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Abstract: Software developers new to creating Augmented Reality (AR) experiences often gravitate
towards simplified development environments, such as 3D game engines. While popular game
engines such as Unity and Unreal have evolved to offer extensive support and functionalities for AR
creation, many developers still find it difficult to realize their immersive development projects. We
ran an observational study with 12 software developers to assess how they approach the initial AR
creation processes using a simplified development framework, the information resources they seek,
and how their learning experience compares to the more mainstream 2D development. We observed
that developers often started by looking for code examples rather than breaking down complex
problems, leading to challenges in visualizing the AR experience. They encountered vocabulary
issues and found trial-and-error methods ineffective due to a lack of familiarity with 3D environments,
physics, and motion. These observations highlight the distinct needs of emerging AR developers and
suggest that conventional code reuse strategies in mainstream development may be less effective in
AR. We discuss the importance of developing more intuitive training and learning methods to foster
diversity in developing interactive systems and support self-taught learners.

Keywords: AR development; software development; information seeking

1. Introduction

Designing and implementing Augmented Reality (AR) experiences is a complex,
knowledge-intensive endeavor that has predominantly been carried out by specialized
experts in research labs or professional game development studios. Unlike mainstream
software development for desktop or web environments where the focus is on flat graph-
ical interfaces and standard input methods, AR developers are tasked with overlaying
digital content and experiences onto real-world environments via mobile applications or
specialized Head-Mounted Displays (HMDs) like the Apple vision pro. Developers usually
have to navigate an intricate web of development frameworks and hardware options to
construct three-dimensional (3D) interactions and heighten the realism of their projects [1].

When beginning AR application development, many newcomers gravitate towards
traditional 3D game engines, such as Unity or Unreal, that have evolved to offer exten-
sive support and functionalities specifically for AR development [2]. Unity, for example,
streamlines the integration of diverse AR platforms, such as ARKit for iOS and ARCore for
Android, into a single, unified Application Programming Interface (API). This integration
enables the creation of AR applications that are compatible across various devices and
platforms without necessitating platform-specific coding. Furthermore, developers can
utilize additional built-in features and resources to expedite the development process and
engage with an expansive community of developers [3–5].

Despite the appealing and simplified AR development environments presented by
modern game engines, many new creators still find it challenging to realize their immersive
development projects [1,6]. To understand the types of obstacles developers face in AR
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development, even with simplified environments, a deeper insight into how new AR
developers approach programming and debugging is essential. This need has become more
pressing with the advent of technologies like the Apple Vision Pro, which aims to bring
hundreds of AR applications, from productivity to entertainment [7], to the mass market
with its mixed-reality capabilities. It is crucial to support new developers and equip them
with the necessary skills to navigate the complexities of AR development. This support
will empower new developers to create diverse and innovative immersive applications
that fully leverage the potential of advanced AR technologies.

In this paper, we investigate how newcomers in AR approach the creation process
using a simplified development environment and seek information to support their design
and programming needs. We carried out detailed in-lab task-based observations and
semi-structured interviews with 12 software developers who were implementing AR for
the first time using the Unity development environment. This choice was made, as prior
research [1,8] indicates that while new AR creators have access to a range of development
tools not requiring coding skills, they inevitably turn to tools that do require coding due to
the flexibility and wide range of functions that allow developers to create comprehensive
experiences. By focusing on participants who already have some programming and relevant
information-seeking skills, this study directly explores how their foundational knowledge
affects their learning curve and adaptation strategies in immersive AR development.

Among our key findings, we found that new AR developers often relied on their
previous 2D development experience and sought guidance from online code examples and
tutorials. However, these developers faced challenges in applying their 2D experience to the
3D realm. Their usual sources of information, such as online forums and YouTube, were too
general and failed to address the unique challenges of AR, including the prediction of 3D
object behavior and complex physics. Faced with increasing complexity in AR development,
many developers turned to AI-based assistance, only to find that this approach often led to
inconsistent results. A primary issue was the developers’ narrow focus on finding code
snippets, which caused them to overlook the challenges of 3D spatial interactions and
the intricacies of AR hardware and software. Additionally, the tendency of developers to
dive into coding without a comprehensive understanding of the broader problem and its
components proved ineffective in AR development.

Our paper highlights the shortcomings of popular online learning resources and ap-
proaches in preparing new developers for the unique challenges of building interactive
AR applications. While there is a long history of empirical research exploring developers’
work habits in various engineering tasks [9], their learning strategies [10], and online
information-seeking behaviors [11,12], our study adds new insights about how software
developers tackle interactive immersive experiences and how they navigate complex pro-
gramming structures and frameworks, and tackle debugging and testing tasks. The lessons
learned from our work can be used to invent tailored and more effective learning tools
and training programs that empower new creators to explore their own projects in AR.
The main contributions of our work are as follows:

1. Providing detailed insights through observations and interviews into how developers
new to AR make use of a simplified AR development environment, including their
use of various online information resources and AI-assisted tools;

2. Synthesizing the common challenges encountered during AR development, especially
related to navigating the unfamiliar intricacies of 3D environments and identifying
gaps in their coping methods to tackle these challenges;

3. Identifying opportunities and implications for the design of learning tools and ap-
proaches to support future authors of AR applications and help them make a smoother
transition from mainstream development.



Multimodal Technol. Interact. 2024, 8, 35 3 of 22

2. Related Work

This research builds upon insights from Human–Computer Interaction (HCI) and soft-
ware engineering reflecting on the current landscape of AR tool development, challenges of
building domain-specific software, and software developers’ information-seeking activities.

2.1. Tool Innovations Is AR Application Development

Prior work has explored various AR-specific authoring tools tailored to creators with
diverse skill levels and different fidelity stages of the resulting artifacts [8,13]. Notable
examples of such tools include Pronto [14], ProtoAR [15], GestureWiz [16], iaTAR [17,18],
ARVIKA [19], Adobe Aero [20], Microsoft Maquette [21], and Reality Composer [22]. These
tools have significantly contributed to the field by focusing primarily on supporting the
low-to-medium fidelity prototyping stages of application development. Some of these tools
strive to minimize or altogether eliminate the need for extensive programming skills and
reach a wider creator audiences.

On the other hand, the utility of simplified authoring tools is often limited, as they
are overly tailored to predefined tasks, restricting their adaptability to a wide array of
platforms, frameworks, and hardware configurations [1,8,23]. Secondly, some of these tools
are not universally accessible to end users, either due to their limited availability (beyond
research labs), lack of community, or the absence of comprehensive features. Moreover,
a significant drawback lies in the fact that these tools seldom cover the entire design cycle,
from initial prototyping to subsequent development and testing on AR devices, leaving
a critical gap in the seamless progression of the development process as demonstrated in
prior work [1].

