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Abstract: This study examined the impact of tea polyphenols (TPs) on the intestinal flora of loaches
(Paramisgurnus dabryanus) under chronic ammonia nitrogen stress using high-throughput sequencing.
Two groups of 600 loaches were studied over one month, and they were separated into a control group
and tea polyphenol group. Alpha and beta diversity analyses showed diverse bacterial communities,
with significant differences in the abundance and uniformity observed initially but not between
sampling time points. Cluster analyses revealed distinct differences in microbial communities
between groups. A predictive function analysis indicated enrichment in pathways related to amino
acid and nucleotide biosynthesis. These findings offer initial insights into how tea polyphenols may
affect intestinal microbial communities in loaches under ammonia nitrogen stress.

Keywords: ammonia nitrogen stress; tea polyphenols; loach; gut microbiota; high-throughput
sequencing

Key Contribution: Ammonia stress is a common issue in modern aquaculture, and in this study,
TPs were found to have a potential positive effect on the gut microbial community of loaches under
chronic ammonia stress.

1. Introduction

Aquaculture systems often experience a sharp increase in the ammonia nitrogen
content of water from the decomposition of animal excrement, residual feed, and plankton
debris [1,2]. Ammonia nitrogen is mainly introduced via the decomposition of nitrogen-
containing organic matter and exists in the forms of NH4+ (ionic ammonia) and NH3
(non-ionized ammonia). When ammonia concentrations in water are elevated, ammonia
molecules can enter the animal’s body through the skin and gill epithelium, leading to an
increase in ammonia nitrogen in the animal [3]. If ammonia nitrogen exposure lasts longer
than the organism’s tolerance limit and exceeds the body’s regulatory threshold, it may
harm or damage the antioxidant and immune systems and increase the risk of disease in the
animal [4–7]. To prevent this damage, fish nutritionists usually add synthetic antioxidants
to their diets; however, these synthetic antioxidants have side effects [8]. Therefore, natural
additives are in high demand [8,9].

Tea polyphenols (TPs) are bioactive components found in tea that dissolve easily in
water and various organic solvents, such as methanol, ethanol, and acetone. TPs are stable
in acidic environments but are susceptible to oxidation under alkaline conditions [10].
The beneficial effects of TPs are primarily attributed to their polyphenolic compounds,
particularly catechins, which comprise approximately 75–80% of TPs. Catechins have been
associated with several biological benefits, including antioxidant and antitumor properties,
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a reduced risk of cardiovascular diseases, and immune enhancement [11–13]. Among the
polyphenolic compounds found in green tea, catechin is the primary compound, along
with epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC),
and epicatechin (EC) as the other main constituents [14]. The most abundant catechin
is gallate (EGCG), which is the most effective polyphenol component in conferring the
above-mentioned beneficial biological properties [15].

The loach (Paramisgurnus dabryanus) is a small freshwater benthic fish that is widely
distributed throughout East Asia. In recent years, loaches have been cultivated primarily in
paddy fields in China [16,17], where the release of fertilizers can lead to significant fluctua-
tions in the ammonia nitrogen levels in the water body. Consequently, this environmental
shift adversely affects various physiological parameters of the loach, resulting in negative
impacts on the overall well-being [18,19]. Many studies have shown that a TP feed can have
beneficial effects on ammonia resistance in fish [20]. This study aimed to investigate the
effects of TPs on the gut microbiota structure of large-scale loaches under chronic ammonia
nitrogen stress. The aim of this study is to provide insights into the potential of TPs as a
safe, effective, and natural antioxidant without any side effects. These findings may offer
valuable directions for enhancing the resilience of loaches in challenging environments and
may contribute to a broader understanding of the effects of TPs on the gut microbiota of
aquatic organisms.

2. Materials and Methods

Our study did not involve endangered or protected species. All efforts were made
to minimize animal suffering and discomfort. The experimental protocol was approved
by the Animal Ethics Committee of Shenyang Agriculture University (permit number
2021041601). All animal surveys were carried out in accordance with the approved guide-
lines of Shenyang Agriculture University Experimental Animal Management Committee.

