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Abstract: Already a multibillion-dollar global industry, shrimp aquaculture, is growing all the time.
The intensive method, which is the most common method in shrimp aquaculture, remains com-
mercially challenged due to the expenditures associated with environmental pollution abatement.
Although the comprehensive understanding of this intricate aquaculture environment has been
advanced using mathematical modeling, recent attempts to improve the model’s structure have not
yielded enough results. This work upgraded the previous method to a three-dimensional hydrody-
namic ecosystem model with the effects of shrimps being replaced by approximation equations for
the environmental assessment of a shrimp aquaculture pond in Kyushu District, Japan. Our approach
was successful, as demonstrated by the high consistency of the simulation results when compared to
observation data and the previous results. Additionally, we first revealed the impacts of stratification
and confirmed the notable daily variation in the water quality. Our case study offers significant prac-
tical information on the characteristics of intensive shrimp aquaculture, implications for long-term
sustainable operations, and future research priorities on local-scale ecosystem modeling.

Keywords: environmental assessment; MEC ocean model; sludge accumulation; water quality

Key Contribution: The development of a three-dimensional model in our case study reveals the
effects of stratification and enables the optimization of paddle wheel aerator placement and quantity
in wastewater treatment ponds, ultimately leading to more efficient energy consumption.

1. Introduction

Shrimp aquaculture is currently a multimillion-dollar worldwide industry that is
expanding continuously. The financial prospect of shrimp aquaculture, which has already
reached US $ 19.4 billion in 2017 between Europe and Asia, is drawing public attention
thanks to a National Geographic documentary [1] that clearly illustrates the wide area of
this industry in Indonesia. Similarly, the Mekong, Red River, Pearl River, and Yellow River
Deltas have been reported to have 2659, 299, 1050, and 863 km2 of shrimp aquaculture,
respectively [2]. Among these areas, penaeid shrimp, particularly Pacific white shrimp, are
the most commonly farmed, and their production has propelled global shrimp production
to a record high of 9.4 million tons in 2022 (FishStatJ; https://www.fao.org/fishery/en/
topic/166235?lang=en (accessed on 31 January 2024)). More importantly, the growing
demand in the global market continues to fuel the development of the shrimp business and
aquaculture.

The penaeid shrimp aquaculture, based on major economic and technological dif-
ferences, can be divided into extensive (relatively low levels of farming density), semi-
intensive (intermediate levels of farming density), and intensive farming (relatively high
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levels of farming density) [3]. Extensive farming systems rely on traditional methods with
minimal modifications, operating at low densities and inputs. They contribute negligibly to
ecosystem nutrient and organic matter loads, primarily utilizing natural pond productivity
supplemented occasionally with fertilizers. In contrast, intensive farming involves higher
densities and inputs, including pelletized feed and chemicals/drugs, leading to increased
nutrient and organic matter loads in the ecosystem [4]. The overloading has been linked to
recorded cases of anoxic sediments and virus-related disease [4–6]. Solutions have been
employed thus far, including paddle-wheel aerators for oxygen supply, regular water
quality monitoring, and manual cleaning of anoxic sediments. However, these pollution
abatement costs still challenge the commercial viability of intensive shrimp aquaculture [3].

To overcome the environmental problem, an advanced understanding of ecology,
biology, and the environment is required [7–9]. This knowledge exploration involves syn-
thesizing empirical data, assessing hypotheses, and understanding system dynamics, for
which mathematical modeling is powerful [10,11]. When Burford et al. [12], for example,
combined process measurements and bioindicators with data on water quality, they found
that the ecological effects of changes in water quality parameters were oversimplified and
recommended using phytoplankton responses and zooplankton communities for a more
thorough assessment. Burford and Lorenzen [13] continued to develop a mathematical
model to study nitrogen cycles, which included shrimp excretion, wasted feed decom-
position, phytoplankton uptake, sedimentation, and remineralization. They concluded
that sediment acted as a net sink of nitrogen across the whole production cycle. These
ecosystem components were further calculated following water flow in a one-dimensional
hydrodynamic-ecosystem coupled model by Kitazawa et al. [14]. Based on the nitrogen
cycle and time-series nutrient results, it was reasonably explained that there was an approx-
imately 100-fold increase in phytoplankton production in the shrimp aquaculture pond.
Such a one-dimensional model also cannot be used to consider a management strategy
of habitat for shrimps using equipment such as circulators and aerators, which create a
three-dimensional environmental structure in a shrimp aquaculture pond [15,16].