In practice, commercial AR/VR game engines and software development kits, such
as Unity [24], Unreal [25], ARKit [26], ARCore [27], A-Frame [28], and WebXR [29] have
emerged as the go-to choices for professionals and enthusiasts alike [1,8,23]. Such tools
have stood out due to their robust features, providing extensive documentation, tutorials,
and a supportive community for developers. Due to the widespread use of the Unity
development platform [30], we studied AR developers’ use of Unity to create their first AR
application. Our study provides valuable insights into developers’ challenges and strategies
as they start their first AR development project, complementing existing research [1,6,8,23],
offering a comprehensive analysis of real-world AR development practices.

2.2. Domain-Specific Software Development

In this paper, we present an observational study of developers new to the domain
of AR. The challenges inherent in domain-specific software development have been well
documented, highlighting the varying needs of different user groups across different stages
of design [31,32]. For example, prior work has looked at artists using creative coding
languages [33,34]. This research has identified the challenges artists face in understanding
abstract representations and adapting to structured workflows [35], as well as efforts to
support them through platforms tailored to domain-specific requirements [34,36]. The dis-
crepancy between general software engineering practices and their application in scientific
programming is also noteworthy, highlighting the need for domain-specific methods and
tools tailored to scientists’ needs [37–39]. Additionally, game development showcases the
unique aspects of specialized domains. It reveals significant differences from other cre-
ative industries [40–43] and poses challenges to traditional software development models’
predefined phases [44].

Studies in domain-specific challenges of building interactive applications have focused
on managing the volatility of these environments, characterized by frequent changes in
users, devices, and software components [45–47]. This necessitates systems that can adapt
or degrade gracefully amidst changes and failures. The trend towards practical, educational,
and assistive technologies mirrors the need to address challenges arising from the dynamic
3D space, affecting user interactions and application requirements. In the realm of AR/VR,
prior work [1] provides insights into creators’ attitudes and preferences by focusing on a
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broader creator population. This research complements the existing works by focusing on
observing new software developers in a lab environment and providing insights into the
practical challenges of building AR applications. It reveals nuanced aspects of developers’
experiences transitioning from 2D to 3D environments, their information-seeking patterns,
and use of Generative AI tools such as ChatGPT as an emerging assistive platform.

2.3. Information Seeking in Software Development Tasks

Prior studies of software developers have shed light on their work habits in writing,
changing and debugging software [9], their related cognitive processes [10], and their
information behavior and needs [11,12]. Modern software development is known to be
intertwined with web search today [48,49], with developers frequently issuing search
queries to seek answers about how to use an API, understand code functionalities, and trou-
bleshoot various issues [50,51]. Earlier studies with developers [52] indicated that official
documentation is often the first point of reference for developers when learning about a
new API, but code examples, peer discussions, and hands-on experimentation with APIs
have also ranked high [12].

The process of seeking relevant information presents several challenges for software
developers. One key challenge is the “vocabulary problem”, a term used to describe
the difficulty developers face when there is a mismatch between their understanding
of the problem and the language used in official documentation or help resources [53].
This can lead to considerable time being spent on sifting through large and complex
sets of documentation, often resulting in the reluctance to consult these resources [54,55].
Another issue comes from the dispersion of relevant information across different sources,
complicating the task of gathering all the needed details [52,56,57].

We note that much of the existing research has primarily focused on conventional
challenges in back-end development and maintenance tasks, rarely capturing the unique
challenges faced by developers working in emerging fields like AR where the focus is on
creating a compelling user experience that can augment real-world activities. In these new
domains, developers are often tasked with creating interactive experiences that involve user
input in novel modalities, often through headsets [1]. Our study complements the existing
research on developers by shedding light on how developers new to AR will approach the
development process using a simplified development environment and to what extent they
are able to transfer their existing mainstream programming skills and information-seeking
behaviors in this emerging context.

3. Method

To gain deeper insights into the approaches adopted by software developers new to AR,
we employed a qualitative research methodology, including in-lab task-based observations
and semi-structured interviews. Our main goal was to understand how newcomers make
use of a simplified AR development environment, how they seek information to support
their design and programming needs, and how their practices compare to mainstream
programming tasks.

3.1. Participants and Recruitment

Since we wanted to observe the AR development process using a simplified creation
framework and our tasks required programming, we focused on recruiting participants
who had training in software development but had not worked on any AR or VR projects
in the past. We employed multiple recruitment strategies, including advertising posters at
local educational organizations, leveraging personal connections in industry, and utilizing
snowball sampling techniques. By adopting these approaches, we aimed to ensure a diverse
participant pool in terms of their backgrounds and skills in programming and design. Our
recruitment efforts resulted in a total of 12 participants, with a mix of genders (5F/7M), each
bringing unique backgrounds and software development roles to the study as summarized
in Table 1. All participants indicated they had completed introductory courses in 3D geom-
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etry and linear algebra, either at the high school or university level. Participants ranged
from having 2–10 years of experience in programming using programming languages such
as Java, JavaScript, Python, HTML, C#, and C++. Only two participants (P2 and P9) had
brief experience working with Unity for 2D game creation.

Table 1. Participants’ demographic information, years of programming experience, role, and pro-
gramming language proficiencies. All references to “CS” in this table pertain to Computer Science.

ID Gender (Age) # Years of Experience and Role Programming Languages

P1 F (25–34) 7–10, Researcher (CS) Python, C, Java, R, MATLAB
P2 M (18–24) 4–6, Software engineer Python, C, Java, C#
P3 M (18–24) 1–3, Student (CS) C, Java, Python, JavaScript, HTML
P4 M (18–24) 4–6, Student (CS) C++, C, Java, Python, JavaScript
P5 M (25–34) 10+, Software engineer C, C++, Python, HTML, JavaScript
P6 F (25–34) 4–6, Researcher (CS) Python, C++
P7 F (25–34) 4–6, Researcher (CS) Java, Python, C++, JavaScript
P8 F (25–34) 1–3, Researcher (CS) Python, HTML
P9 M (18–24) 1–3, Student (CS) JavaScript, C#, Python
P10 M (25–34) 4–6, Software engineer C++, Java, JavaScript, Python
P11 F (25–34) 4–6, Software engineer Python, HTML, JavaScript, C++
P12 M (25–34) 7–10, Software engineer Python, C++, C#

3.2. In-Lab Observations and Task Design

Choice of Platform: While platforms like A-Frame and Unreal offer similar functional-
ities for AR development, we opted for Unity as a representative AR development platform
in our investigation. We selected Unity as a case-in-point due to its widespread use (with
more than 60% of AR/VR content being made by this platform [30]) and rich feature set,
including an integrated physics engine that significantly reduces the need for developers
to delve into complex physics and mathematics or write intricate code.