2.1. Experimental Fish

The experimental loach specimens were purchased from a local market in China and
transported to the Aquaculture Laboratory of Shenyang Agricultural University in October
2022 for a two-week period of temporary rearing. At the end of the staging period, a
month-long trial was conducted. Healthy loaches with an initial weight of 8.41 g/tail were
randomly distributed into six water barrels measuring 92.5 cm × 92 cm × 90 cm, with a
volume of 100 L. They were named according to the control group (CK1, CK2, and CK3) or
TP group (EG1, EG2, and EG3), and 100 loaches were placed in each barrel. The control
group was fed basic feed without TPs, whereas the experimental group was given feed
with TPs (>98% purity; Zhong Chen Biotechnology Co., Ltd., Henan, China) at a content of
0.01% [21] (Table 1). Two daily feedings at 8:00 A.M. and 4:00 P.M. amounted to 2–3% of the
fish’s body weight. Ammonia nitrogen mother liquor was prepared by diluting analytically
pure NH4Cl (purity > 99%; Shenyang Xilong Chemical Co., Ltd., Shenyang, China) to a
concentration of 20 g/L. Subsequently, 10 L of the solution was prepared daily, stored in
a static state, and then diluted proportionally to the required experimental concentration
when in use.

Table 1. Feed formula of Paramisgurnus dabryanus (%).

Ingredient No Tea Polyphenols Contains Tea Polyphenols

Fish meal 20 20
Dextrin 5 5

Soybean meal 32 31.99
Flour 10 10

Wheat bran 11 11
Corn gluten powder 15 15

Fish oil 5 5
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Table 1. Cont.

Ingredient No Tea Polyphenols Contains Tea Polyphenols

Calcium phosphate 1 1
Vitamin premix 1 1
Tea polyphenols 0 0.01

Total ratio 100 100
Note: Vitamin premix (mg/kg): riboflavin, 20; thiamin, 20; pyridoxine, 20; vitamin B12, 2; vitamin D, 0.5; vitamin
A, 1.83; vitamin K, 10; vitamin E, 10; folic acid, 5; Ca-pantothenate, 50; inositol, 100. 2 Mineral premix (g/kg):
monocalcium phosphate.

2.2. Ammonia Stress Test

After the temporary rearing period, ammonia nitrogen was introduced by diluting
the NH4Cl to a concentration of 50 mg/L per barrel, which was maintained for 30 days.
The water temperature during the test was maintained at (15 ± 3) ◦C. The experimental
container’s water was changed twice a day, starting one hour after feeding, with approx-
imately 25% of the water changed each time and 50% of the water changed in a day. To
maintain the concentration of ammonia nitrogen in the water, the total ammonia nitrogen
concentration was determined by applying a T6 series UV–visible spectrophotometer (Bei-
jing Puxi General Instrument Co., Ltd., Beijing, China) after water exchange. Adjustments
were made as necessary using a master batch [22]. The lighting conditions used in the
experiment were natural light cycles.

2.3. Sampling

The growth and mortality of the loaches were monitored during the culture period.
Sampling was conducted 10, 20, and 30 days after the initiation of the experiment. Loaches
from control and TP groups were selected for dissection, and intestinal samples were collected.
A total of 18 samples, each weighing approximately 1–1.5 g, were collected from the six groups
and placed in sterile centrifuge tubes with a unique identifier. Subsequently, the samples were
frozen in liquid nitrogen and stored at –80 ◦C for subsequent sequencing analysis.

2.4. Growth Performance Measurement

During the experiment, the loaches were weighed every 10 d. The weight gain (WG,
Equation (1)), specific growth rate (SGR, Equation (2)), and survival rate (SR, Equation (3))
for all surviving loaches were calculated at the end of the experiment using the following
formulas:

WG = 100 × (W2 − W1)/W1(g) (1)

SGR = 100 × (W2 − W1)/T (2)

SR = 100 × M/N (3)

where W1 is the initial body weight (g), W2 is final body weight (g), TF is the total feed
consumption (g), T is the number of feeding days, M is the number of surviving individuals,
and N is the total number of fish in the experiment.