Unfortunately, the overall knowledge has not significantly advanced since then, de-
spite increased efforts to refine the model’s structure. Studies conducted after 2010, to the
best of our knowledge, have focused more on the circulation of nutrients as a measure
of water quality. Using the STELLA software Research version 8, Kittiwanich et al. [17]
assessed the impact of nitrogen intake from feed on the nutrient dynamics of a well-aerated,
enclosed shrimp pond in Thailand. Similar initiatives have been undertaken in Brazil [18]
and Iran [19]. These calculations relied mostly on differential equations to describe the
major nitrogen components, as with contemporary in-house models [20–22]. Perhaps
as a result of their efforts, the growth modeling of shrimp has been substantially devel-
oped in the meantime to further assess the shrimp’s impacts on nutrient intake [23–25].
However, both fields—direct assessment (water quality) and indirect evaluation (shrimp
growth)—are adopting artificial intelligence-related technologies, including the Bayesian
hierarchical approach [26], the deep learning-based approach [27], and artificial neural
network modeling [28]. Despite that, little research has been done to improve the spatial
dimension of ecosystem modeling at the pond scale.

The present work aimed to clarify how the application of a three-dimensional hy-
drodynamic ecosystem model might enhance the previous calculation of the intensive
aquaculture pond of penaeid shrimp [14]. The target penaeid shrimp is Penaeus japonicus,
and the aquaculture pond was situated in the Kyushu district, Japan. Nevertheless, in the
current three-dimensional hydrodynamic ecosystem model, the effects of shrimps were
replaced by approximation differential equations. The numerical reproduction of the flow
pattern at the surface, four water quality parameters, and the benthic sludge accumulation
were all examined using the previous monitoring data. The advantages and disadvan-
tages have been evaluated in contrast with the previous results. Based on the discussion,
long-term sustainable operations and future research objectives have been suggested.
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2. Materials and Methods

The previous one-dimensional model has been upgraded to a three-dimensional hydro-
dynamic ecosystem model, currently named the MEC (Marine Environmental Committee)
Ocean model. This model has already incorporated hydrodynamic and lower trophic
ecosystem components. Meanwhile, the previous shrimp growth sub-models have been
replaced by approximation equations with evidenced-based parameter values. Finally, the
model has been applied to the identical study case with a prolonged calculation period.

2.1. Three-Dimensional Hydrodynamic Ecosystem Model

The time variations in the vertical profiles of water temperature, salinity, density,
and horizontal current velocity constitute the foundation of the hydrodynamic sub-model.
These equations include the momentum equations, the state equation, and the advection
and diffusion equations for water temperature and salinity. The vertical eddy viscosity and
diffusivity coefficients are computed using the Mellor-Yamada level 2.5 turbulence model.
Surface wind friction, fluxes of salt and heat from the surface, and bottom friction are con-
sidered. However, the hydrodynamic sub-model adopts two simplifying approximations
for incompressible viscous fluid. First, the weight of the fluid is assumed to identically
balance the pressure (hydrostatic assumption). Second, density differences are neglected
unless the differences are multiplied by gravity (Boussinesq approximation).

