful for the whole population to search and develop the optimal
individual areas, as shown in Formula (10).

Xiy1 = Xp — aBe(X{"" — apiX;) (10)

Parameter B; is a random number and obeys Brownian motion with normal distribu-
tion. X}"*" is the average position information of the population at the ¢-th iteration, as

shown in Equation (11).
N,

1
Xpen = =YX, (11
i=1

Parameter N, is the number of populations. The average position information of the
population determines the evolution direction of individuals, which is very important
for the iterative update of individuals. Irregular Brownian motion based on a global
search can make individuals escape from the local extremum with high probability when
iteratively updating and force the population to search for optimization in the range close
to global optimum.

(3) Landing phase

The DO algorithm focuses on development. After the first two stages, dandelion seeds
randomly select positions to land. With the increase in iteration times, the algorithm is
expected to converge to the global optimal solution, reflecting the approximate position
where seeds are most likely to survive. Therefore, after obtaining the approximate position
where the optimal dandelion seeds are most likely to grow, the algorithm can accurately
converge to the global optimal solution by using the local information of the current elite
individuals. With the continuous evolution of the population, the final algorithm converges
to the global optimal solution, and the expression is Formula (12).

Xt-‘rl = Xelite + Levy<A)“(Xelite - Xfé) (12)

Parameter X, is the optimal position of the seed generated in the t-th iteration. Levy
(A) is a Levy flight function, which is used to enhance the local search ability. Parameter
¢ is a linearly increasing function, and its value is [0, 2], which is used to avoid over-
exploitation and make it converge to the global optimum accurately, and T is the total
number of iterations.

Levy(A) = swa/|t\% (13)
§=2t/T (14)

Parameter § is a random number, and its value range is [0, 2], and 1.5 is taken in this
paper. Parameter s is 0.01. Parameters w and t are random numbers with values in [0, 1].

4. Dandelion Algorithm Optimized by PSO (PSODO) Particle Swarm Optimization

Inspired by the regularity of bird foraging behavior, James Kennedy and Russell
Eberhart established a simplified algorithm model, which, after years of improvement,
ultimately formed the particle swarm optimization (PSO) algorithm [36]. The idea of
particle swarm optimization (PSO) originates from research on the foraging behavior of
birds. Birds find the best destination through collective information sharing. For example,
imagine such a scenario: birds randomly search for food in the forest, and they want to find
the position with the largest amount of food or there is only one piece of food in a certain
area (that is, the optimal solution studied in the optimization problem), but all birds do
not know where the food is and can only feel the approximate direction of the food [37,38].
Therefore, each bird searches along the direction determined by itself and records the
position where it has found the most food in the process of searching. At the same time, all
birds share the position and amount of food found every time, so that each bird in the flock
can judge whether it has found the most food (optimal solution). At the same time, the
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information of the optimal solution is transmitted to the whole bird flock, and finally, the
whole bird flock can gather around the food source, that is, we find the optimal solution,
that is, the problem converges [39]. Particle swarm optimization (PSO) has the advantages
of fast convergence, few parameters, a simple algorithm and easy implementation (for
high-dimensional optimization problems, it converges to the optimal solution faster than a
genetic algorithm), but it also has the problem of falling into the local optimal solution, so
it depends on good initialization [40].

The PSO algorithm updates rules. First, the expression (15) for updating the velocity
and position of each particle in PSO is as follows:

Vij = w-Vij + c1r1-(Pj — Xij) + c212+(Gj — Xj) (15)

Parameter V; is the velocity of particle i in dimension j; X;; is the position of the particle
in dimension j; parameter P;; is the individual optimal position of the particle, which is the
global optimal position; w is the inertia weight, which controls the influence of the previous
velocity on the current velocity to keep its motion inertia and has the ability to search for
new areas; ¢1 and ¢ are acceleration factors; rq and r, are random numbers; r{ and r, are
the rand() function, and their value range is [0, 1). The location update Formula (16) is
as follows:

Xij = Xij + Vi (16)

The pseudo code of the PSO algorithm is shown in Algorithm 1.

Algorithm 1: Particle swarm optimization

Input: POP, Dim, T, [Ib, ub], [Vi0, Umax]-

Output: Best_fitness, Best_pos.

1: Initialize population with random positions and velocities within the search space [Ib, ub].
2: Evaluate fitness for each particle

3: Update personal best position (pgest_pos) and personal best fitness (Ppest fitness) if necessary.
4: Determine if the maximum T has been reached.

5: Update (ppest_pos) and ppes; fitness based on the best particle’s position and the fitness. Update
based on the position and fitness of the best particles (pgest_pos) and ppest_fitness-

6: Record the best fitness value in the iteration.

7: Update the inertia weight w if necessary.

8: Reached cycle count T, ending cycle.

9: Return ppest_pos and ppest _fitness-

Hybrid Strategy of PSODO Algorithm

The PSODO algorithm combines the characteristics of particle swarm optimization
(PSO) and dandelion optimization (DO), and realizes mixing through their updating rules.
In the PSO part, we use the speed update formula of PSO, including inertia weight and
individual and social learning factors, and guide the particle search through individual
optimal position (pp.st) and global optimal position (gp.s). In the part of DO, we use the
randomness of the DO algorithm to increase the diversity of the search through random
numbers and different update strategies and use the location update rules of DO, including
a random selection update strategy, dandelion algorithm adjustment and so on. More
randomness is introduced through random numbers, including the random selection
and updating strategy of the DO part and dandelion optimization parameters, etc. This
randomness helps the algorithm jump out of the local optimal solution and increase the
global search ability. In addition, we also introduce a deceleration strategy to balance the
global search and local search. By properly adjusting the deceleration strategy, we can
introduce particle swarm optimization in the early stage of the algorithm to make particles
move in the whole search space at a higher speed, realize the global search and hopefully
find the global optimal solution. In the later stage, the velocity of particles is gradually
reduced, so that particles can search more finely near the global optimal solution and
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improve the accuracy of the solution. The flow chart of the PSODO algorithm is shown in

Figure 1.

Population and speed
initialization parameter
settings

v

Calculate initial fitness
values, update individual
and global optima

Figure 1. The flow chart of the PSODO algorithm.

y

Update the current V;; and
Xj; according to PSO rules

;

Calculate the current

fitness value, update

individual and global
optima

Partial particles update
the current V;; and Xj;
based on DO rules

!

Record individual and
global optima, as well as
optimal fitness values

Met the maximum
number
of iterations?

Output optimal results

End

The pseudocode of the PSODO algorithm is shown in Algorithm 2.
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Algorithm 2: PSODO algorithm

Input: POP, Dim, T, [Ib, ub], [0y, Umax]-
Output: Best Individual X,

Step 1: Define a dandelion population matrix seed with N seeds and d dimension decision
space, and its i-th seed can be expressed as X; = [X}, Xl-z, X?, ey, Xf], i=1,2,..., N.Initialize
the population as Formula (1). DO algorithm initializes settings.

Step 2: Calculate the initial seed position and select the best position of dandelion seeds.

Step 3: Evaluating the seed of the population and selecting the best individual of the
population.