2.5. DNA Extraction and 16S rRNA High-Throughput Sequencing

DNA extraction and PCR amplification were performed as follows: gut genomic DNA
was extracted from six sample groups using the Qubit 2.0 DNA Assay Kit (Invitrogen,
Waltham, MA, USA) according to the manufacturer’s instructions. The quality of the ex-
tracted DNA was assessed using 1.0% agarose gel electrophoresis and spectrophotometry,
and the optical density was measured at a 260 nm/280 nm ratio. All extracted DNA sam-
ples were then stored at −20 ◦C for subsequent analysis. To investigate the structure and
composition of the bacterial communities in the loach gut, high-throughput sequencing
of the 16S rRNA gene was conducted. The V3–V4 variable region of the bacterial 16S
rRNA gene was amplified using the universal forward 338/806 primers (338F: ACTCC-
TACGGGAGGCAGCCA and 806R GGACTACVSGGGTATCTAAT) [23]. Raw data were
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screened using quantitative insights into microbial ecology (QIIME) based on barcode and
primer sequences [24].

2.6. Bioinformatics

To ensure the accuracy of the information analysis results, the raw data were spliced
and filtered to obtain valid data [25,26]. The sequence was further pruned using the
DADA2 method [27], which included deprivation, mass filtering, denoising, splicing,
and chimera removal. An amplifying sequence variant (ASV) approach was applied,
resulting in 100% similarity clustering after applying DADA2 quality control. Moreover,
representative sequences were selected for each ASV, and taxonomic data were assigned to
these representative sequences using the classification sklearn algorithm [28]. For sequence
alignment, the Green Genes database (version 13·8, http://greengenes.secondgenome.
com/, accessed on 6 January 2023) was used as a reference database [29]. For alpha-
diversity analysis, the QIIME program was employed to calculate indices such as CHAO1
and observed species richness estimators as well as Shannon and Simpson diversity. The
Bray–Curtis distance measurement method was utilized to analyze beta diversity, whereas
principal coordinate analysis (PCOA), nonmetric multidimensional scaling (NMDS), and
the non-weighted pair group method with arithmetic mean were employed to visualize the
changes in microbial community structure among different samples [30]. To examine shared
and unique ASVs in samples or groups, Venn diagrams were generated using the R package
(https://www.r-project.org/ accessed on 6 January 2023) “Venn Diagram” regardless of
their relative abundance [31]. Based on the high-quality sequences, the PICRUST2 method
was used to predict microbial function by reconstructing unobserved states. The identified
genes and their corresponding functions were cross-referenced with databases such as
KEGG (http://www.kegg.jp/, accessed on 6 January 2023) for comparison and validation.

2.7. Statistical Analysis

SPSS Statistical software 26.0 was used to conduct a t-test comparing the means of
the two groups for independent samples of growth data. Data are expressed as “mean ±
standard deviation”, and p < 0.05 indicates statistically significant differences.

3. Results
3.1. Effects of Tea Polyphenols on Growth Performance

As shown in Table 2, we found that WG and SGR were significantly lower in the TP
group than in the control group (p < 0.05).

Table 2. Growth performance of loaches fed diets supplemented with tea polyphenols and their
combination for 30 days.

Control Group Tea Polyphenol Group p-Values

Initial body weight/g 8.29 ± 0.05 8.53 ± 0.32 0.284
Day 10 weight/g 9.68 ± 1.08 9.06 ± 0.12 0.38
Day 20 weight/g 9.11 ± 0.89 9.67 ± 0.25 0.358
Final weight/g 10.8 ± 0.53 9.93 ± 0.13 0.054
Weight gain/% 30.24 ± 5.98 a 16.59 ± 5.67 b 0.045

Specific growth rate/% 8.36 ± 1.68 a 4.68 ± 1.45 b 0.046
Survival/% 71.7 83.3 0.206

Note: Peer data shoulder labels that do not contain the same lowercase letter indicate a significant difference
(p < 0.05), and those that contain the same letter or no letter indicate a non-significant difference (p > 0.05).