The advection and diffusion equation links hydrodynamic conditions with the lower
trophic-level ecosystem by determining how chemical substances and plankton are trans-
ported in the water. In addition, chemical-biological interactions also cause variations in
the concentrations of chemical substances and plankton. Eight state variables are extracted
based on the food web in the pond, including phytoplankton, zooplankton, two types of
organic carbons, dissolved inorganic phosphorus, nitrogen, silicon, and dissolved oxygen.
Phyto- and zoo-plankton species are ignored and represented by a single state variable.
Although bacteria are excluded, their role is implicitly included in the release of nutrients
and oxygen consumption during the decomposition process of dissolved organic carbon
(DOC). Particulate organic carbon (POC) is a different kind of organic carbon determined
by the particle size. DOC is less than 45 µm, whereas POC is defined as organic particles
between 45 µm and 2 mm. On the other hand, the eight state variables comprising the
benthic sub-model are aerobic and anaerobic detritus, refractory organic carbon, dissolved
inorganic phosphorus, nitrogen, and silicon in the pore water, sulfide as represented in the
corresponding amount of carbon, and the thickness of the aerobic layer. Only their main
features are considered and modeled in this work. See more detailed equations in Kitazawa
et al. [14]. The effects of shrimp aquaculture are treated as boundary conditions.

2.2. Case Study

The target aquaculture pond of penaeid shrimp Penaeus japonicus, owned by Takusui
Co., Ltd., Fukuoka, Japan, is situated in the Kyushu District of Japan (Figure 1a). The shrimp
farm has 2 larger and 17 smaller cultivation ponds (Figure 1b) for experiments, and the
large one—55 m long, 20 m wide, and 70–90 cm deep—was used for shrimp experimental
aquaculture. Approximately 17,400 shrimp larvae with a wet weight of 7.8 g were placed
and were given compounded diets. Throughout the aquaculture period, the water in the
pond and the outside sea interchanged at a rate of 300 tons per day, taking approximately
three days to refresh the whole pond water.

For the model validation and boundary condition determination, three categories
of field monitoring were conducted. First, the distribution of current velocity at the
water surface was measured using geomagnetic electro kinetographs (Compact-EM, Alec
Electronics Co., Ltd., Kobe, Japan) on 3 November 2006. There were 44 sites, spaced 5 m
apart, dispersed across almost the whole surface of the pond. The measurement was made
30 s at a time, with a 0.5 s recording interval, at a depth of 10 cm below the water surface.
These velocity data were then averaged to determine the velocity value at the site. The
vertical velocity profile near the paddle-wheel aerators was measured every 20 cm from
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the water surface to the bottom. Second, instead of direct investigations, local employees of
Takusui Co., Ltd., Fukuoka, Japan, were interviewed on the horizontal distribution and
accumulation depth of sludge during the aquaculture period.
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Figure 1. Locations of Kyushu District, Japan, and shrimp aquaculture pond (a) monitoring sites
(blue points) and two paddle-wheel aerators (red points) in the pond (b). The pipes of inflow and
outflow of water were installed at Stations A and B, respectively. The intake pipe was drawn from
the outer sea (Station D).

The monitoring of water quality was implemented continuously during 3 November
and 12 December 2006, including water temperature (thermometer; Compact-CT, Alec
Electronics Co., Ltd., Kobe, Japan), the concentrations of chlorophyll a (chlorophyll and
turbidity meter; Compact-CLW, ACL104-8M, Alec Electronics Co., Ltd., Kobe, Japan),
dissolved oxygen (dissolved oxygen meter; Compact-DOW, Alec Electronics Co., Ltd.,
Kobe, Japan) as Station C, and the concentration of nutrients (phosphate, ammonium,
nitrite, nitrate, and silicon) using water samples taken at Stations A and B and analyzed
by the Auto Analyzer (TRAACS2000; Bran+Luebbe KK, Norderstedt, Germany; Figure 1b;
Table 1). Additionally, the chlorophyll a at the outside sea was also monitored using
ACLI 04-8M (Alec Electronics Co., Ltd., Kobe, Japan) at Station D (Figure 1b). It should
be highlighted that the continually recorded data represented the relative fluctuation of
the total concentrations of the phaeopigments and chlorophyll a. As a result, the actual
measurement of the chlorophyll a concentration (Dojin Glocal Co., Ltd., Kumamoto, Japan)
was used to calibrate the above observed chlorophyll a concentration.

Table 1. A summarized condition of water quality monitoring.