Step 4: Determining global search or local development through a random number r obeying
normal distribution: If r < 0.7, rising when the weather is clear, the position of the seed at this time
is Formula (2), and in order to achieve the global search, the speed and position of the seed are
updated (15). If » > 0.7, when the weather is rainy, the position of the seed at this time is
Formula (7), and in order to improve the local search ability, the position is updated (16).

Step 5: After rising for a certain distance, the algorithm still focuses on exploration at this time,
and the seed begins to gradually descend according to Brownian motion, and the seed position is
shown in Formula (10).

Step 6: Dandelion begins to land at this time, and randomly selects the landing place on land
according to Levy flight, and the algorithm begins to converge and enter the development stage.
The seed position is expressed as Formula (12).

Step 7: Update the best individual X,j.

Step 8: If the iteration is not finished, return to step 2, otherwise output X,j;s,.

Step 9: Output the optimal result

5. Simulation Experiment Results and Analysis
5.1. Experimental Environment and Test Function

The PSODO algorithm is implemented based on MATLAB language. The experimental
environment is configured as the Windows 11 operating system, CPU AMD Ryzen 97945HX,
and the MatlabR2022a experimental platform is used for simulation. In order to validate
the performance advantages of the PSODO algorithm, the benchmark functions are used
to simulate the standard particle swarm optimization (PSO) [41], dandelion optimization
(DO) [42], gray wolf optimization (GWO) [43], sine—cosine optimization (SCA) [44], wind-
driven optimization (WDO) [45] and tree species optimization (TSA) [46]. The test functions
are all selected from the global test function library of CEC 2005, and their function forms,
search ranges and optimal solutions are shown in Table 1.

Table 1. Test functions.

Function Equation Dimension Bounds Optimum
i ¥ 2 30 [~100, 100] 0
i=1
" ié|xi| + [T [xi] 30 [—10, 10] 0
o f i Xj 2 30 [—100, 100] 0
i=1\j=1
F max{|x],1 <7 <n} 30 (100, 100] .
F5 ngj [100(361'4—1 — 32" + (x; — 1)2} 30 [—30, 30] 0
o ) il ([xi +0.5])° 30 [—100, 100] 0
=
7 il z'x§l + random[0,1) 30 [—1.28,1.28] 0
=
F8 fl [¥2 — 10 cos(2x;) + 10] 30 [5.12,5.12] 0
=
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Table 1. Cont.
Function Equation Dimension Bounds Optimum
F9 —20exp (—0.2, [lym x?‘) - 30 [—50, 50] 0
exp <%Z?:1 COS(ZT[X,')) +20+e¢
1 v .2 T ; -
F10 o0 & X5 — I1 COS(%) +1 30 [—600, 600] 0
1 i=1 i=1
.
s f10sin(an) + ' (- 1200+ 1080 v 1)) + 017
F11 0 i=1 30 [—50, 50] 0
+2 1 u(x;,10,100,4)
yi=1+3(x+1)
k(x; —a)",x; > a,
u(x;,a,k,m)=< 0,—a<x <a,
k(—x; —a)",x; < —a.
n—1
F12 0.1{sin2(37TX1) + '21 u(x; = 1)7[1 + sin®(37rx;41)]+ 30 [—50, 50] 0
1=
n
(xn —1)%[1+ sinz(ann)]} + % u(x;,5,100,4)
i=1
—65.536
F13 50 2 [ ! 1
mot L 65.536]
=1t E (xiay)
11 2 2
F14 . Xi(bi+bixs) 4 -5,5 0.0003
igl [111 b,-2+b,-X3+x4] [ ]
F15 4x3 - 2.1xf 4 3x8 4+ xyxp — 4x3 +4xd 2 [-5, 5] —1.0316
n— 2 —
F16 b [100(x,-+ =) (- 1)2} 2 [—5,10] 0.398
1=
F17 [1+ (x1 + x5 +1)%(19 — 14x, +3x% — 14x; + 6x1x; + 3x3)] % 2 [—2,2] 3
[30 + (2x1 — 3x,)? ><4(18 —32x; 4+ 12x% + 48x, — 36x1 % + 27x3)]
Fi8 ~Lo exp[— L a;j(x; — pij)’] 4 [0 1] —3.86
1= =
4 6
F19 — ¥ ciexp[— ¥ a;(x; — pij)z] 6 [0, 1] —332
i=1 j=1
5 -1 _
F20 - 1[(x—a,-)(x—ui)T—|—c,-] 4 [0, 10] 10.2
i=
- -1
T -10.
w2 - r—a)(x—a)" +c 4 (0,10} 104
i=1 1
F22 10 T, 1 4 1 -10.
~L @) —a) +a 19, 10} 03

i=1

5.2. Comparison of Test Function Results

In order to verify the effectiveness of the hybrid PSODO algorithm, the above algo-
rithms are run 30 times on F1-F22 functions, the population is set to 50, the dimensions are
set to 30/60 (some functions adopt fixed dimensions) and the maximum iteration times are
500 times. The average value (Mean), standard deviation (Std), optimal value (Best) and
Worst value (Worst) of each algorithm are taken as performance indicators, and the results
are shown in Table 2 below, where bold indicates the optimal result.

It can be seen from Table 2 that in 30 dimensions, PSODO obtains the optimal values
on functions F2, F3, F4 and F7-F10, especially on F4, F7 and F9, while all algorithms do
not converge to the optimal values on functions F5 and F6. The optimal value is also
found on the multimodal function F8-F10. On the fixed dimension functions F13-F22,
PSODO finds the optimal value. It can be seen from Table 3 that PSODO can still achieve
optimal values on functions F2, F3, F4, F7-F10 and F13-F22 when the dimension is 60.
To sum up, PSODO has good optimization performance in unimodal, multi-modal and
fixed-dimensional functions and low-dimensional and high-latitude problems. In view of
the poor performance of some functions, we introduce speed decline strategies to improve
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the optimization performance of the algorithm, including but not limited to a linear decline
strategy and exponential decline strategy.

Table 2. Comparison of algorithm experimental results (30 dimensions).