Task Selection and Refinement: In constructing the task for this study, we wanted
to ensure that it was doable and captured a range of competencies and complexities in
creating an interactive AR experience. Our goal was to assess how AR newcomers would
approach the development problem and seek relevant information when using a simplified
development framework. We consulted industry experts, ran three pilot studies with
participants sharing the same characteristics as our main study target group, and iterated
on various task configurations to gauge their feasibility.

The task was multi-layered, with each component tailored to test the different skill
sets necessary in AR development. We provided participants with all of the required
3D assets (see Figure 1). We instructed participants to create an AR model of the Earth
with a continuous spinning motion around its own axis. This component was intended to
assess the individuals’ capability to introduce and manage elementary motion dynamics
in an AR environment. In addition to the spinning Earth, participants were required
to incorporate a moon that would not only revolve around the Earth but also execute a
spin around its own axis. This layer of complexity ensured that participants dealt with
coordinating multiple synchronized motions within the AR space. In the next part of
the task, we provided a 3D model of a spaceship and asked participants to simulate a
landing mission which required a realistic, physics-driven animation sequence in the AR
environment. This involved common AR tasks, including collision detection and defining
movement trajectories in a 3D environment. Lastly, the task asked for a simple menu
embedded within the AR experience that would have two interactive buttons: “Land”
and “Fly Away”. Activation of the “Land” button would command the spaceship to
initiate a landing sequence onto the moon’s surface, while the “Fly Away” button would
instigate the spaceship’s departure. The inclusion of this component aimed to probe the
participants’ ability to combine interactivity with immersive visualization, a key proficiency
in AR development.
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Figure 1. Schematic of the multi-layered AR development task for participants in Unity. (a) The
“Scene View” where participants interacted with the provided 3D assets. This platform allowed
participants to navigate and manipulate 3D objects. (b) The “Inspector Panel” which provides
properties of the selected 3D object(s) in the scene view. Through this panel, participants were able
to modify objects’ attributes like position, rotation, scale, and attach components or scripts. (c) The
“Hierarchy Panel” which lists all the objects in the current scene and provides an easy way to select,
organize, and manage game objects. (d) The “Project Panel” which is essentially the file browser
within Unity and shows all assets, scripts, prefabs, scenes, etc. (e) The “Visual Studio” integrated
IDE often used in conjunction with Unity for scripting and code editing. (f) The “Game View” where
participants could preview what they built as it would appear when running. Using this participants
were able to play, pause, and step through frames for testing.

Each session lasted around 2 hours, with participants having 90 minutes to complete
the task. Participants were informed that they could proceed as far as they could within
the 90 min task time frame, and there was no requirement to complete the entire task.
Furthermore, the order of implementing different parts of the task was entirely up to the
participants; they were free to choose the components they felt most comfortable with or
interested in. All participants were instructed to take a break as needed. The study facilitator
was readily available throughout the research, offering occasional hints to participants
in the event of significant delays in their progress. The facilitator remained discreet to
minimize any potential impact on the study outcomes while providing support.

Procedure: Prior to the study (at least five days before the study session), participants
were sent comprehensive tutorials on how to use Unity, including guidelines for testing
their creations, adding interactions, and navigating the interface. They were granted access
to Unity along with its built-in help features and encouraged to utilize any web resources
available. To capture an in-depth view of participants’ actions and thoughts, their audio
and screens were recorded, along with their browser histories, ChatGPT conversations if
used (version 4 was set as a default option for all participants), and interactions within
Unity UI. Before starting the study tasks, participants completed a questionnaire (for
specific questions please refer to Appendix A.1) covering demographic details, educational
background, proficiency in various programming languages, and preferred resources for
seeking help and information. Participants then were encouraged to follow a “think-
aloud” protocol to keep the facilitator updated on their logic, creative process, and any
challenges encountered. Scheduled breaks were also provided to ensure participants
remained focused and comfortable throughout the study. The facilitator posed questions
mid-task to gain additional insights as the activity progressed (for specific questions please
refer to Appendix A.2).

For a more nuanced understanding of AR deployment, participants were encouraged
to deploy their AR models on the HoloLens 2. This step was critical for assessing the
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robustness of their AR experiences in a real-world, immersive setting. To streamline this
process and focus on the core objectives of the study, the actual deployment task was
handled by the research team, allowing participants to concentrate on conceptualizing and
building their AR models.

Post-Task Questionnaire: After completing the task, participants were asked to
fill out a short survey questionnaire. The questions aimed to gauge the perceived diffi-
culty of programming in a 3D environment as compared to mainstream, non-3D coding,
the effectiveness of online resources in participants’ information-seeking process, ease of
transferring current programming skills to 3D and AR development tasks, and the extent
to which participants relied on their existing programming skills to troubleshoot and solve
technical problems while completing the study tasks (for specific questions please refer to
Appendix A.3).

3.3. Follow-Up Semi-Structured Interviews

To reflect on the in-lab experiences and better gauge participants’ perspectives on
AR development, we carried out follow-up semi-structured interviews. Acknowledging
the participants’ prior experiences in other domains of development, particularly 2D or
other non-3D environments, was a crucial component of the post-task interview process.
This served to draw comparisons and contrasts, aiming to understand how the unique
complexities of AR development diverge from or align with other forms of mainstream
software development. One key area that the interview focused on was whether and how
the participants had to adapt their existing skills and strategies to the nuances required by
AR development. In particular, the semi-structured interviews explored the following:

• Participants’ Experience and Skill Transferability in AR vs. 2D/non-3D Environ-
ments: This focuses on how participants’ previous experiences in other environments
translate to the AR task. It also aims to identify skills that are easily transferable and
those that require significant adaptation or relearning.

• Challenges, Strategies, and Information-Seeking Behavior: This combines the spe-
cific challenges encountered with the resources and strategies employed to overcome
them. It can explore any changes in participants’ go-to platforms for assistance and
how effective these are, providing insights into their evolving problem-solving process.

• Lessons Learned and Future Approaches: This captures personal reflections on what
participants would do differently in future similar AR tasks, revealing data on the
learning curve involved in AR development.