Items Instrument Setup

Water temperature Compact-CT Every 30 min values at 40 cm below the water surface of Station C

Chlorophyll a Compact-CLW Every 10 min values at 40 cm below the water surface of Station C

Dissolved oxygen Compact-DOW Every 10 min values at 80 cm below the water surface of Station C

Nutrient

Water samples 50 mL each at 6:00 and 15:00 every day from the drawing pipe at
Station A and from the surface water at Station B

Water treatment and analysis
immediately frozen in the refrigerator before the laboratory;

filtered using a Whatman GF/F glass filter paper and analyzed by
the Auto Analyzer in the laboratory

2.3. Computational Conditions

The water quality significantly fluctuated when pelletized feed was switched to raw
feed after 21 November 2006 [14]. The present simulation period was therefore determined
to run from 26 August to 21 November 2006, with the first week serving as the spin-up
period and the calculation including the whole aquaculture period overall. Up to a depth
of 1 m, the pond was latticed with a mesh of 2 m in the horizontal direction and 0.1 m in the
vertical direction (Figure 2a). The time step was accordingly set at 0.05 s. In addition, four
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parameters of the lower trophic-level ecosystem were customized for the target shrimp
pond: the temperature coefficient of phytoplankton respiration, the mortality rate of phyto-
and zooplankton, and the sinking rate of phytoplankton.
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Figure 2. The grid system for simulation and the locations of monitoring (validation) stations (in
blue) and paddle-wheel aerators (in red) (a) and the vertical velocity profile given at the grid of
paddle-wheel aerators (b). The gray grids in (a) represent the land.

Boundary conditions include water quality data, meteorological data, and shrimp
effects. Exchanges of water, chemical matters, and plankton were calculated based on the
difference between the aquaculture pond and outer sea, assuming that the 300-ton pond
water were daily refreshed. Partial water quality data in the outer sea, when unmonitored,
was estimated using the chemical oxygen demand, total phosphorus, and total nitrogen data
in the surrounding sea area (available at the National Institute for Environmental Studies).
The heat flux through the water surface was calculated using the meteorological data
of atmospheric pressure and temperature, solar radiation, the amount of cloud, relative
humidity, precipitation, and wind velocity and direction at Kumamoto and Ushibuka
Station (available at the Japan Meteorological Agency).

Two aspects were considered for the effects of shrimp aquaculture. The first is the result
of the two paddle-wheel aerators (Figure 2a), which produced water flow and supplied
oxygen. Based on the measurement data, a numerical reproduction was made of the vertical
velocity profile near the grid where the paddle-wheel aerator was installed. Additionally,
the concentration of dissolved oxygen at these grids was increased by 1.94 mg/L/s, given
the aeration efficiency of commercial aerators [29] and paddle wheel arrangement. Likewise,
nutrient intake from feed was modeled as shrimp effects [20–22]. The amount of feed was
recorded throughout the aquaculture period and approximated using a cubic function.
These feeds were assumed to be evenly distributed across the pond, and their water content
was 0.15. Generally, 87.5% of feeds were converted to wastes into sediments, of which 60%
were released as nutrients—nitrogen, phosphorus, and silicon—while consuming dissolved
oxygen [30,31].
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3. Results and Discussion
3.1. Physical Environment

The surface flow pattern (Figure 3) and water temperature (Figure 4) have been
selected as the physical environment of the pond, as water temperature has a direct impact
on shrimp growth and water velocity, which affects water quality, has a major impact on
shrimp health. The flow pattern, which was typically counterclockwise flow, has been
reproduced. The two paddle-wheel aerators are primarily responsible for this flow pattern
as the simulation findings suggest. However, the absolute velocity speed was less accurately
calculated. The high-speed velocities concentrated on a few grids surrounding the paddle-
wheel aerators, while the observational velocities were more evenly distributed across
the pond. The inadequate numerical resolution might be the cause of this discrepancy.
Nevertheless, other variables, such as shrimp activities, also have an impact on velocity
speed, challenging numerical reproduction. In conclusion, the flow pattern has been
reproduced, and its accuracy is adequate for the following material transport.