Function Algorithm Mean Std Best Worst
PSO 241 x 10° 2.78 x 10° 1.92 x 10° 3.08 x 10°
WDO 7.46 x 10719 1.56 x 10~18 0 7.27 x 10718
GWO 3.57 x 10733 573 x 10733 0 2.62 x 10732
F1 SCA 2.90 x 10° 3.73 x 10° 2.82 x 1073 1.47 x 101
TSA 1.49 x 10712 6.9 x 10713 6.41 x 10713 3.12 x 10712
DO 1.67 x 107 9.81 x 10~7 4.09 x 10~7 462 x 107°
PSODO 241 x 10% 2.78 x 103 1.92 x 104 3.08 x 10*
PSO 4.17 x 102 6.89 x 102 6.26 x 102 6.26 x 10%
WDO 3.76 x 10710 5.22 x 10710 0 259 x 1077
GWO 7.14 x 10=20 5.09 x 10~20 0 2.06 x 10719
F2 SCA 1.17 x 1072 1.41 x 1072 1.69 x 1074 5.03 x 1072
TSA 5.98 x 10710 1.55 x 1010 295 x 10710 1.07 x 1077
DO 538 x 1074 242 x 1074 1.70 x 104 1.26 x 1073
PSODO 253 x 1071 335 x 1071 0 1.27 x 109
PSO 5.68 x 10* 8.49 x 103 3.08 x 10% 7.43 x 10%
WDO 1.98 x 1014 556 x 10714 0 297 x 10713
GWO 254 x 1077 9.27 x 1077 244 x 10711 5.06 x 107
F3 SCA 6.18 x 103 451 x 104 2.99 x 102 1.66 x 10*
TSA 1.62 x 10* 2.87 x 103 1.02 x 10* 2.29 x 10*
DO 2.13 x 10! 1.62 x 101 428 x 10° 7.05 x 101
PSODO 2.83 x 1073 8.06 x 1073 0 3.83 x 1072
PSO 7.40 x 10! 4.85 x 10° 6.20 x 10! 8.06 x 10!
WDO 497 x 107 1.52 x 10~8 841 x 10711 8.35 x 108
GWO 2.07 x 108 231 x 108 2.25 x 1077 997 x 108
F4 SCA 2.93 x 10! 9.64 x 10° 1.42 x 101 5.44 x 10!
TSA 1.95 x 101 2.94 x 10° 1.47 x 101 2.66 x 10!
DO 9.23 x 101 6.71 x 1071 1.9 x 1071 3.56 x 10°
PSODO 33x 10713 456 x 10713 0 1.7 x 10712
PSO 499 x 107 1.27 x 107 2.18 x 107 7.55 x 107
WDO 2.86 x 10! 3.92 x 1072 2.85 x 101 2.87 x 10!
GWO 2.67 x 10! 7.44 x 1071 2.55 x 10! 2.87 x 10!
F5 SCA 1.40 x 10* 401 x 10* 423 x 10! 2.15 x 10°
TSA 3.02 x 10! 1.59 x 10! 2.58 x 10! 1.13 x 102
DO 3.53 x 10! 2.50 x 10! 2.48 x 10! 1.35 x 102
PSODO 4.84 x 10! 3.77 x 10! 2.89 x 10! 1.80 x 102
PSO 9.10 x 10% 1.28 x 104 5.76 x 10% 1.10 x 10*
WDO 6.62 x 1072 245 x 1072 3.00 x 1072 1.21 x 10~}
GWO 472 x 1071 2.77 x 102 6.11 x 10°° 1.00 x 10°
F6 SCA 6.82E x 100 2.32 x 10° 4.62 x 10° 1.40 x 10*
TSA 1.33 x 10712 5.73 x 10713 499 x 10713 256 x 10712
DO 5.63 x 107° 2.79 x 10~° 1.21 x 10~° 1.13 x 107>
PSODO 1.14 x 10* 1.01 x 10! 5.92 x 100 6.24 x 10!
PSO 7.40 x 100 2.14 x 100 3.84 x 100 1.42 x 10°
WDO 1.66 x 1074 1.18 x 1074 2.29x 105 498x 1074
GWO 122 x 1073 831 x 1074 332x 1074 3.59x% 1073
F7 SCA 7.09 x 1072 574 x 1071 9.94x 1073 2.29x 1071
TSA 2.50 x 1072 6.36 x 1073 1.33 x 1072 391 x 1072
DO 1.77 x 1072 8.81 x 1073 437% 1073 3.69 x 102
PSODO 313 x 1072 4.06 x 1072 0 1.93%x 1071
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PSO 3.38 x 102 2.11 x 10! 3.03 x 102 3.87 x 102
WDO 5.61 x 10! 2.22 x 10! 1.94 x 10! 1.07 x 102
GWO 2.32 x 10° 3.27 x 10° 0 1.17 x 101
F8 SCA 3.54 x 10! 2.72 x 10! 420 x 102 9.29 x 10!
TSA 1.74 x 102 2.30 x 10! 1.17 x 102 2.04 x 102
DO 3.65 x 10! 1.93 x 101 1.11 x 101 8.38 x 101
PSODO 8.37x 1071 1.73 x 100 0 7.24 x 100
PSO 1.50 x 10? 5.38x 1071 1.36 x 10! 1.59 x 101
WDO 2.35 x 10710 3.27x 10~10 1.03 x 10~ 11 1.50 x 10~°?
GWO 445 x 10714 549 x 10715 395 x 10714 6.08 x 10714
F9 SCA 1.32 x 10! 9.47 x 10° 418 x 1072 2.03 x 10!
TSA 462 x 1077 1.21 x 1077 2.33 x 1077 6.97 x 1077
DO 2.64 x 1074 9.38 x 107° 1.09 x 1074 476 x 1074
PSODO 3.25 x 1010 567 x 10~ 11 0 2.28 x 10710
PSO 2.56 x 102 4.80 x 10! 1.42 x 102 3.50 x 102
WDO 1.15 x 102 2.77 x 1072 0 9.18 x 102
GWO 3.38 x 1073 8.64 x 1073 0 3.75 x 1072
F10 SCA 7.52 x 1071 299 x 101 1.84 x 1071 1.16 x 10°
TSA 2.34 x 1077 9.29 x 107 7.27 x 10712 4.63 x 10°
DO 1.37 x 1072 1.62 x 1072 3.88 x 10~ 593 x 1072
PSODO 5.67 x 1071 484 x 101 0 1.51 x 109
PSO 1.60 x 108 4.46 x 107 7.51 x 107 2.59 x 108
WDO 7.07 x 1072 1.45 x 1071 191 x 1073 521 x 101
GWO 311 x 1072 2.01 x 102 6.55 x 1073 947 x 102
F11 SCA 7.24 x 10° 3.11 x 10* 5.00 x 1071 1.66 x 10°
TSA 9.08 x 10 2.09 x 107° 1.91 x 10~7 8.95 x 107°
DO 1.04 x 102 3.16 x 102 1.10 x 1077 1.04 x 1071
PSODO 1.20 x 10° 3.05 x 1071 529 x 101 1.66 x 109
PSO 3.81 x 108 1.08 x 108 1.63 x 108 5.56 x 108
WDO 451 x 107! 9.03 x 101 1.96 x 1072 3.19 x 10°
GWO 403 x 107! 1.69 x 1071 9.94 x 1072 7.13 x 1071
F12 SCA 4.76 x 10* 2.20 x 10° 242 x 100 1.19 x 10°
TSA 1.25 x 10~° 1.29 x 10~® 1.09 x 1077 546 x 107°
DO 544 x 10~ 4.02 x 10° 6.65 x 1077 2.10 x 1075
PSODO 3.42 x 100 473 x 1071 3.0 x 10° 4.78 x 10°
PSO 1.04 x 10° 1.67 x 1071 1.00 x 109 1.92 x 109
WDO 9.77 x 100 597 x 100 1.00 x 109 2.29 x 10!
GWO 5.40 x 10° 451 x 10° 1.00 x 109 1.27 x 101
F13 SCA 2.12 x 100 1.9 x 100 1.00 x 109 1.08 x 101
TSA 9.98 x 101 0 1.00 x 109 9.98 x 101
DO 9.98 x 101 3.16 x 10715 1.00 x 109 9.98 x 10!
PSODO 1.00 x 10! 1.34 x 10! 1.00 x 109 7.69 x 10!
PSO 4,00 x 1073 242 x 1073 9.92 x 10~* 9.79 x 1073
WDO 3.13 x 1074 2.60 x 107> 3.00 x 1074 451 x 10~*
GWO 3.08 x 1074 3.54 x 1078 3.00 x 10~4 3.08 x 1074
F14 SCA 5.61 x 10~* 3.63 x 10* 3.00 x 10~* 1.80 x 103
TSA 3.07 x 1074 2.38 x 10719 3.00 x 1074 3.07 x 1074
DO 3.07 x 1074 2.89 x 1078 3.00 x 10~¢ 3.08 x 1074
PSODO 1.51 x 1073 1.17 x 1073 3.00 x 1074 415 x 1073
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PSO —1.03 x 10° 1.41 x 1073 —1.03 x 10° —1.03 x 100
WDO —1.03 x 10° 9.84 x 107° —1.03 x 10° —1.03 x 100
GWO —1.03 x 100 6.76 x 107 —1.03 x 10° —1.03 x 10°
F15 SCA —1.03 x 10° 324 x 1075 —1.03 x 10° —1.03 x 100