3.2. Pyrosequencing of the Gut Bacterial Community

A total of 2,486,325 raw sequence reads were generated from the intestinal samples.
After undergoing mass filtering and denoising, 2,018,687 valid sequences were obtained
(Supplementary Table S1). Across different classification levels, we identified a total of

http://greengenes.secondgenome.com/
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4734 amplifying subsequence variants (ASVs), including 270 at the phylum level, 1652 at
the genus level, and 768 at the species level (Supplementary Table S2).

The dominant bacterial communities remained consistent across the different sam-
pling times in both groups, although their relative abundances varied. Proteobacteria
dominated the gut microbiota at the phylum level in groups CK1, EG1, CK2, EG2, and CK3,
representing 45.3%, 48.51%, 40.92%, 33.79%, and 25.71% of the total bacterial community,
respectively. Tenercutes exhibited the highest proportions in groups CK1, EG2, CK3, and
EG3, accounting for 25.57%, 25.76%, 33.69%, and 27.14% of the microbiota, respectively.
Firmicutes were more prevalent in the CK1, EG1, and EG3 groups, with proportions of
21.39%, 26.04%, and 34.13%, respectively. Notably, the EG1 group showed a 15.09% higher
content of Bacteroidetes than the CK1 group (Figure 1A).
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The dominant genera (with a relative abundance of >5% in at least one sample)
included Rhodobacter, Acinetobacter, Vagococcus, Spironema, Brevundimonas, Lactobacillus,
Aeromonas, Leucobacter, Cetobacterium, and Shinella (Figure 1B). Compared to the control
group, the TP feed group exhibited higher levels of Rhodobacter and Lactobacillus, whereas
Acinetobacter, Vagocochus, Brevundimonas, and Cetobacterium were more abundant in the
control group.

3.3. Alpha Diversity Reveals Alterations in Gut Bacterial Community Structure

We compared the alpha-diversity indices between the control group and the TP feed
group to assess changes in the gut bacterial community structure (Table 3). The Chao1
index, which reflects microflora abundance, was significantly higher in the EG1 group than
in the control group, whereas no significant differences were observed among the other
groups (p < 0.05). A high intestinal coverage rate (>0.997) confirmed the accuracy of the
sequencing results (Figure 2).

Table 3. Gut microbiota richness and alpha-diversity index statistics in Paramisgurnus dabryanus.

Sample Chao Coverage Species Shannon Simpson Group

CK10_1 234.588 0.999705 226.6 3.68927 0.817233 CK1
CK10_2 184.037 0.999535 165.8 2.12276 0.603577 CK1
CK10_3 411.753 0.999451 386.0 5.26191 0.936348 CK1
EG10_1 909.117 0.999194 884.3 6.83122 0.973744 EG1
EG10_2 503.742 0.999483 487.4 4.48923 0.881454 EG1
EG10_3 1354.28 0.998181 1288.9 7.62177 0.978703 EG1
CK20_1 240.27 0.999409 219.5 2.86509 0.753720 CK2
CK20_2 390.41 0.999178 363.9 3.07832 0.742806 CK2
CK20_3 398.164 0.999338 374.8 3.79994 0.785523 CK2
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Table 3. Cont.

Sample Chao Coverage Species Shannon Simpson Group

EG20_1 511.733 0.999210 494.5 6.19355 0.967188 EG2
EG20_2 695.119 0.998515 649.4 3.48330 0.644694 EG2
EG20_3 243.425 0.999840 241.6 3.82030 0.819175 EG2
CK30_1 387.626 0.999210 362.7 2.45514 0.661230 CK3
CK30_2 1292.57 0.997923 1225.6 6.86703 0.966195 CK3
CK30_3 2402.26 0.996557 2324.1 6.54731 0.827503 CK3
EG30_1 1550.90 0.997167 1493.7 5.90112 0.885300 EG3
EG30_2 858.088 0.999107 828.8 4.03164 0.634363 EG3
EG30_3 1896.01 0.997834 1868.3 7.73055 0.971686 EG3
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Figure 2. A comparison of alpha-diversity indices (Chao1, Observed species, Shannon, Simpson)
of the gut microbial community in Paramisgurnus dabryanus performing at 10 days (CK1 vs. EG1),
20 days (CK2 vs. EG2) and 30 days (CK3 vs. EG3). Box plots depict the medians (central horizontal
lines), inter-quartile ranges (boxes), and 95% confidence intervals (whiskers). The p-values are from
the Kruskal–Wallis test. Asterisks indicate statistically significant differences between pairs of values
(* p < 0.05).

