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Abstract: The purpose of this study is to clarify the role of IL-33 in the immune response to an-
giostrongyliasis, especially in terms of antibody production and isotype switching. In our experiment,
C57BL/6 mice were each infected with 35 infectious larvae and were divided into groups that re-
ceived an intraperitoneal injection of IL-33, anti-IL-33 monoclonal antibody (mAb), or anti-ST2 mAb
3 days post-infection (dpi) and were subsequently administered booster shots at 5-day intervals with
the same dose. Serum samples from each group were collected weekly for ELISA assays. The levels
of total IgG, IgG1, and IgG3 were significantly increased in A. cantonensis-infected mice that were
treated with IL-33, and the levels decreased significantly in infected groups treated with anti-IL-33
or anti-ST2 mAb. These results suggest that IL-33 may play a critical role in the pathogenesis of
human angiostrongyliasis and could be useful for understanding protective immunity against this
parasitic infection.
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1. Introduction

Angiostrongylus cantonensis is a zoonotic public health concern in Taiwan [1], China,
Southeast Asia, and the Pacific region [2,3]. A. cantonensis is known to use multiple rat
species as definitive hosts. The adult worms of this parasite live in the pulmonary arteries
and right ventricle of rats, and their eggs hatch in the rats’ lungs. The larvae (L1) then
migrate up the trachea and are swallowed and then expelled in the feces of rats. The larvae
infect intermediate hosts such as mollusks. Crabs, prawns, and frogs have also been found
to be naturally infected and act as paratenic hosts.

Human infection results from ingesting infective third-stage larvae (L3) that are found
in raw or under-cooked intermediate or paratenic hosts. Infection may also be acquired
by eating unwashed vegetables. The ingested larvae penetrate the blood vessels of the
small intestine and enter the systemic circulation. In humans, the non-permissive host,
migration of larvae ceases in the central nervous system. Most of the larvae develop into
young adults (L5) but do not fully mature; immature adults generally die shortly after
reaching the subarachnoid space.

In humans, the inflammatory response provoked by the migrating larvae causes the
characteristic signs and symptoms of eosinophilic meningitis and eosinophilic menin-
goencephalitis, such as meningeal irritation with neck rigidity and headache. The im-
mune response of non-permissive hosts is primarily of the Th2 type response, including
eosinophilia and increased IgE in the blood and cerebrospinal fluid, and high expression of
Th2-type cytokines, especially interleukin (IL)-5, IL-4, IL-13, and IL-33 [4–7].

The presence of long-lasting antibodies characterizes the humoral immunity gener-
ated in response to the infection. The sera contain a mixture of antibodies of different
classes (IgG, IgE, IgA, IgM, and IgD) and subclasses (IgG1, IgG2a, etc.), each with its

Trop. Med. Infect. Dis. 2024, 9, 111. https://doi.org/10.3390/tropicalmed9050111 https://www.mdpi.com/journal/tropicalmed

https://doi.org/10.3390/tropicalmed9050111
https://doi.org/10.3390/tropicalmed9050111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/tropicalmed
https://www.mdpi.com
https://orcid.org/0000-0001-9248-5030
https://orcid.org/0009-0006-3570-3306
https://doi.org/10.3390/tropicalmed9050111
https://www.mdpi.com/journal/tropicalmed
https://www.mdpi.com/article/10.3390/tropicalmed9050111?type=check_update&version=1


Trop. Med. Infect. Dis. 2024, 9, 111 2 of 9

own properties and biological functions [8,9]. Various antigens generated during infection
induce antibody class switching via different pathways, facilitated by T helper cells. The
CD4+ cells, which recognize the specific antigens, differentiate and secrete cytokines (such
as TGF-β, IL-4, etc.) and thereby stimulate class switching in the activated B cells [10].
Specific IgG antibody subclasses in A. cantonensis-infected patients have been detected [11];
however, the correlation between the antibody response and cytokines is uncertain in this
parasitic disease.