TSA —1.03 x 10° 6.78 x 10716 —1.03 x 10° —1.03 x 100
DO —1.03 x 10° 331 x 10713 —1.03 x 100 —1.03 x 10°
PSODO —9.03 x 101 741 x 1073 —1.03 x 10° —7.70 x 1071
PSO 498 x 107! 1.92 x 1071 3.98 x 1071 1.20 x 10°
WDO 3.98 x 1071 1.69 x 1074 3.98 x 1071 3.99 x 1071
GWO 3.98 x 1071 8.63 x 107° 3.98 x 1071 3.98 x 1071
F16 SCA 4,00 x 1071 9.38 x 10~* 3.98 x 1071 402 x 107!
TSA 3.98 x 101 0 3.98 x 101 398 x 1071
DO 3.98 x 1071 245 x 10711 3.98 x 101 398 x 101
PSODO 6.99 x 1071 525 x 101 398 x 101 3.16 x 10°
PSO 3.00 x 109 329 x 1073 3.00 x 10° 3.01 x 10°
WDO 3.00 x 100 1.05 x 1073 3.00 x 100 3.00 x 109
GWO 3.00 x 10° 1.71 x 10~ 3.00 x 10° 3.00 x 10°
F17 SCA 3.00 x 100 290 x 1072 3.00 x 10° 3.00 x 109
TSA 3.00 x 10° 1.86 x 10715 3.00 x 100 3.00 x 10°
DO 3.00 x 10° 3.47 x 107° 3.00 x 10° 3.00 x 10°
PSODO 1.06 x 10? 1.19 x 101 3.00 x 100 422 x 10!
PSO —2.04 x 10° 6.47 x 101 —3.62 x 10° —732x 101
WDO —3.78 x 100 2.35 x 1071 —3.86 x 10° —3.09 x 100
GWO —3.77 x 10° 522 x 1071 —3.86 x 10° —1.00 x 100
F18 SCA —3.64 x 10° 7.54 x 1071 —3.86 x 10° —8.70 x 101
TSA —3.77 x 100 523 x 1071 —3.86 x 100 —1.00 x 10°
DO —3.86 x 10° 323 x 107> —3.86 x 10° —3.86 x 100
PSODO —2.69 x 100 9.60 x 101 —3.86 x 10° —2.76 x 100
PSO —1.76 x 10° 526 x 1071 —2.80 x 10° —7.89 x 101
WDO —3.16 x 10° 1.10 x 107! —3.32 x 10° —3.02 x 100
GWO —3.25 x 100 7.78 x 1072 —3.32 x 100 —3.13 x 10°
F19 SCA —3.02 x 10° 1.43 x 107! —3.27 x 10° —2.60 x 100
TSA —3.32 x 100 133 x 10715 —3.32 x 10° —3.32 x 100
DO —3.26 x 10° 6.03 x 1072 —3.32 x 10° —3.20 x 10°
PSODO —2.34 x 10° 5.04 x 1071 —3.32 x 10° —1.28 x 100
PSO —5.65 x 1071 231 x 101 —1.48 x 10° —3.33 x 1071
WDO —7.44 x 10° 3.03 x 100 —1.02 x 10! —2.54 x 100
GWO —9.48 x 100 1.75 x 100 —1.02 x 10! —5.06 x 100
F20 SCA —1.86 x 10° 1.57 x 109 —5.02 x 10° —497 x 101
TSA —1.02 x 10! 3.56 x 1078 —1.02 x 10! —1.02 x 10!
DO —5.97 x 10° 3.37 x 10° —1.02 x 10! —2.63 x 100
PSODO —2.42 x 10° 1.32 x 109 —1.02 x 10! —1.04 x 100
PSO —713 x 1071 3.77 x 1071 —2.46 x 10° —4.24 x 1071
WDO —8.27 x 10° 3.32 x 100 —1.04 x 10! —2.71 x 100
GWO —1.04 x 10! 1.55 x 1074 —1.04 x 10! —1.04 x 10!
F21 SCA —4.12 x 100 1.53 x 109 —7.40 x 100 —9.06 x 1071
TSA —1.04 x 10! 1.55 x 10~15 —1.04 x 10! —1.04 x 10!
DO —6.63 x 100 3.66 x 10° —1.04 x 10! —1.84 x 100
PSODO —2.62 x 10° 1.42 x 100 —1.04 x 10! —1.09 x 100
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Table 2. Cont.
Function Algorithm Mean Std Best Worst
PSO —1.03 x 10° 331 x 1071 —1.94 x 10° —561 x 107!
WDO —8.74 x 10° 3.08 x 10° —1.05 x 10! —1.66 x 100
GWO —1.03 x 101 1.48 x 109 —1.05 x 10! —2.42 x 10°
F22 SCA —4.78 x 10° 1.38 x 109 —9.10 x 10° —2.72 x 100
TSA —1.05 x 10! 1.75 x 10~1° —1.05 x 10! —1.05 x 10!
DO —6.11 x 10° 3.77 x 10° —1.05 x 10! —1.68 x 100
PSODO —2.87 x 10° 1.62 x 100 —1.05 x 10! —1.19 x 100
Table 3. Comparison of algorithm experimental results (60 dimensions).
Function Algorithm Mean Std Best Worst
PSO 1.27 x 10° 8.79 x 10° 1.02 x 105 1.42 x 10°
WDO 1.07 x 10716 347 x 10716 6.20 x 1021 1.70 x 1015
GWO 3.31 x 10~ 3.35 x 10721 2.65 x 10722 1.76 x 1020
F1 SCA 1.29 x 103 1.31 x 108 411 x 10! 436 x 103
TSA 1.9 x 102 412 x 10! 1.16 x 102 2.87 x 102
DO 6.99 x 1073 3.75 x 1073 2.14 x 1073 1.75 x 1072
PSODO 4.93 x 100 1.83 x 10! 1.41 x 10°8 9.79 x 10!
PSO 241 x 102 1.37 x 101 2.13 x 102 2.71 x 102
WDO 3.18 x 10~? 418 x 107° 5.66 x 10711 1.74 x 1078
GWO 6.14 x 10713 3.26 x 10713 1.64 x 10713 1.35 x 1012
2 SCA 8.71 x 101 1.12 x 109 4,65 x 1072 5.83 x 10°
TSA 341 x 100 9.89 x 101 1.95 x 109 597 x 10°
DO 3.93 x 1072 9.78 x 1073 2.04 x 1072 6.04 x 1072
PSODO 7.26 x 1071 8.46 x 1071 559 x 1074 3.21 x 10°
PSO 2.08 x 10° 2.57 x 10* 1.64 x 10° 2.66 x 10°
WDO 5.44 x 10712 1.69 x 10~ 11 8.85 x 10716 9.19 x 10~ 1
GWO 1.95 x 1071 316 x 101 19 x 1073 1.47 x 10°
F3 SCA 6.58 x 10* 1.64 x 10* 3.07 x 10% 1.01 x 10°
TSA 1.29 x 10° 1.03 x 104 1.02 x 10° 1.48 x 10°
DO 3.64 x 103 1.97 x 10° 9.36 x 102 8.82 x 10°
PSODO 7.77 x 10! 1.55 x 102 475 x 1073 5.35 x 102
PSO 9.24 x 10! 1.99 x 10° 8.76 x 10! 9.65 x 10!
WDO 7.74 x 107° 1.29 x 1078 223 x 10~ 1 546 x 1078
GWO 392 x 1074 320 x 1074 8.40 x 10~° 1.42 x 1073
F4 SCA 7.29 x 101 6.57 x 100 6.16 x 10! 8.42 x 101
TSA 8.98 x 10! 4,08 x 10° 7.56 x 101 9.45 x 10!
DO 2.24 x 10! 6.81 x 100 8.70 x 100 3.54 x 10!
PSODO 412 x 107! 461 x 1071 8.88 x 1073 1.87 x 109
PSO 5.32 x 108 5.62 x 107 423 x 108 6.35 x 108
WDO 5.84 x 10! 572 x 1073 5.84 x 10! 5.84 x 10!
GWO 5.72 x 10! 9.30 x 1071 5.52 x 10! 5.86 x 10!
F5 SCA 1.12 x 107 1.05 x 107 6.03 x 10° 437 x 107
TSA 5.79 x 10° 1.37 x 106 3.35 x 100 9.40 x 10°
DO 1.82 x 102 1.43 x 102 5.33 x 10! 5.96 x 102
PSODO 1.33 x 102 1.29 x 102 5.90 x 10! 435 x 102
PSO 1.31 x 10° 6.51 x 103 1.17 x 10° 1.42 x 10°
WDO 2.20 x 101 6.25 x 1072 8.58 x 102 3.59 x 101
GWO 2.77 x 100 523 x 1071 2.00 x 100 3.81 x 10°
F6 SCA 1.20 x 103 123 x 1073 7.19 x 101 5.60 x 103
TSA 1.97 x 102 3.80 x 10! 1.23 x 102 3.10 x 102
DO 1.74 x 103 831 x 1074 477 x 1074 3.73 x 1073
PSODO 1.54 x 101 3.03 x 10° 1.16 x 101 3.03 x 10!
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Table 3. Cont.
Function Algorithm Mean Std Best Worst