3.4. Beta-Diversity Analysis Reveals Shifts in Gut Bacterial Community Structure

The PCoA scatterplot revealed a significant difference in population composition
between the CK1 and EG1 groups, whereas no significant differences were found among
the other groups (Figure 3). The two primary coordinates explained 24.9% and 17% of
the total variation, respectively. Notably, samples from the CK3 and EG3 groups were
clustered below the midline of the vertical axis, whereas samples from the other groups
were clustered above the midline. Additionally, the NMDS analysis confirmed a significant
difference between the CK1 and EG1 groups but showed no significant differences among
the other sample groups.
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3.5. Venn Diagram Analysis

Venn diagrams were used to visualize the shared and unique amplifying sequence
variants (ASVs) among the different gut sample groups, representing the core gut micro-
biota. As shown in Figure 4, all samples shared 101 ASVs. The CK1, CK2, and CK3 groups
had 264, 356, and 2597 distinct ASVs, respectively. In contrast, the EG1, EG2, and EG3
groups had 913, 730, and 2238 unique ASVs, respectively.
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Figure 4. Unique and shared amplicon sequence variants (ASVs) in different groups. The Venn
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3.6. Taxonomic Differences and Marker Species

To explore the genus-level similarities and differences between samples, we gener-
ated a hierarchical clustering heatmap (Figure 5). In the CK2 group, the dominant genera
included Shewanella, Brevundimonas, Leucobacter, and Vibrio. Specific genera, such as Vago-
coccus, Luteolibacter, and Elizabethkingia, were observed in the CK1, EG1, and EG2 groups,
respectively.



Fishes 2024, 9, 180 8 of 14

Fishes 2024, 9, x FOR PEER REVIEW 8 of 14 
 

 

as Vagococcus, Luteolibacter, and Elizabethkingia, were observed in the CK1, EG1, and EG2 
groups, respectively. 

 
Figure 5. The hierarchical clustering heatmap of the gut bacteria at the genus level. 

3.7. Functional Prediction of Intestinal Microbiota 
We determined the abundance of active metabolic pathways in the intestinal 

microbiota by reviewing various metabolic pathway databases. Amino acid biosynthesis 
pathways were the most abundant among the biosynthetic pathways, followed by 
pathways related to cofactors; prosthetic groups; electron carriers; and the biosynthesis of 
vitamins, fatty acids, lipids, nucleosides, and nucleotides (Figure 6). 

Figure 5. The hierarchical clustering heatmap of the gut bacteria at the genus level.

3.7. Functional Prediction of Intestinal Microbiota

We determined the abundance of active metabolic pathways in the intestinal mi-
crobiota by reviewing various metabolic pathway databases. Amino acid biosynthesis
pathways were the most abundant among the biosynthetic pathways, followed by path-
ways related to cofactors; prosthetic groups; electron carriers; and the biosynthesis of
vitamins, fatty acids, lipids, nucleosides, and nucleotides (Figure 6).
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4. Discussion

Ammonia nitrogen poses a serious threat to various aquatic organisms, including
fish, shellfish, and aquatic plants [32–37]. The digestive tract plays a crucial role in the
transmission and entry of pathogens, making it highly susceptible to diseases. Probiotic
additives have been shown to enhance gut performance and improve the overall well-being
of fish by bolstering their immune systems [38]. Hence, understanding the role of the gut
microbiota in fish immunity and digestive systems is crucial for predicting and treating
fish diseases. As a small demersal fish, gaining a better understanding of the immune and
digestive systems of loaches through gut microbiota is a fundamental step in predicting
and managing fish diseases.

Owing to its extensive biological activity, TPs have been used as a promising natural
feed additive for aquaculture species; however, the effects of dietary TPs on the growth
performance of loaches remain unclear. It is noteworthy that our findings were consistent
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with others that have shown that supplementation with TPs decreased WG in rainbow
trout (Oncorhynchus mykiss) [39] and black rockfish (Sebastes schlegeli) [40]. The significant
differences in the WG and SGR of the TP group relative to the control group may have
been related to the species and nutritional status of the fish as well as the composition and
concentration of polyphenolic compounds in their diet [41].