The advection-diffusion equation was used to model the water temperature, which
affected biological activities [14]. The numerical results generally matched the observation
results, albeit the ignorable discrepancy (Figure 4). More importantly, the diurnal variation
has been well reproduced, and the increasing magnitude of the diurnal variation has been
highlighted by the simulation results. The pond’s shallow depth makes it particularly
susceptible to climate conditions, but summertime stratification limits the magnitude of
temperature variation and protects the pond’s ecosystem to some degree. In conclusion, the
water temperature has been well-reproduced, and the shallow pond’s capacity to quickly
change the water temperature indicates that the water quality may change significantly
during the day.
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3.2. Water Quality

Although an effort has been made to customize the pond environment, it is still
challenging to precisely reproduce the concentrations of chlorophyll a (Figure 5) and
dissolved oxygen (Figure 6). The calculated chlorophyll a concentration was somewhat
lower than the observed, but still fell within the range of its daily fluctuation. Though
the simulated dissolved oxygen followed the general tendency, the sudden drop in the
observed dissolved oxygen concentration was not reproduced. This work is unable to
reproduce this sudden fall as the drop is less common in the natural ecosystem, especially
in a shallow pond [31]. From this perspective, such sudden oscillations are likely to be
influenced by shrimp activities; hence, an individual-based sub-model might improve the
numerical performance. However, the previous attempts using biomass-based individual
sub-models yielded minimal advantages, partly because of the difficulty of parameter
estimation [14]. As a result, a dynamic energy budget sub-model may better serve our
goals in addition to the well-structured database, which is now widely practiced [25,32].
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Figure 5. Comparison of the observational (points) and numerical (line) chlorophyll a concentration,
at 40 cm below the water surface of Station C throughout the simulation period.

Referring back to the features of chlorophyll a and dissolved oxygen concentrations in
the pond, the most prominent aspect is the observable daily fluctuation that agreed with
that of water temperature. Furthermore, there was a sudden increase in the concentration
of chlorophyll a in the middle of September, followed by a stepwise fall; however, the
dissolved oxygen concentration started to increase simultaneously. Based on the water
temperature data, the stratification was weakened in the middle of September. Due to the
water mixing and its accompanying supply of nutrients, phytoplankton had a temporary
bloom. However, as the water progressively cooled down, the phytoplankton proliferation
slowed down as well, and its concentration returned to what it was in mid-August. On
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the other hand, the stratification was very beneficial to the dissolved oxygen concentration
that had increased continuously, perhaps because of the cooling water and surface oxygen
supply. Importantly, these interrelations are first confirmed because the previous calculation
failed to reproduce the stratification [14].
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3.3. Nutrient Concentration

Nutrient concentration is one of the main concerns for this work because measure-
ments were only taken twice a day and inadequately represented daily fluctuations in the
pond. The above reasoning in Sections 3.2 and 3.3 explains why it is unsurprising that there
were substantial daily fluctuations in nutrients. Typically, the stratification disappearance
caused the most fluctuation (e.g., Figure 7c). Three nutrients generally exhibited identical
fluctuation patterns, while the concentration of dissolved nitrogen outweighed the others.
This demonstrates the relative advantageous amount of nitrogen absorption by phytoplank-
ton, showing consistency with the previous analysis [14]. Three nutrients had been at low
concentrations for almost a month, but from mid-October, their concentrations have been
rising, which was directly affected by the phytoplankton fluctuation (Figure 6). The subse-
quent fluctuation in all nutrients exactly corresponded to the phytoplankton shrinkage. The
comparison period might reveal that the phosphorus concentration was the best calculated,
with a minimum deviation value if calculated statistically. However, when considering
the measurement precision and relatively low concentration of dissolved phosphorus, the
numerical accuracy was comparable among three nutrients, and all concentrations were
somewhat higher than their observation. This discrepancy is consistent with the previous
study [14], where the complex relationship related to the nitrogen concentration of the
pond was proposed as the explanation.