PSO 477 x 1072 4.83 x 10! 3.64 x 102 5.77 x 102

WDO 1.97 x 1074 1.31 x 1074 1.49 x 1075 5.77 x 1074

GWO 2.75 x 1073 1.30 x 1073 7.16 x 1074 538 x 1073

F7 SCA 5.56 x 100 432 x 100 4.04 x 101 1.63 x 10!
TSA 3.72 x 100 8.45 x 1071 2.18 x 100 5.40 x 10°

DO 9.66 x 1072 3.25 x 1072 434 x 1072 1.64 x 1071

PSODO 4.46 x 1072 7.77 x 1072 2.67 x 1074 395 x 101

PSO 8.24 x 102 3.26 x 10! 7.62 x 102 8.81 x 102

WDO 1.57 x 102 4,02 x 10! 1.05 x 10% 247 x 10?

GWO 3.31 x 10° 4,01 x 10° 568 x 10713 1.56 x 101

F8 SCA 1.16 x 102 8.26 x 101 8.76 x 101 3.75 x 102
TSA 5.72 x 102 343 x 10! 4.73 x 102 6.26 x 102

DO 1.39 x 102 6.11 x 101 4.84 x 10! 2.70 x 102

PSODO 6.15 x 100 1.73 x 101 1.34 x 107> 8.98 x 10!

PSO 1.50 x 101 538 x 101 1.36 x 101 1.59 x 101

WDO 2.35 x 10710 3.27 x 10710 1.03 x 10~ 11 1.50 x 1077
GWO 445 x 10714 549 x 10715 395 x 10714 6.08 x 10714

F9 SCA 1.32 x 10! 9.47 x 10° 418 x 1072 2.03 x 10!
TSA 4.62 x 1077 1.21 x 107 233 x 1077 6.97 x 1077

DO 2.64 x 1074 9.38 x 107> 1.09 x 1074 476 x 1074

PSODO 3.25 x 101 5.67 x 1071 831 x 10~° 2.28 x 10°

PSO 3.49 x 102 1.83 x 102 4.49 x 100 7.22 x 10%

WDO 9.50 x 1073 3.00 x 102 9.79 x 1073 1.27 x 1071

GWO 247 x 1073 7.37 x 1073 2.48 x 1073 235 x 1071

F10 SCA 1.62 x 101 1.48 x 101 1.13 x 109 5.33 x 10!
TSA 2.61 x 10° 2.83 x 1071 1.99 x 109 3.08 x 10°

DO 1.65 x 1072 1.03 x 1072 437 x 1073 4.43 x 102

PSODO 5.13 x 101 545 x 1071 0 1.31 x 109

PSO 9.13 x 108 1.56 x 108 5.82 x 108 1.24 x 10°

WDO 7.61 x 1073 427 x 1073 2.26 x 1073 2.05 x 1072

GWO 1.02 x 1071 5.67 x 1072 3.54 x 1072 341 x 1071

F11 SCA 2.84 x 107 3.18 x 107 1.48 x 100 1.54 x 108
TSA 2.04 x 107 1.03 x 107 6.37 x 100 5.02 x 107

DO 1.63 x 109 1.25 x 109 6.26 x 1074 3.96 x 10°

PSODO 1.35 x 10° 1.35 x 107! 0 1.74 x 100

PSO 1.91 x 10° 3.23 x 108 1.27 x 10° 255 x 10°

WDO 7.10 x 1071 1.66 x 109 9.52 x 102 6.99 x 100

GWO 2.46 x 10° 342 x 1071 1.75 x 100 3.02 x 10°

F12 SCA 6.63 x 107 5.83 x 107 3.45 x 10° 2.59 x 108
TSA 3.57 x 107 1.15 x 107 1.62 x 107 6.85 x 107

DO 9.72 x 10° 1.42 x 101 221 x 1073 571 x 10!