To the best of our knowledge, few studies have explored the effects of dietary sup-
plementation on the gut bacterial community in loaches under chronic ammonia nitrogen
stress. This study investigated the dynamics of the intestinal bacterial community in
loaches under ammonia nitrogen stress when TPs were added to their diet. As supported
by previous research, the dominant phyla in the gut microbiota of fish typically include
Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, with Proteobacteria often
being the most prominent [42]. This may be partly attributed to the disproportionately
large number of Proteobacteria among all prokaryotes.

In this study, the dominant bacterial genera identified in loaches encompassed five
phyla: Proteobacteria, Tenericutes, Firmicutes, Spirochaetes, and Bacteroidetes [43]. These
dominant microbiota have also been recognized as significant components of the gut mi-
crobiota of cobia and rainbow trout [44,45]. Interestingly, except at the initial sampling
point, where Proteobacteria were higher in the TP feed group than in the control group, the
opposite trend was observed in subsequent samples, with a gradual decrease in the relative
abundance of Proteobacteria. Previous studies have suggested that the substantial enrich-
ment of Proteobacteria signifies an unbalanced and unstable microbial community structure
or a diseased state within the host. Therefore, the gradual decrease in Proteobacteria levels
suggests a positive modulatory effect of tea polyphenols on beneficial flora [46].

Furthermore, the TP feed group exhibited higher levels of Bacteroidetes and Firmicutes
than the control group. This outcome suggests a mutually reinforcing symbiotic relationship
between Bacteroidetes and Firmicutes, which jointly promote host energy absorption and
storage [47]. Moreover, a comparison of the gut microflora at the phylum level revealed
that the dominant microflora remained unchanged between the TP feed and control groups,
implying that TPs did not alter the emergence of the dominant flora but rather influenced
their relative proportions.

At the genus level, we found that the abundances of Rhodobacter, Lactobacillus, and Shinella
were significantly higher in the TP feed group than in the control group, indicating that TPs
increase the proportion of beneficial bacteria, such as Rhodobacter, while effectively inhibiting
pathogenic bacteria, such as Acinetobacter [48,49]. The enhanced presence of Lactobacillus,
which is commonly found in the gut microbiota of fish and involved in crucial biological
processes, including digestion, stress responses, and reproduction, further highlights the
potential benefits of TPs in promoting gut health and overall fish well-being [50].

Alpha and beta diversity are essential parameters for evaluating the structural char-
acteristics of the microbiota. In this study, we assessed α diversity using various indices,
such as Shannon, Simpson, and Chao 1, as well as observed species and Good’s coverage
values. High Good’s coverage values (>0.99) for each sample indicated high sequencing
accuracy. In addition, the microbial abundance (Chao 1 and observed species values)
was significantly higher in the EG1 group than in the CK1 group, whereas the changes
were not significant in the other groups. In agreement with other studies, this difference
revealed that the short-term consumption of TPs significantly affects the gut microbiota of
loaches [20].

PCoA, NMDS, and heatmap clustering analyses clearly demonstrated distinct char-
acteristics of the gut bacterial community of loaches under the two feeding conditions on
day 10. This divergence in microbial composition may be attributed to the abundance
of digestive enzymes and symbiotic microorganisms within the gut, whereas TPs are
prone to metabolic transformations facilitated by these enzymes or microorganisms [51].
The metabolism of TPs by the gut microbiota involves multiple pathways, leading to
the production of diverse metabolites with distinct structures, such as pyrogallol, 5-(3′,4′-
dihydroxyphenyl)-, or 5-(3′,4′,5′-trihydroxyphenyl)-γ-valerolactone. Hence, intestinal flora
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plays a pivotal role in facilitating the transformation of TPs into biologically active sub-
stances [52,53].