Each interview concluded with an opportunity for participants to share additional
thoughts, feedback, or reflections not covered by the preceding structured questions (for
specific questions please refer to Appendix A.4).

3.4. Data Analysis

To analyze the participants’ progress, we segmented our primary task into four dis-
tinct sub-tasks (as explained in Section 3.2), each revolving around crucial interaction
components. Participants’ efforts were then aligned with the reference design’s sub-tasks.
To gain insight into how newcomers identify and utilize various help resources, we initially
examined the various phases of their information-seeking behavior in the lab. Additionally,
we explored how participants perceived these help resources, drawing on their in-lab
interactions while completing the task.

Analysis of Help-Seeking Phases. For our lab-based analysis, we adapted and revised
an existing theoretical model on in-person help-seeking by Nelson-Le Gall [58]. Within this
framework, we categorized help-seeking behaviors into three main phases: (1) identifying
resources; (2) assessing resource relevance; and (3) implementing the relevant assistance to
accomplish a task.

Identifying Resources. In this initial phase, we evaluated how effectively participants
could articulate their need for help and locate relevant resources. Our assessment tools
included a query log analysis of search histories, Unity’s built-in help, and an evaluation
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of participants’ engagement with Generative AI platforms, such as ChatGPT (where ap-
plicable). We sought to identify both relevant and irrelevant resources that participants
discovered. Additionally, we gauged the time required for participants to initiate their first
attempt at seeking help, examining their navigation strategies and the initial moments they
initiated assistance using any available resources.

Assessing Resource Relevance. During this phase, we studied what transpired when
participants arrived at a potentially relevant resource, as well as how well they leveraged
that resource to accomplish their task. For this part of our analysis, one researcher cross-
referenced data from participants’ browser navigation histories and screen recordings. This
helped to evaluate the relevance of the discovered resources and was further substantiated
by participants’ think-aloud reasoning data during the study.

Implementing Help in Task Completion. In the final phase, we examined the degree
to which participants could apply the located help to their current tasks. For this, we
relied on browser navigation histories, screen recordings, and participants’ attempts at
task execution.

Understanding Participants’ Perceptions of Help Resources. To delve deeper into
participants’ perceptions regarding the usefulness of the various help resources they en-
countered, we drew upon our observations and participants’ feedback from post-task
questionnaires and semi-structured interviews. Using an inductive analysis method [59],
we searched for recurring patterns and themes in the collected data.

4. Results

We present our results by first summarizing the participants’ overall performance and
approaches to developing an AR experience for the first time when using a simplified devel-
opment platform, revealing a preference for direct implementation over problem solving.
We next present a key analysis of participants’ information-seeking activities, highlighting
their search queries, preferences for information resources and formats, and the use of
Generative AI tools such as ChatGPT. We then delve deeper into the challenges participants
faced, which ranged from initial setup difficulties to the intricacies of 3D development and
the challenges of translating 2D development knowledge to 3D environments.

4.1. Overview of Task Completion

Our analysis showed that most of our participants faced difficulty in tackling their first
AR task: on average, our participants managed to complete a mere 35.8% of the primary
task (25% min–75% max) with 34% accuracy (12.5% min–62.5% max). The participants
indicated that AR development was either much more difficult (8/12) or somewhat more
difficult (4/12) compared to mainstream 2D development tasks (see Figure 2a). At the
onset of the study, participants had the option to sketch out or strategically plan their
development process. However, without exception, all participants chose to dive directly
into implementation, expecting to find a designated area within the Unity user interface for
writing code (which existed in the Unity UI; see Figure 1). Despite being encouraged to
access tutorials about Unity’s interface and methods for adding interactions to 3D objects,
none of the participants had consulted these resources prior to attending the user study
session. To initiate interaction with the provided 3D objects in the Unity environment,
9 out of 12 participants relied on a trial-and-error approach, while the remaining three
participants directly searched on Google. On average, it took participants 4.25 min to
initiate their first help-seeking attempt. Although all participants were given access to the
Hololens 2 headset to test their code, only 2 participants chose to do so; the remainder opted
for utilizing Unity’s built-in testing environment to demonstrate and test their projects.
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Figure 2. Overview of participants’ responses to post-task questionnaire. (a) Participants perceived
AR development as notably challenging compared to 2D tasks, with most finding it much harder.
(b) Most participants found their efforts in locating online resources for 3D/AR development ineffec-
tive. (c) Most participants found it difficult to transfer their existing programming skills to 3D/AR
environments. The shift to 3D added complexities in visualizing object movements, affecting not only
implementation but also problem-solving approaches. (d) Over half of the participants struggled to
apply their old “test-and-develop” coding habits in the new 3D/AR environment. For example, they
would choose only familiar parts of the code snippets suggested by ChatGPT, but found this strategy
unhelpful for debugging intricate AR interactions involving physics forces.

4.2. Overview of Information-Seeking Activities

All participants relied on Google consistently while completing the sub-tasks. Similar
to mainstream coding projects, they made use of search results that included official
documentation, user forums (e.g., Stack Overflow) and snippets of code found on these
platforms, followed by video tutorials (e.g., YouTube). All participants were familiar with
ChatGPT during the time of the study and more than half (7/12) ended up using it in the
study. On average, participants sought help 13.9 times in each session, with the frequency
of these attempts ranging from 11 to 19, a variance of 5.17, and a standard deviation of 2.27
(see Figure 3). A variety of factors triggered these help-seeking activities (discussed below).

Even though we provided pre-study learning resources on the basics of Unity to
help onboard participants, most of the participants relied on their own trial-and-error to
figure out the Unity interface. This has been commonly seen in other studies of software
learning [60], known as the paradox of the active user [61]. Instead of following the Unity
documentation, our participants posed queries like “attaching code to 3D objects”, “defin-
ing objects in Unity 3D”, or generic ones like “how to instantiate an object in C#?”. This
DIY exploration method, while valuable for its hands-on nature, was time-consuming and
often directed developers towards unnecessarily intricate solutions. On average, partici-
pants toggled 11 times between the coding interface and auxiliary resources, spending 49%
(44.5 min) outside the development environment.

Participants’ help-seeking behaviors were varied and included searching for learning
how to activate specific functionalities and open-source code (55%), integrating multiple
or concurrent functions into 3D objects (12%), understanding scaling and metrics (14%),
and troubleshooting bugs during code compilation (19%).