3.4. Sludge Accumulation

The accumulation of sludge is another significant concern for this work, as the sedi-
mental condition is crucial for shrimp aquaculture ponds [5,6,13]. Although the current
model is unable to evaluate sludge accumulation directly, the carbon weight of anaerobic
organic matter qualitatively displays the sludge condition in the pond (Figure 8). The
observed accumulation was concentrated in the middle and right bottom of the pond,
which was consistent with the simulated results. Also, anaerobic organic matter was found
in considerable concentrations in the side pond, which is partially affected by the numerical
accuracy of flow pattern. From this perspective, the main characteristics of the sludge
accumulation have been represented by the simulation results. The horizontal distribution
of the sludge accumulation, however, is the simulation results’ greatest merit because it is
difficult to accurately quantify the actual distribution of sludge accumulation based on the
experience of local employees. The calculation results suggest that a clean zone may be
found near the paddle-wheel aerators (Figure 8b), due to the high-speed flow. Furthermore,
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the sludge was distributed asymmetrically, with the upper side being relatively clean—a
characteristic that might be attributed to the topography of the pond.
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3.5. Future Research Priorities on Management

Recent research has emphasized the prioritization of operational aspects, with stud-
ies predominantly focusing on evaluating the development of intensive shrimp farming
in land-based ponds, particularly in terms of production and management [33]. These
investigations have consistently shown that high-density shrimp ponds exhibit a higher
prevalence of heterotrophic bacteria, elevated levels of suspended particulate matter, and
increased abundances of phytoplankton as observed in our target pond [34]. Consequently,
they advocated for providing sufficient feed to mitigate the risk of farming failure. How-
ever, other studies suggested that cultivated shrimp may not efficiently utilize additional
feed during the late stage, influenced by the dynamics of the benthic food web in ponds,
potentially leading to overfeeding and degradation of the benthic environment [35]. Re-
search comparing four widely used pond bottom treatments indicated that a cost-effective
and ecologically beneficial approach involves combining natural dry-out with liming and
frequent sediment removal [36]. These findings aligned with those of bio-economic mod-
eling, demonstrating that enhanced economic profitability is associated with a shorter
aquaculture period and quicker rotation [37].

As of the time of writing, the prevailing trend seems to be the adoption of autonomous
monitoring systems, providing more comprehensive real-time information and facilitating
further analysis [38]. Nevertheless, through this work, our understanding of shrimp
aquaculture ponds has been augmented by upgrading the spatial dimension of ecosystem
modeling. From this perspective, we recommend that future research efforts should include
the development and utilization of three-dimensional modeling.

4. Conclusions

This study presents an evaluation of the ecosystem environment of a shrimp aqua-
culture pond in Kyushu District, Japan. Although the pond was the focus of a previous
study, we have upgraded the model to a three-dimensional hydrodynamic environment.
These simulation results demonstrated a high degree of accuracy when compared to the
observation data; only little variations were confirmed when compared to the findings
of the previous study. The comparison shows that our attempt to the three-dimensional
environment is successful, with the following two main findings.
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First, the intensive shrimp aquaculture in the targeted pond created a unique ecosys-
tem. It was a shallow pond with a relatively high density of farmed shrimp, resulting in
the concentration of chlorophyll a in it to be 100 times greater than in the adjacent outer
marine environment. Despite this, our results initially showed how stratification impacted
the pond ecosystem and confirmed the significant daily fluctuations in the water quality
since stratification disappeared. More importantly, the horizontal distribution of anaerobic
organic matter qualitatively indicated the accumulation of sludge, which assists the manual
cleaning of anoxic sediments and reduces the risk associated with shrimp aquaculture.

Second, although the three-dimensional simulation has advanced the general under-
standing of the environment in shrimp ponds, the accuracy remains unsolved regarding
sudden environmental fluctuations. There has been a noticeable drop in the dissolved oxy-
gen concentration, but the calculation has not been successful. This discrepancy is plausibly
a result of shrimp activities, and it meanwhile raises the risk of shrimp aquaculture. When
necessary, a shrimp growth model could be coupled to narrow the difference in the future.

Overall, this study contributes to the sustainable management of intensive shrimp
aquaculture because the developed model will be useful to determine the optimal number
and the location of paddle wheel aerators to minimize energy consumed. Furthermore,
this study identifies future research priorities for improving environmental assessments
and operations.
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