PSODO 7.15 x 100 1.31 x 109 6.00 x 100 9.95 x 10°

PSO 1.04 x 10° 1.67 x 1071 1.00 x 10° 1.92 x 10°

WDO 9.77 x 10° 597 x 10° 1.00 x 109 2.29 x 10!

GWO 5.40 x 10° 451 x 10° 1.00 x 109 1.27 x 101

F13 SCA 2.12 x 10° 1.9 x 10° 1.00 x 109 1.08 x 101
TSA 998 x 101 0 1.00 x 109 9.98 x 101

DO 9.98 x 101 3.16 x 10715 1.00 x 109 998 x 101

PSODO 1.00 x 10! 1.34 x 101 1.00 x 109 7.69 x 10!
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Table 3. Cont.
Function Algorithm Mean Std Best Worst
PSO 542 x 1073 7.72 x 1073 3.00 x 1074 2.04 x 1072
WDO 543 x 1074 471 x 1074 3.00 x 10~4 1.60 x 103
GWO 3.02 x 1073 6.92 x 1073 3.00 x 10~4 2.04 x 1072
F14 SCA 1.02 x 1073 352 x 1074 3.00 x 1074 1.54 x 1073
TSA 332 x 1074 3.11 x 107° 3.00 x 1074 435 x 1073
DO 5.90 x 10~4 3.04 x 1074 3.00 x 1074 1.06 x 1073
PSODO 425 x 1073 420 x 1073 3.00 x 10~4 1.43 x 1072
PSO —1.03 x 10° 1.42 x 1073 —1.03 x 10° —1.02 x 100
WDO —1.03 x 10° 9.36 x 107° —1.03 x 10° —1.03 x 100
GWO —1.03 x 100 7.73 x 1077 —1.03 x 10° —1.03 x 100
F15 SCA —1.03 x 10° 354 x 107 —1.03 x 10° —1.03 x 100
TSA —1.03 x 10° 6.78 x 10716 —1.03 x 10° —1.03 x 100
DO —1.03 x 10° 110 x 10718 —1.03 x 10° —1.03 x 100
PSODO —9.87 x 101 485 x 1072 —1.03 x 10° —8.67 x 1071
PSO 3.99 x 10! 944 x 1074 3.98 x 101 4.02 x 107!
WDO 3.98 x 101 1.98 x 1074 3.98 x 1071 3.99 x 101
GWO 3.98 x 101 3.83 x 1077 3.98 x 101 398 x 101
F16 SCA 400 x 107! 2.72 x 1073 3.98 x 1071 412 x 107!
TSA 3.98 x 101 0 3.98 x 101 398 x 101
DO 398 x 101 8.81 x 10711 3.98 x 101 398 x 101
PSODO 6.22 x 1071 2.79 x 101 398 x 101 1.42 x 10°
PSO 3.02 x 109 2.00 x 1072 3.00 x 10° 3.09 x 10°
WDO 3.00 x 100 1.13 x 1073 3.00 x 100 3.01 x 100
GWO 3.00 x 10° 1.17 x 10~ 3.00 x 10° 3.00 x 10°
F17 SCA 3.00 x 100 3.02 x 1073 3.00 x 10° 3.00 x 109
TSA 3.00 x 10° 1.80 x 10~1° 3.00 x 100 3.00 x 10°
DO 3.00 x 10° 443 x 107° 3.00 x 10° 3.00 x 10°
PSODO 6.68 x 10° 4.07 x 10° 3.00 x 10° 1.9 x 10!
PSO —2.71 x 100 8.96 x 1071 —3.86 x 100 —835x 1071
WDO —3.62 x 100 7.38 x 1071 —3.86 x 10° —1.00 x 100
GWO —3.47 x 10° 9.89 x 1071 —3.86 x 10° —1.00 x 100
F18 SCA —3.84 x 10° 1.22 x 1072 —3.86 x 10° —3.81 x 100
TSA —3.78 x 10° 2.36 x 1071 —3.86 x 100 —3.09 x 100
DO —3.86 x 10° 232 x 107° —3.86 x 10° —3.86 x 100
PSODO —2.65 x 100 952 x 101 —3.86 x 10° —5.02 x 1071
PSO —1.76 x 10° 526 x 1071 —2.80 x 10° —7.89 x 101
WDO —3.16 x 10° 1.10 x 107! —3.32 x 10° —3.02 x 100
GWO —3.25 x 100 7.78 x 1072 —3.32 x 100 —3.13 x 10°
F19 SCA —3.02 x 10° 1.43 x 107! —3.27 x 10° —2.60 x 100
TSA —3.32 x 100 133 x 10715 —3.32 x 10° —3.32 x 100
DO —3.26 x 100 6.03 x 1072 —3.32 x 100 —3.20 x 10°
PSODO —2.34 x 10° 5.04 x 1071 —3.32 x 10° —1.28 x 100
PSO —7.07 x 1071 3.72 x 1071 —1.88 x 100 —3.00 x 101
WDO —7.45 x 10° 3.02 x 100 —1.02 x 10! —2.59 x 100
GWO —8.97 x 100 2.17 x 10° —1.02 x 10! —5.10 x 100
F20 SCA —3.18 x 10° 1.92 x 100 —5.74 x 10° —8.78 x 101
TSA —1.02 x 10! 7.01 x 1071 —1.02 x 10! —1.02 x 10!
DO —6.98 x 100 3.54 x 10° —1.02 x 10! —2.63 x 100
PSODO —2.35 x 10° 1.46 x 109 —1.02 x 10! —1.03 x 100
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Table 3. Cont.
Function Algorithm Mean Std Best Worst

PSO —9.00 x 1071 3.72 x 1071 —2.18 x 100 —3.64 x 1071

WDO —9.00 x 100 2.85 x 10° —1.04 x 10! —2.73 x 100

GWO —1.02 x 10! 9.63 x 1071 —1.04 x 10! —5.13 x 10°

F21 SCA —3.83 x 10° 1.97 x 109 —7.49 x 10° —9.07 x 1071
TSA —1.04 x 10! 1.58 x 10~1° —1.04 x 10! —1.04 x 10!

DO —6.88 x 100 3.92 x 10° —1.04 x 10! —1.84 x 10°

PSODO —2.91 x 10° 1.73 x 100 —1.04 x 10! —1.28 x 10°

PSO —1.62 x 10° 592 x 1071 —3.01 x 10° —7.54 x 1071

WDO —8.27 x 10° 3.33 x 10° —1.05 x 10! —2.65 x 100

GWO —1.04 x 10! 244 x 1074 —1.05 x 10! —1.04 x 10!

F22 SCA —4.66 x 100 2.36 x 10° —1.05 x 10! —5.21 x 101
TSA —1.04 x 10! 1.51 x 10~1° —1.05 x 10! —1.04 x 10!