The Venn diagram cluster analysis revealed that 101 ASVs were shared among all the
samples, shedding light on their unique distribution patterns. The unique bacterial core
associated with the intestinal contents primarily comprised Proteobacteria, Tenericutes, and
Firmicutes, which is consistent with previous studies on loaches raised in low-temperature
environments. The impact of gut microflora on health and metabolic processes is widely
recognized [54], and these amino acids play crucial roles in catabolism and fermentation in
the gut [55]. According to Zhou et al., TPs can enhance the biosynthesis of many amino
acids and derivatives, such as threonine, aspartic acid, and leucine [56]. Our sequencing
results indicated a significant enrichment of bacterial genes associated with amino acid,
nucleoside, and nucleotide biosynthesis pathways, which is consistent with the results of
previous studies [57]. Moreover, a previous study reported that ammonia stress can elevate
the levels of various amino acids in the body, including proline, arginine, lysine, histidine,
phenylalanine, tyrosine, leucine, isoleucine, valine, alanine, glutamic acid, tyrosine, and
aspartic acid [55]. Additionally, numerous studies have highlighted the role of amino
acid synthesis in promoting ammonia nitrogen excretion, thereby reducing ammonia
accumulation in the body [58,59].

A comparison of the hierarchical clustering heatmaps showed that CK2 contained
several other specific microbial genera, including Shewanella, Brevundimonas, Leucobacter,
and Vibrio. Of these, Shewanella contains strains that are resistant to a wide range of
toxic compounds and can survive and colonize synthetic community habitats in polluted
areas. In addition, some of these bacteria actively attenuate the harmful effects of toxic
products, thereby increasing ecosystem resistance and resilience to pollution. The genus
Brevundimonas consists of non-fermenting Gram-negative bacteria that are of minor clinical
importance, as they can cause many types of infections. The genus Leucobacter, which
belongs to the phylum Actinobacteria, are Gram-positive and aerobic, and they even show
resistance and/or biosorption characteristics to heavy metals [60]. The genus Vibrio consists
of Gram-negative bacteria that are often recognized as an opportunistic pathogen of fish
and other animals that may lead to aquaculture mortality or economic loss. The specific
genus of the microorganisms identified in EG2 was Elizabethkingia. Microorganisms in this
genus, which are Gram-negative, have become a major cause of life-threatening infections
in many countries and are often detected in immunocompromised patients. Only one
pathogenic bacterium was found in the group fed with TPs, suggesting that TPs may
effectively reduce pathogenic bacteria.

As a typical representative of bioactive substances, TPs are an excellent natural antiox-
idant [61]. Their antioxidant [11], antibacterial [12], and anticancer [13] properties have
led to wide application in various fields. Therefore, TPs, as natural and environmentally
friendly feeds, have become the key to healthy aquacultures.

This study had certain limitations, particularly a lack of clarity regarding the appropri-
ate dosage of TPs in different environments. Therefore, future studies should consider a
wider range of environmental conditions or include more in-depth mechanistic studies ex-
ploring the effects of feeding different concentrations of TPs to loaches to fully understand
the role of TPs in their gut microbial community composition. In conclusion, our findings
support the potentially positive impacts of TPs on the gut microbial community of loaches
under ammonia nitrogen stress.

5. Conclusions

Our study indicates that dietary supplementation with tea polyphenols (TPs) alters the
gut microbiota composition in loaches, resulting in decreased Proteobacteria and increased
Bacteroidetes and Firmicutes levels. This shift towards a more beneficial microbial profile
suggests a potential role for TPs in enhancing gut health and overall well-being in loaches.
Additionally, TPs appear to modulate pathways related to amino acid and nucleotide
biosynthesis, potentially improving metabolic processes associated with ammonia nitrogen
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stress tolerance. These findings highlight the potential of TPs as a natural feed additive
to improve gut microbial composition and resilience in loaches under ammonia nitrogen
stress conditions. Further research is needed to determine optimal dosage regimens and
elucidate underlying mechanisms, particularly under varied environmental conditions, to
fully exploit the benefits of TPs in aquaculture practices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fishes9050180/s1, Table S1. Pyrosequencing data of Paramisgurnus
dabryanus gut bacterial community. Table S2. The number of bacterial operational taxonomic units
(OTUs) over all samples.
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