In terms of choice of learning strategies and overall task completion rate and accuracy,
we saw a range of behaviors among our participants. For example, P1 relied on ChatGPT
as the primary learning resource, posing targeted inquiries directly related to the task.
This approach facilitated the highest completion rate (75%) of the task with a high level
of accuracy among other participants (62.5%). Conversely, P8 dedicated extensive time
to reviewing official Unity documentations. However, their ability to apply the broadly
acquired knowledge to the specific task was less effective, resulting in minimal progress in
task completion (25%). On the other hand, P11 predominantly relied on video tutorials as a
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learning resource to complete the tasks. Although they achieved a higher task completion
rate (50%) compared to P8, we observed that P11 was mostly trying to recreate the instruc-
tions in the video tutorials. As a result, they struggled to implement specific adjustments
and had low overall accuracy (25%).

Figure 3. Timeline overview of participants and their information resource and development envi-
ronment navigation. Participants usually began with Google searches to locate learning resources,
often consulting official documentation, forums, and code snippets, with an average of 13.9 queries
per session. Despite having access to the basics of Unity prior to starting the study, most participants
favored learning by trial-and-error, frequently querying Unity interface specifics. On average, they
switched 11 times between coding and resources, spending 44.5 min outside Unity. While initially
favoring written documentation for quick lookup, 7 out of 12 participants eventually consulted
ChatGPT after other resources proved unhelpful. But, only P1 and P5 found ChatGPT useful for
streamlining their learning and workflow.

4.2.1. Preferences for Information Resources and Formats

As seen in previous studies of developers [12], our participants initially sought written
documentation, valuing its quick accessibility and skim-readability for coding activities.
Rooted in their prior experience with programming languages like Python and Java, par-
ticipants expected text-based platforms (e.g., Stack Overflow and Unity forums) to offer
immediate, relevant support. However, both our observations and participants’ post-task
feedback (see Figure 2b) indicated that these resources often fell short in addressing the
specific challenges tied to crafting 3D interactions. Participants commonly described these
resources as either too generic or not directly applicable to their unique requirements.
For example, P6 explained, “As my go-to for quick fixes it felt instinctual to turn there [Stack
Overflow] when I began tackling the task. But the resources out there just didn’t dig deep enough
into the specific issues I was trying to solve or I didn’t know how to cater them to my own code. It’s
one thing to find a code snippet that rotates a shape; it’s a whole other ball game to adapt that into
a moving, interactive 3D environment”. A recurring struggle for participants, as explained
by P6, was in understanding the relevance of the found example code snippets, mapping
them onto their own codebases, and modifying them to reflect their specific needs.

Video tutorials, on the other hand, were described as being especially useful for
visualizing the procedural steps. For example, P2 explained: “So even though there is no
explanation [in videos], you kind of figure out the steps. . . it’s not really good for understanding,
it’s good for doing. The reason I’m jumping into this kind of video is that I’ve never done anything
with AR. But I have 2D Unity experience. That’s why I can understand what’s going on here,
even though I don’t really know the 3D stuff ”. However, some participants conveyed that
these tutorials lacked depth in elucidating the underlying principles. P3 stated “I don’t like
learning from videos. Since they are slow. Usually, when you learn via videos on how to create stuff,
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there’s more bloat than there is actual content. I like learning direct. . . I like to jump straight to the
documentation. That’s how I learn a lot of new stuff in programming”.

4.2.2. Use of Novel Generative AI Tools for Information-Seeking

Despite all participants having previous experience with ChatGPT for programming
purposes, only one participant used ChatGPT as the starting point for tackling the task; the
majority of participants (11/12) searched for online documentation and forums instead.
When these methods failed, more than half of the participants (7/12) tried ChatGPT.
However, all of these participants had mixed feelings about using ChatGPT to learn AR
development and questioned its reliability based on their coding experiences. For instance,
P10 mentioned “After trying the documentation and getting nowhere, I decided to give ChatGPT
a shot. But based on my past encounters, I wasn’t too hopeful about its accuracy with coding
issues”. In contrast, P1 and P5 heavily used ChatGPT, benefiting from a more focused and
efficient approach. Specifically, P1 used detailed prompts and follow-up questions to get
accurate, context-sensitive advice from ChatGPT (Figure 4). This strategy helped P1 and P5
grasp foundational concepts quickly and integrate advanced features, thereby improving
their workflow.

Participants who asked ChatGPT vague or context-free questions faced difficulties
getting tailored answers. For instance, P4 received generic advice that did not fit their
existing setup, highlighting the importance of better contextualizing the dialog (Figure 5).

Figure 4. Illustration of a part of P1’s dialog with ChatGPT—one of the few examples in the study that
shows successful use of AI assistance. P1 initiated the conversation by requesting C# code for a moon
orbiting Earth. Faced with uncertainties in the script implementation, they followed up to clarify
how to attach the script to the moon object. Subsequent questions involved adding axial rotation
to Earth and the Moon, resolving issues related to object interactions and parenting. Additional
troubleshooting involved resolving camera position resets and discrepancies between scene and
game screens. This iterative, context-rich dialog resulted in more tailored guidance from ChatGPT,
enabling P1 to successfully implement the desired orbital and rotational behaviors.

Figure 5. Illustration of a part of the P4’s unsuccessful interaction with ChatGPT: While P4 already had
a script-managed movement system, incorporating animation (recommended by ChatGPT) proved
challenging. P4’s vague prompt led to generic advice, causing conflicting functions to override
each other.

Despite receiving complete code snippets from ChatGPT, many participants only
implemented selected parts. This selective use reflected a “test-and-develop” approach
based on their previous coding habits. They focused on familiar elements, avoiding more
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complex features to sidestep potential confusion or complications. For example, P5 used
only part of the code for landing a spaceship on a rotating moon and decided to forgo the
complex orientation procedures, stating, “I’ll start with what I know and build upon it.”
While participants often relied on their prior experience, most of them strongly disagreed
(1/12) or disagreed (6/12) that their prior skills were sufficient for debugging and tackling
other technical problems in AR development (see Figure 2d).

4.3. Challenges in Information-Seeking When Developing AR

Navigating the intricacies of AR development while developing in a simplified en-
vironment presented our study participants with a series of nuanced challenges, ranging
from difficulties in the initial setup and understanding built-in functionalities, to getting
used to the complexities of 3D development and struggles with advanced physics in a
3D environment. The transition from mainstream to 3D development demanded not only
a conceptual realignment but also adaptations in troubleshooting and help-seeking ap-
proaches. While past work [1] highlights some of the approaches used by newcomers
for prototyping AR/VR experiences, our study focuses on the specific approaches and
challenges encountered with the use of simplified development platforms in the imple-
mentation phase. In the subsequent sections, we explore these challenges and uncover the
adaptive strategies used by developers with different levels of expertise.