DO —6.36 x 10° 3.49 x 10° —1.05 x 10! —1.83 x 10°

PSODO —2.60 x 10° 1.19 x 109 —1.05 x 10! —1.23 x 100

In order to compare the convergence of each algorithm on different functions more
intuitively, this paper draws the convergence curves of the PSODO algorithm and the other
six algorithms. Comparisons of the convergence curves of seven algorithms are shown in
Figure 2, with the horizontal axis representing iteration and the vertical axis representing
fitness values. As can be seen from Figure 2, the PSODO algorithm has the fastest conver-
gence speed and the highest convergence accuracy on functions F5, F8, F13-F18 and F21
and can find nearly the optimal value at the beginning, especially functions F8 and F14. It
converges to the optimal value in the form of an approximate straight line. For function
F7, the convergence speed of the PSODO algorithm is slightly slower than that of GWO,
ranking second. For functions F1-F4 and F9-F12, the convergence speed of the PSODO
algorithm is slightly slower than that of GWO and WDO, ranking third. For functions F6,
F19, F20 and F22, the convergence speed of the PSODO algorithm is relatively average,
but the optimal value can be found in the end. Thus, it is proved that the performance of
the PSODO algorithm is relatively good and the multi-strategy improvement-decreasing
speed strategy is feasible and effective for improving the convergence speed and accuracy
of the algorithm.

5.3. Engineering Problem Application

In order to verify the optimization performance of the PSODO algorithm in engineer-
ing applications, seven algorithms are applied to two common engineering problems: the
three-bar truss design problem (TTD) and the pressure vessel design problem (PVD). They
are run 30 times on each engineering problem, and the optimal value they find is recorded.
Among them, the maximum number of iterations is 300, the population size is 30 and the
penalty function is used to deal with inequality constraints.

5.3.1. Three-Bar Truss Design Problem (TTD)

The three-bar truss design problem is a common structural form, which is widely used
in bridges, buildings, mechanical equipment and other fields. The design optimization of
bar-honing frames refers to adjusting the parameters such as the size, shape and connection
mode of bars, so that the structure has the best performance and economy under certain
constraints. The objectives of three-bar split frame design optimization mainly include the
following aspects: (1) Structural strength and stiffness: The design of a three-bar split frame
needs to meet certain strength and stiffness requirements to ensure that the structure will
not be unstable or damaged during use. Optimal design can make the structure have the
best strength and stiffness under external loads by adjusting the cross-sectional area and
length of members. (2) Structure weight: The weight of the three-bar bin frame directly
affects the cost of the structure and the convenience of transportation and installation.
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Optimal design can reduce the weight of members, so that the structure has the lightest
weight on the premise of meeting the requirements of strength and stiffness. (3) Structural
stability: The three-bar split frame needs to be kept stable when subjected to external
loads to avoid instability and plastic deformation. Optimal design can make the structure
have the best stability under external loads by adjusting the size and shape of members.
(4) Economy of structure: The design of a three-bar split frame needs to consider the factors
such as material cost, manufacturing cost and maintenance cost, so as to make the structure
have the lowest total cost on the premise of meeting the performance requirements.

The design problem of a three-bar truss is the adjustment of the cross-sectional areas
(x1 and x») to solve the minimum volume of the three-bar truss under the constraint of the
stress (0) that each truss member can bear. Its mathematical model is as follows:

minf(x) = (2/2x1 +2) x I (17)
q1(¥) = mp—ag 0 (18)
g2(x) = ﬁx%fflesz -0 <0 (19)

gs(x) = \/EleerlP ~0<0 (20)

] =100 cm; P = 2 kN/em?%0 = 2kN/cm?,0 < x; < 1, i = 1,2. From Table 4, the
optimal parameters of PSODO are (0.78117, 0.4299) and the minimum volume is 263.8959.
The PSODO algorithm is applied to the three-bar truss problem, and the experimental
results are compared with several improved algorithms in other studies. Table 5 shows
the optimal solutions obtained by different algorithms and the values of related decision
variables. The results of three-bar truss design problems with seven algorithms are shown
in Table 4. The convergence curve of the three-bar diffraction frame design problem is
shown in Figure 3. The results show that the MEO algorithm is more competitive than
other algorithms.
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Figure 2. Comparison of the convergence curves of seven algorithms.

Table 4. Comparison of 7 algorithms for three-bar truss design problems.

Algorithms x1 Xo fmin

PSO 0.7877 0.4108 267.867
GWO 0.7423 0.5583 263.9246
WDO 0.7981 0.4342 271.6039
SCA 0.7931 0.3956 264.4124
TSA 0.7891 0.4069 263.9383
DO 0.7788 0.4405 263.9052
PSODO 0.7886 0.4082 263.8959

Table 5. Comparison of 7 algorithms for three-bar truss design problems.

Algorithms Best Mean
PSO 267.8674 268.6879
GWO 263.9246 263.9354
WDO 271.6039 271.6119
SCA 264.4124 264.4182
TSA 263.9383 263.9481
DO 263.9052 263.9196
PSODO 263.8959 263.8989
-------- Pso
GWO
285 WDO |-
-------- SCA
-------- TSA
-------- Do
280 h PSODO | |

Fitness Value

150 200 250 300
Iteration

Figure 3. Convergence curve of the three-bar truss design problem.

From the optimization results of seven algorithms in Tables 4 and 5 and Figure 3, it is
obvious that the PSODO algorithm can find better control parameter values and objective



Biomimetics 2024, 9, 298

22 of 27

function values. Generally speaking, when the values of parameters x; and x; are 0.7886
and 0.4082, respectively, the volume of the three-bar diffraction reaches the minimum value
of 263.8959. The optimization results further show that the PSODO algorithm has high
optimization efficiency in solving three-bar truss problems.

5.3.2. Pressure Vessels Design Problem

The research of pressure vessel design is an important and complex engineering field,
which involves many key problems and challenges. The following are several common
research directions: (1) Structural optimization: In the process of pressure vessel design,
structural optimization is a key research direction. It includes the consideration of the
mechanical properties of the material and the geometry of the vessel to minimize weight
or cost while meeting specified strength and stiffness requirements. (2) Material selection:
Material selection is another important research direction. Different materials have different
physical and chemical properties, which have an important impact on the performance
and reliability of pressure vessels. Researchers need to consider the strength, corrosion
resistance, heat resistance and other characteristics of materials to choose the most suitable
materials. (3) Fatigue life prediction 1: Because pressure vessels are subjected to cyclic
loads during use, fatigue life prediction is a key problem. Researchers need to consider
the fatigue strength of materials and the stress of containers, use related fatigue analysis
methods to predict the life of containers, and take corresponding measures to prolong their
service life. (4) Safety analysis: The safety of pressure vessels is an important research
direction. Researchers need to analyze and evaluate the stress state, stress distribution and
deformation of the container to ensure the safe operation of the container under different
working conditions and find and prevent potential safety hazards in time.