IL-33, a member of the IL-1 family, is an immunomodulatory cytokine with critical roles
in allergic inflammation, fibrosis, tumorigenesis, and homeostasis [12–14]. The receptors of
IL-33 are IL-1 receptor accessory protein (IL-1RAP) and ST2. ST2 receptors are expressed in
many cell types, including eosinophils, mast cells, fibroblasts, and Th2 lymphocytes [15,16].

It is believed that IL-33 is essential for the induction of an effective anti-parasitic
immune response. In a murine model of asthma, pre-treatment with soluble ST2 was
found to reduce the production of IL-5, IL-4, and IL-13 [17]. IL-33 was previously shown
to mediate the expression of IL-5 and IL-13 in angiostrongyliasis [7,18]. Another study
showed that blocking IL-33 with an anti-ST2 monoclonal antibody (mAb) could delay the
production of IgE [19]. Therefore, the IL-33/ST2 pathway may play an important role in
the defense against this parasitic disease.

In this study, for the purpose of understanding the role of IL-33 in the immune
response to angiostrongyliasis, especially in antibody production and isotype switching,
mice were experimentally infected with larvae of A. cantonensis and received injections of
IL-33, anti-IL-33 mAb, or anti-ST2 mAb. The total immunoglobulin G, IgG subclass profile,
and IgE were assessed using serological examinations.

2. Materials and Methods
2.1. Animals

We maintain A. cantonensis in the laboratory by using male Wistar rats as the final
host, and Biomphalaria glabrata, a hermaphroditic freshwater snail, as the intermediate host.
When first infected, each Wistar rat weighed about 150 g. This study used male C57BL/6
mice, whose body weights are 20 g, as non-permissive hosts.

The rats and mice were labeled pathogen-free, purchased from the Animal Center
laboratory at National Taiwan University College of Medicine, and housed following the
institutional guidelines. All conducted experiments were approved by the institutional
animal ethics committee (approval No. A9846).

All mice survived during the experimental period. The gain in their body weights
was similar in infected, normal control, and various treatment groups.

2.2. Treatments and Larvae Recovery

The experimental method in this study is a continuation of our previous research [7,19].
We divide mice into the following 8 groups, each with 15 mice. The eight groups included a
non-infected group, an A. cantonensis-infected group, IL-33-injected groups with or without
experimental infection, anti-IL-33 mAb-injected groups with or without experimental
infection, and anti-ST2 mAb-injected groups with or without experimental infection.

The experimentally infected snails were crushed directly with slides and cut into
pieces with scissors. Then, we immersed it in distilled water and teased with forceps and
needles gently. The infective larvae (L3) were collected under a dissecting microscope.

We orally infected each mouse in A. cantonensis-infected groups with 35 infective
larvae (L3) through a tip in 50 µL distilled water. In injected groups, the mice were injected
with IL-33, anti-IL33 mAb, or anti-ST2 mAb intraperitoneally at 3 dpi and subsequently
injected at 5-day intervals (on days 8, 13, 18, 23, 28, and 33) with the same dose [7,19]. The
dose of mouse IL-33 is 1 µg in 0.1 mL of phosphate-buffered saline (PBS) (R&D Systems Inc.,
Minneapolis, MN, USA). The dose of anti-IL-33 mAb and anti-ST2 mAb is 10 µg in 0.1 mL
of PBS (R&D Systems Inc., USA) and 50 µg in 0.1 mL of PBS (R&D Systems Inc., USA),
respectively. We collected blood samples from all mice from the tail vein every week (about
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0.1 mL of blood from each mouse). The serum samples from each group were collected and
pooled for the immunoglobulin assays.

Three mice from each group were sacrificed by ether anesthesia every week. The
brains of infected mice were submerged individually in PBS and gently teased with forceps
and needles. The larvae were then collected with a needle and counted under a dissecting
microscope.