4.3.1. Challenges in Getting Started

A consistent challenge that we observed among participants was difficulty in iden-
tifying a reliable starting point as they were overwhelmed by the array of possibilities.
For example, as P3 explains, “Knowing where to start was my biggest challenge. That’s why
I was struggling to figure out what resources to use. Using direct resources like YouTube helped.
After learning the basics, such as not needing to render lights individually, it became easier to build
on my existing programming skills”.

Strategies to “cope with the unknowns” varied across the board, echoing distinct de-
veloper personas as outlined in Clarke’s 2007 study [62]. For instance, P1, who closely
resembled the Pragmatic Developer, tackled the complex task by breaking it down into
smaller, more manageable sub-tasks. The segmented approach improved progress and
morale but had drawbacks, including frequent context-switching and difficulty in grasping
the overall objectives and best use of learning materials like code examples.

This challenge of achieving a holistic understanding was a broader issue that we
observed in the study. A trend among the majority of participants (10/12) was the use of
a granular, bottom–up strategy—breaking down the task into basic queries like “how to
move an object in Unity” without understanding the overall development task.

On the flip side, two out of the twelve participants managed to substantially complete
their tasks by initially adopting a bottom–up strategy and then transitioning to a top–down
approach, exhibiting traits of the Opportunistic Developer. In particular, P1 and P5 consulted
documentations and YouTube tutorials to master foundational concepts before moving to
structure their code more comprehensively. Then, they leveraged ChatGPT to benefit from
its dialogic interaction, tailored advice and context-specific solutions, thereby obviating
the need to “reinvent the wheel”. This involved turning to platforms like ChatGPT and
YouTube to understand the relationships between different coding components.

4.3.2. Lack of Awareness of Development Framework’s Built-In Interactions
and Affordances

Participants faced challenges in distinguishing between Unity’s built-in functions and
custom code when looking for help in online documentation, often leading to unnecessary
debugging time. For instance, P12 said, “I saw Transform.Translate and thought I needed to
define it myself. Big mistake. It conflicted with Unity’s built-in method and slowed my progress”.
Similarly, P8 added, “When I looked at the code samples in Unity forums, they mentioned
‘Quaternion’ for orientation and ‘Rigidbody’ for physics interactions. I couldn’t tell if these were
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built-in features or if they were custom-defined in the script. It took me a while to figure out that
these are standard Unity components, and I didn’t have to define them myself ”.

In a related observation, P7 spent significant time manually scripting the spaceship’s
movement, unaware that Unity’s built-in functions could simplify the task. The partic-
ipant’s searches like “object direction in Unity 3D” did not lead to discovering Unity’s
built-in functionality (NavMesh), partly because of vocabulary issues and the advanced
language used in Unity’s documentation. This made it difficult for participants with non-
AR related vocabulary to find efficient solutions or identify specific Unity features in the
provided code samples.

4.3.3. Difficulties in Navigating 3D Environments

Overall, all participants found it either somewhat difficult (6/12) or extremely difficult
(6/12) to transfer their existing programming skills to 3D/AR development tasks (see
Figure 2c). Furthermore, although all participants had completed courses in 3D geometry
and linear algebra at the high school or university level, they found it challenging to
apply this theoretical knowledge practically in the development of 3D experiences. Their
familiarity with mathematical foundations did not necessarily translate into the ability to
implement these principles in real-world development scenarios. Even with the availability
of built-in physics capabilities and testing features in Unity, participants faced difficulties
in visualizing object movements in 3D space. This change in complexity influenced not
only their interaction but also their methods of seeking help. Supporting this point, P11
mentioned “In 2D environments, I could sketch out motions and interactions on a piece of
paper. . . like reading a map. But now it seems like shifting from a map to a globe. Suddenly, you’re
accounting for depth, orientation, and multi-dimensional interactions. . . I’m not sure even if I can
ask the right question or if my search prompts would work”.

Furthermore, the intricacies of 3D visualization were not the only aspect that per-
plexed participants; the shift from the right-handed coordinate system commonly found in
mainstream 2D coding environments to Unity’s left-handed system was particularly disori-
enting. Participants attributed this confusion to their previous experience with standard
screen-based 2D graphics (e.g., 2D game development, web development, and HTML5).
Misalignments and unexpected behaviors due to this shift were evident. As P4 noted, “Tran-
sitioning from my usual coding environment [web development] to Unity’s left-handed
coordinate system was quite disorienting. My 3D models seemed completely out of place,
like they were twisted and scattered across the scene.” In their search for solutions, partici-
pants frequently drew on terms from their prior knowledge in 2D environments. Common
search queries included “Unity 3D vs. 2D coordinates” and “2D to Unity 3D transition”,
with the prefix “2D to 3D” being recurrent.

4.3.4. Challenges of Dealing with Multiple Physics Forces and Predicting 3D Object
Behavior in AR

Unlike 2D programming, object interactions in 3D environments like AR often involve
more sophisticated considerations. For example, we observed that participants faced
unexpected behavior while coding a spaceship landing on a rotating sphere, unaware that
complex physics forces were at play. As P1 stated, “If it was common game dev I had my
spaceship perfectly landed; Introducing rotation threw everything off not giving a hint where the
problem is coming from”.

The unexpected trajectories the participants encountered made them assume coding
mistakes, leading them to assume the existence of potential bugs or development platforms
inefficiencies. Typical search queries were along the lines of “unexpected physics behavior
during landing” and “debugging landing sequence in Unity 3D”. This hinted at a potential
blind spot in the learning materials: the fundamental physics at play. We observed that
despite participants’ attempts for finding learning materials, none explicitly mentioned or
hinted at the involvement of multiple physics forces in the task at hand. This observation
aligns with the findings of Ashtari et al. [1], who highlighted the “physical aspects of
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the debugging process that remain neglected in online tutorials” of AR/VR development
underlining the often-overlooked yet critical aspects of practical implementation.

In addition, predicting object behavior in a 3D environment was challenging due to the
complex variables at play, such as rotation speeds, initial positions, and landing trajectories.
To decipher the behavior of the spaceship moving from the Earth to the Moon, P8 opted
for console-based methods (common in 2D development), and used the print function
to analyze raw data such as force vectors and rotation angles. P8’s attempt to apply 2D
console-based methods quickly proved problematic: the data overload in the console made
it tough to identify specific issues, and the numbers lacked the visual context needed for
understanding 3D orientations and trajectories. P8 explained “In Pygame, I could just throw
in print statements and quickly figure out what’s going on. . . the numbers directly translated to
on-screen coordinates, making it intuitive. . . I tried the same print-everything approach and got
swamped with numbers”.