The goal of pressure vessel design (PVD) is to minimize the total cost f(x) while
meeting the production needs. Its four design variables are shell thickness T5(x3), head
thickness T} (x4), inner radius R(x;) and container length L(x;), where 15 and T}, are integer
multiples of 0.625, and R and L are continuous variables. The specific mathematical model
is shown in Equations (21)-(26).

Objective function:

minf(x) = 0.6224x1x3x4 + 1.7781x2x3 + 3.1661x% x4 + 19.84x3x3 (21)
Constraints:

g(x) = —x1 +0.0193x3 <0 (22)

g,(x) = —x2 4 0.00954x3 < 0 (23)

gy(x) = —mxdxy — %nx% + 1296000 < 0 (24)

g4(x) =x4—-240<0 (25)

Boundary constraints:
0<x <99 0<x <99, 10 <x3 <200, 10 < x4 <200 (26)

The PSODO algorithm is used to optimize the four key variables of the pressure vessel
problem and obtain the optimal values, and the results are compared with the data of
six algorithms that have solved the problem. Table 6 shows the values of the lowest cost
and related variables obtained by each algorithm. The results of pressure vessel design
problems of seven algorithms are shown in Table 7. The convergence curve of the pressure
vessel design problem is shown in Figure 4. The results show that the PSODO algorithm is
more competitive than other algorithms.
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Table 6. Comparison of pressure vessel design algorithms.
Algorithms Ts Ty R L fmin

PSO 14.1915 20.8044 43.5457 159.4919 11834.3516

GWO 13.1185 7.2311 42.0889 176.7684 6145.4546

WDO 17.9323 9.1698 57.1068 50.4563 6572.7595

SCA 14.2199 6.9543 45.3367 140.2538 5900.3202

TSA 13.6612 7.1734 45.1328 142.7379 7319.0007

DO 12.7342 7.0045 42.0823 178.2653 8131.006

PSODO 13.2089 7.4947 42.0984 176.6366 5885.3328

Table 7. Comparison of algorithms for pressure vessel design problems.

Algorithms Best Mean

PSO 11,834.3516 37,204.2840
GWO 6145.4546 10,708.9581
WDO 6572.7595 51,583.2265
SCA 5900.3202 9190.98310
TSA 7319.0007 24,343.9637
DO 8131.006 17,448.3396
PSODO 5885.3328 19,766.3177

P

Best Fitness Value
N
o
(4]
T

50 100 150 200 250 300
Iteration#

Figure 4. Convergence curve for pressure vessel design problems.

It can be seen from the data in Tables 6 and 7 and Figure 4 that compared with other
algorithms, the PSODO algorithm has a better optimization effect and saves engineering
design costs. When the values of four core parameters, Ts, T}, R and L, are 13.2089, 7.4947,
42.0984 and 176.6366, respectively, the lowest cost of the algorithm is 5885.3328.

5.3.3. Compression Spring Design Problem

The goal of compression spring design (CSD) is to minimize its mass f(x) under full
constraints, which includes four inequality constraints, namely, maximum deflection, shear
stress, oscillation frequency and outer diameter limit, and three design variables, which are
the average diameter d of the spring coil, the diameter d of the spring wire and the effective
number N of the spring. The tension/compression spring problem is a classical structural
engineering design problem, which aims to minimize the weight of the spring by satisfying
four constraints: deflection, shear stress, fluctuation frequency and outer diameter. The
specific mathematical model is shown in Equations (27)—(32).
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Objective function:

minf(x) = (N +2)Dd? (27)
Constraints: s
D°N
x)=1—-——— <0 28
() 71785d% ~ (28)
4D* — dD 1
x) = + -1<0 29
8200) = 6D ) 510882 @)
140.45d
X)=1—-——< 30
g3( ) DZN = ( )
D+d
Boundary constraints:
005<x1<2,025<x<13,2<x3<15 (32)

Based on the improved algorithm PSODQO, the tension/compression spring problem
is optimized and the values of related parameters are obtained. The optimized results are
compared with algorithms in other articles. Detailed information is shown in Table 8. The
convergence curve of the compression spring design problem is shown in Figure 5.

Table 8. Comparison of compression spring design algorithms.

Algorithms d D N fmin
PSO 0.0572 0.5056 5.9636 0.01631
GWO 0.0586 0.5488 5.1551 0.01319
WDO 0.0579 0.5277 5.5187 0.01333
SCA 0.0589 0.5568 5.0098 0.01354
TSA 0.0553 0.4512 7.3683 0.01296
DO 0.055 0.3171 14.1011 0.01289
PSODO 0.051 0.3175 14.0183 0.01271
PSO
-------- WDO
GWO
SCA
100 T e ]T;)A 1
E PSODO
®©
2
:
% 10° ~—— .
T PO I | Sy, T
=y
100 i
150 200 250 300

lteration

Figure 5. Convergence curve of compression spring design problem.

It can be seen from the results in Table 8 and Figure 5 that when the values of three pa-
rameters, d, D and N, are 0.051, 0.3175 and 14.0183, respectively, the spring weight obtained
by the PSODO algorithm reaches the optimal value of 0.01271. Generally speaking, the
PSODO algorithm has better performance than the original DO algorithm and other meta-
heuristic algorithms in dealing with compression spring problems.
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In this paper, the PSODO algorithm is applied to two engineering problems with differ-
ent complexities. The complexity range of these problems varies from two design variables
to four design variables. By dealing with complex problems with different numbers of
parameters, the performance of the PSODO algorithm in solving engineering problems is
further demonstrated. The design scheme given by the PSODO algorithm is compared with
the scheme proposed by the existing algorithms in the literature. The comparison results
show that the design cost of the scheme proposed by the PSODO algorithm is far lower than
that of the original DO algorithm and other comparison algorithms, and it is an efficient
algorithm to solve engineering optimization problems. At the same time, the short running
time of the PSODO algorithm also shows the practicability and stability of the improved
algorithm in engineering optimization problems with multiple complex constraints.

6. Conclusions

In this paper, based on the original PSO algorithm and DO algorithm, a multi-strategy
hybrid dandelion optimization algorithm is proposed. According to the characteristics of
particle swarm optimization and the dandelion population, the proposed algorithm is im-
proved, and the speed-decreasing strategy is introduced to improve the performance of the
algorithm. The PSODO algorithm is compared with other six optimization algorithms on
22 benchmark functions in multi-dimensional experiments, and the convergence curves of
each algorithm are analyzed, which fully proves the effectiveness of the improved strategy.
Finally, PSODO is applied to three complex engineering optimization problems, which
proves that PSODO has good engineering practice value and good popularization value.

Although the PSODO algorithm has great advantages in data processing, it still has
some shortcomings. Firstly, the algorithm adopts an optimization strategy, which increases
the complexity of the algorithm. Secondly, this algorithm still lacks a large number of
experiments on other difficult data-processing tasks, and this article only applies this
algorithm to test some engineering application problems and benchmark function testing.
Therefore, we will continue to apply the PSODO algorithm to other practical problems
such as feature selection, image segmentation, parameter optimization and processing in
the future, and further discuss the optimization performance of the proposed algorithm.
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