2.3. Immunoglobulin Assays

The levels of total IgG and antibody subclasses, including IgG1, IgG2a, IgG2b, IgG2c,
IgG3, and IgE, were determined with the double antibody sandwich ELISA kits (Mouse IgG
and subclasses ELISA kit, Innovative Research, Minneapolis, MN, USA) according to the
manufacturer’s instructions. In principle, mouse immunoglobulin present in serum reacts
with specific antibodies coated on the microtiter wells. After appropriate washing steps,
horseradish peroxidase (HRP) labeled polyclonal antibodies are used as the secondary
antibody, and chromogenic substrate, 3,3′,5,5′-tetramethylbenzidine (TMB), is used for
color development at 450 nm. The quantity of immunoglobulin can be interpolated from
the standard curve and corrected for sample dilution.

2.4. Statistical Analysis

In our results, all measured data are presented as mean ± SD and are representative
of two independent experiments. Statistical significance was assessed by Student’s t-test
(two groups) or ANOVA (multiple groups test) to determine significance. p value less than
0.01 is considered statistically significant.

3. Results
3.1. The Levels of Total Immunoglobulin G

The levels of total immunoglobulin G in the sera were analyzed weekly in each group
post-infection (Figure 1A). When mice, non-infected or infected, were injected with IL-33,
the levels of total IgG significantly increased from the 1st week post-infection (p < 0.001).
Compared to the non-infected mice, when the infected mice were injected with IL-33,
the levels of IgG increased extremely significantly in the 3rd and 4th week post-infection
(p < 0.001) and reached a peak in the 4th week post-infection.
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Figure 1. Levels of total IgG (A) and IgG1 (B) in the sera of mice. N: non-infected mice. Ac:
A. cantonensis-infected mice. +IL-33: the mice received injections of IL-33. +anti-IL-33 or +anti-ST2:
the mice received injections of anti-IL-33 mAb or anti-ST2 mAb. The injections began at 3 dpi and
subsequent booster injections were administered at 5-day intervals with the same dose.

In non-infected mice, there was no significant difference between the untreated and
anti-IL-33- or anti-ST2 mAb-treated groups. When the infected mice were injected with
mAbs, the levels of total IgG decreased extremely significantly in the 2nd week post-
infection (p < 0.001).
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3.2. The Levels of IgG Subclasses

The levels of each IgG subclass in the sera were also analyzed via ELISA and the
results are as follows.

IgG1 (Figure 1B): compared to the non-treated and non-infected mice, the levels were
increased in all infected and IL-33-treated groups (p < 0.001) and reached a peak in the
4th week. Compared to the non-infected mice, when the infected mice were injected with
IL-33, the levels of IgG1 increased extremely significantly (p < 0.001). Compared to the non-
infected mice, when the infected mice were injected with anti-IL-33 mAb or anti-ST2 mAb,
the levels of IgG1 decreased highly significantly in the 1st week post-infection (p < 0.001).

IgG2a, IgG2b, and IgG2c (Figure 2A–C): the levels increased in all infected groups with
or without IL-33 in the 1st week post-infection (p < 0.001). The levels decreased significantly
in the infected groups treated with anti-IL-33 or anti-ST2 mAb (p < 0.001).
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Figure 2. Levels of IgG2a (A), IgG2b (B), IgG2c (C), and IgG3 (D) in the sera of mice. N: non-infected
mice. Ac: A. cantonensis-infected mice. +IL-33: the mice received injections of IL-33. +anti-IL-33 or
+anti-ST2: the mice received injections of anti-IL-33 mAb or anti-ST2 mAb. The injections began at
3 dpi and subsequent booster injections were administered at 5-day intervals with the same dose.

IgG3 (Figure 2D): the levels increased in all IL-33-treated groups with or without
infection in the 2nd week post-infection (p < 0.001). The levels decreased significantly in
the infected groups treated with anti-IL-33 or anti-ST2 mAb (p < 0.001).