P8’s conventional method of breaking down and testing the code in parts, typically
effective in simpler or 2D environments, did not simplify the complexities of the 3D AR
task. Instead, it added to the confusion, making it even more challenging to identify the
source of the problem. As a result, P8 resorted to making ill-defined and generic queries
queries using phrases “object orientation in 3D” and “understanding object movement in
3D” in search engines that were not specific enough to direct them to relevant learning
resources. This mismatch between the complexity of the task and the search queries led to
an ineffective cycle of problem solving.

5. Discussion
5.1. Key Takeaways

Our findings contribute insights into how software developers new to AR will ap-
proach the development process using a simplified development environment. We also
looked at the types of information resources they seek and how their learning experience
in AR differs from mainstream software development. In particular, we shed light on
the unique needs of emerging AR developers, indicating that the types of code reuse ap-
proaches that are successful in other development domains may translate poorly AR due
to difficulties with unfamiliar vocabularies and intricacies of 3D environments, physics,
and motion. Our observations complement and extend prior works that focus on elective,
task-focused learning approaches in mainstream software development [63,64], suggesting
that the same “immediate solutions” mindset may be ill suited for the complexities of AR
development. Moreover, while emerging Generative AI tools are showing promising gains
in development tasks [48,63], our research offers an initial look at how these tools may be
inadequate for AR development and further widen the skills gap.

With the advancements in mixed-reality devices such as the release of Apple Vision
Pro and the increasing interest in AR technologies, more developers are entering the field of
AR development. Many of these developers are learning the necessary skills through online
resources and adopting an informal approach to their education. This trend underscores
the importance of understanding the challenges these new developers face as they navigate
the complexities of AR development without formal training. In light of the findings from
our study, it is likely that these new developers will face the same challenges that the
participants in our study encountered. We now reflect on the implications of our findings
for future research in HCI and the need to reconsider the design of training programs
and learning resources to effectively support the growing community of informal AR
developers who use simplified development frameworks. We discuss ways to enhance AR
development by integrating problem-solving strategies, leveraging in-context personalized
approaches and Generative AI tools, and increasing user engagement through adaptive
feedback and milestone integration.



Multimodal Technol. Interact. 2024, 8, 35 15 of 22

5.2. Enhancing AR Development Resources with Problem-Solving Strategies

Our study contributes novel insights into developers’ challenges with programming
AR for the first time using a simplified development framework. Our results build upon
prior research that shows that developers generally prefer selective, task-focused learning
and information-seeking tactics. Previous studies have highlighted that developers often
seek immediate solutions to specific problems [65,66], focusing on getting particular API
functions to work [51] or finding workarounds, rather than gaining a comprehensive
understanding of the software or its underlying principles [56]. This approach is partly due
to the complexity and time-intensive nature of software comprehension, leading developers
to prioritize task completion over in-depth understanding.

Our study also shows that AR development presents unique challenges that extend
beyond coding skills, requiring a deep understanding of the interplay between 3D elements
and real-world physics. Developers often misattribute AR anomalies, like unpredictable
object behavior, to coding errors, overlooking the crucial role of physics. This gap in un-
derstanding underscores deficiencies in current educational resources and debugging tech-
niques, which are inadequate for addressing the complex interactions in AR. Our findings
suggest an urgent need for specialized educational materials and tools tailored to AR develop-
ment that can, for example, build on the literature on problem decomposition in computer
science [67–69]. These resources may include simulation environments visually representing
real-world physics affecting digital elements. By offering such insights, developers can bet-
ter understand the multifaceted challenges unique to AR, enhancing troubleshooting and
deepening foundational understanding for success in AR development.

5.3. Improving Learning through In-Context Personalized Approaches

Standard debugging tools may fall short of understanding and predicting user behav-
ior and application performance. To address this, understanding the task context [70–72]
is essential. For example, the incorporation of advanced logging and machine learning
techniques such as collaborative filtering [73–75] and content-based filtering [76] into de-
velopment environments like Unity could be game-changing in enhancing both coding
efficiency and conceptual understanding. Collaborative filtering would leverage com-
munity contributions and feedback to identify common challenges and propose vetted
solutions, while content-based filtering could offer tailored recommendations based on an
individual users’ coding history and behavior within the platform.

The promise of these machine learning methods could be further enriched by inte-
grating AI tools similar to GitHub Copilot into the development environment. Such tools
could simultaneously suggest appropriate code snippets and dynamically link developers
to contextual learning resources. For instance, if a developer struggles with object physics
and encounters errors, the integrated system could suggest an optimized code snippet
tailored for Unity’s physics engine and couple it with a targeted tutorial that unpacks the
relevant physics principles. In doing so, the developer gains not just a quick fix but also a
deeper, foundational understanding of the challenge at hand.

5.4. Leveraging Help-Seeking through Generative AI Platforms

Our study findings also shed light on the role of Generative AI tools, like ChatGPT,
in AR development, expanding upon existing research on the impact of AI on program-
mers. Previous studies have shown that tools like GitHub Copilot [77] are effective in
generating foundational code and suggesting structures [63,64], but their effectiveness varies
based on the nature of queries and developers’ ability to articulate their intent in natural
language [78,79]. Similar to prior observations [80], we also found that developers struggled
to form a mental model of the underlying Large Language Models (LLMs) and to express
their intentions accurately.

We also found that detailed, context-rich questions yield more useful responses from
ChatGPT (e.g., by P1 and P5), but there are challenges when users lack sufficient context
or the ability to validate responses. Selective code snippet implementation from ChatGPT
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underscores participants’ cautious “test-and-develop” approach based on prior coding
experiences. Initial evidence suggests that Generative AI systems, like ChatGPT, in the
AR development context, require reconsideration. Incorporating features like grounded
utterances [48], converting vague queries into executable code, and step-by-step guides
can address the contextual gap, providing educational tools for understanding the “what”,
“why”, and “how” of coding problems. Allowing multimodal inputs such as images
or videos could enhance user intent clarity, making AI more effective for those lacking
specialized vocabulary. Future versions of Generative AI with these features could offer
targeted, adaptable, and educational support for programming tasks. Overall, our study
highlights the importance of understanding the strengths and limitations of AI tools for
effective use and training in domain-specific software development tasks.

5.5. Enhancing User Engagement and Learning through Adaptive Feedback and
Milestone Integration

In the design of systems from an HCI perspective, system feedback and milestones are
critical for user engagement and task completion [81]. Our study’s findings underscore the
importance of creating a progression model that not only facilitates the breaking down of
complex tasks into manageable sub-tasks but also ensures that these micro-goals contribute
to a holistic understanding of larger objectives of AR development. Our study indicates
that breaking complex tasks into smaller, manageable sub-tasks is beneficial, particularly
for the “Pragmatic Developer” persona. However, this approach has a downside: while
it boosts morale through incremental success, it can hinder a holistic understanding of
overarching objectives. The challenge for HCI designers is to strike a balance between
immediate micro-level feedback and broader macro-level insights that align with long-term
goals, perhaps through a progress tracking dashboard that connects the dots between these
two levels.

Furthermore, there is potential to design milestones that are both adaptive, catering
to different user personas, and instructive, guiding users toward larger learning goals as
they tackle more complex development tasks in AR. The challenge extends to helping users
switch between bottom–up and top–down approaches when they hit learning challenges.
HCI researchers could focus on developing systems capable of recognizing such learning
gaps and offering guidance to navigate through them, thereby ensuring a more rounded
educational experience.

5.6. Limitations

Although newcomers to AR can include a range of creators, such as hobbyists and
domain experts with varying levels of programming expertise as demonstrated in prior
work [1], in this study, we focused on trained developers, as our tasks required program-
ming knowledge. Future work should consider end-user programmers who are not only
new to AR but also new to programming, to obtain a different perspective on their chal-
lenges. Furthermore, our method relied on in-lab task-based observations and interviews,
as this was an appropriate way to capture the emergent nature of AR development and
identify key development issues in this rapidly evolving field. But this may not capture
the full range of experiences, challenges, and adaptive mechanisms that AR developers
encounter in real-world settings. Longitudinal studies involving real-world tasks and larger
projects could provide a more comprehensive view. Future work can also incorporate a
control group of experienced AR developers for a more rigorous analysis. The current
approach was taken because it offers a focused look at the challenges newcomers face,
given that there is a rising tide of them entering the field, and existing literature has not
yet sufficiently investigated this demographic. This focus provides foundational insights
for educational initiatives aimed at supporting this growing community. Lastly, in this
study, we concentrated exclusively on AR development to ensure data consistency and
methodological rigor; however, it is imperative for future research to broaden the scope to
include other extended reality (XR) modalities like Virtual Reality (VR). This will provide
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a more nuanced and in-depth understanding of the challenges and learning processes
associated with designing and developing activities in 3D environments.

6. Conclusions

In conclusion, our study demonstrates that software developers new to AR struggle
in creating interactive immersive AR experiences, even when they are working within
simplified development environments. They tend to rely heavily on mainstream informa-
tion resources during the development process, but these resources are usually inadequate
for navigating the intricacies of the AR spatial concepts and physics, and the hardware–
software interplay inherent in AR development. The conventional information-seeking
strategies approaches fall short in addressing the complex 3D nature of AR. These findings
highlight a pressing need for specialized AR training programs and online educational
resources that focus on AR-specific problem decomposition rather than optimizing for
code-level assistance. By incorporating diverse perspectives and experiences, training
programs and resources can be designed to be more inclusive, thereby enriching the AR
development ecosystem with a wider range of creative solutions and applications. By shed-
ding light on the specific hurdles faced by newcomers, our work serves as a foundational
step towards the creation of more targeted, user-centered learning aids that can better
bridge the widening skills gap.
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Appendix A

Appendix A.1. Pre-Study Questionnaire

1. Select your age group:

18–24
25–34
35–44
55–65
>65

2. What is your current position? (Please do not specify where you work or study.)

(Sample answer: Student, software developer, math teacher)

3. How many years of experience do you have in programming?

0
1–3
4–6
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7–10
More than 10

4. List all of the programming languages you are familiar with, in order of experi-
ence/familiarity (List the most familiar first).

5. Do you have any experience working with any AR/VR development frameworks? If
so, please explain briefly.

Appendix A.2. Mid-Task Interview Questions

1. How have you progressed in your task so far?

(Please describe your progress, including any milestones reached or objectives
completed).

2. What challenges did you face, if any?

(Detail any obstacles encountered and how they impacted your work).

3. What is your strategy for the rest of the session? For example, about the approach you
are going to take for the rest of your development process and any particular learning
resources you want to use or keep using?

(Outline your plan for moving forward, including any changes to your methodol-
ogy or resources).

4. Describe a specific feature or functionality that you implemented so far in creating the
AR experience. What was your thought process behind it? Please explain the steps
you have taken so far to achieve it.

Appendix A.3. Post-Task Questionnaire

1. How was your experience in programming for a 3D and immersive experience com-
pared to your previous non-3D development?

Much more difficult
Somewhat more difficult
About the same
Somewhat easier
Much easier

2. How effective were your efforts in finding online resources for your needs as a
beginner in 3D/AR development?

Very effective
Somewhat effective
Neutral
Somewhat ineffective
Very ineffective

3. As a person with prior experience in programming, how would you characterize the
transferability of your existing programming knowledge into creating an immersive
3D/AR experiences?

Extremely easy to transfer
Somewhat easy to transfer
Neither easy nor difficult to transfer
Somewhat difficult to transfer
Extremely difficult to transfer

4. As a person with prior experience in programming, I relied on my programming skills
to troubleshoot and find solutions to technical problems. . .

Strongly disagree
Disagree
Neither agree nor disagree
Agree
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Strongly agree

Appendix A.4. Post-Task Interview Questions

1. Show me what you created in today’s session.

(a) How was your overall experience in completing the task?
(b) What do you think went well today as you were creating your first AR app?
(c) How did you plan and organize the development process of the AR/VR

creation task?

2. Can you tell me about the most challenging parts of this task and any roadblocks you
faced while completing your task?

3. What types of learning resources did you use during the creation process (if any)? For
example, tutorials, videos, documentation, etc.

4. To what extent were you satisfied with the resources you used when creating your
AR/VR application?

5. How did you approach the use of resources you previously mentioned in your devel-
opment process? Were there any occasions in your development process in which you
might have preferred using a help resource over the other options? Please explain.

6. What types of issues or bugs did you encounter during the development of interactive
elements of the AR experience (if any)? How did you go about identifying and
fixing them?

7. Overall, how does your experience in creating an AR experience for the first time
compare to other kinds of software development that you may have done in the past?

8. While completing your task, did you find any capabilities missing from the tool you
were using that might have helped you in doing your task better?

9. Reflecting on your experience, what would you do differently if you had the opportu-
nity to start the AR development process again?

10. Is there anything else you would like to share about your experience?
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