3.3. The Levels of IgE

The levels of IgE were increased in the 3rd week in non-infected mice that were
injected with IL-33 (Figure 3). When the mice were infected with A. cantonensis, the levels
of IgE were significantly increased with or without treatment in the 1st week post-infection
(p < 0.01).
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Figure 3. Levels of IgE in the sera of mice. N: non-infected mice. Ac: A. cantonensis-infected mice.
+IL-33: the mice received injections of IL-33. +anti-IL-33 or +anti-ST2: the mice received injections of
anti-IL-33 mAb or anti-ST2 mAb. The injections began at 3 dpi and subsequent booster injections
were administered at 5-day intervals with the same dose.

3.4. The Proportions of IgG Subclasses

The proportion of each subtype in the sum of IgG1, IgG2 subclasses, and IgG3 was
analyzed. When non-infected mice were injected with IL-33, the proportion of IgG1 and
IgG3 increased in the 3rd week (from 41% to 51% and from 26% to 32%, respectively).
Meanwhile, the proportion of IgG2b decreased (from 31% to 12%) (Figure 4).
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Figure 4. The proportion of each IgG subclass in the sum of IgG1 (1), IgG2 subtypes (2a, 2b, and
2c), and IgG3 (3) in each group. The blood samples were collected at the 3rd week post-infection.
N: non-infected mice. Ac: A. cantonensis-infected mice. +IL-33: the mice received injections of
IL-33. +anti-IL-33 or +anti-ST2: the mice received injections of anti-IL-33 mAb or anti-ST2 mAb. The
injections began at 3 dpi and subsequent booster injections were administered at 5-day intervals with
the same dose.

In the infected groups in the 3rd week post-infection, the proportion of IgG1 increased
when the mice were treated (from 41% to 50% when treated with IL-33 and to 56% and 57%
when treated with anti-IL-33 and anti-ST2 mAb, respectively). The proportion of IgG2b
decreased when the infected mice were treated (from 33% to 20% when treated with IL-33,
and to 25% and 22% when treated with anti-IL-33 and anti-ST2 mAb). The proportion of
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IgG3 was increased when the infected mice were treated with IL-33 (from 19% to 26%)
(Figure 4).

In the 4th week, when non-infected mice were injected with IL-33, the proportion of
IgG1 and IgG3 was increased (from 41% to 53% and from 25% to 34%). In the infected
groups, the proportion of IgG1 was increased when the mice were treated with mAbs (from
46% to 64% when treated with anti-IL-33 and to 61% when treated with anti-ST2 mAb). The
proportion of IgG2b decreased when the mice were treated (from 31% to 21% when treated
with IL-33 and to 16% when treated with anti-IL-33 and anti-ST2 mAb). The proportion of
IgG3 was increased when the mice were treated with IL-33 (from 17% to 27%) (Figure 5).
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N: non-infected mice. Ac: A. cantonensis-infected mice. +IL-33: the mice received injections of
IL-33. +anti-IL-33 or +anti-ST2: the mice received injections of anti-IL-33 mAb or anti-ST2 mAb. The
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the same dose.

3.5. Larva Recovery

In the non-treated group, larva recovery was 13.4 ± 1.95 in the 2nd week post-infection
and 11.8 ± 1.64 in the 3rd week post-infection. In the IL-33-treated group, larva recovery
decreased to 7.8 ± 0.83 and 6.6 ± 0.54, respectively. The larva recovery was significantly
decreased in the IL-33-treated groups (p < 0.01).

There was no significant difference among the groups that were without treatment
and treated with anti-IL-33 mAb or with anti-ST2 mAb in the 2nd week and 3rd week
post-infection. At the 4th and 5th weeks post-infection, the larva recovery in all groups was
low and there was no significant difference among the groups.

4. Discussion

Immunoglobulin G, IgG, the principal class of antibody in the blood and extracellular
fluid due in part to its longer lifetime, is divided into four subclasses with different heavy
chains, and each subclass has distinct properties and effector functions. The main functions
of IgG1 and IgG3 are complement activation and the opsonization of pathogens. IgG3 is
the strongest activator of complement, followed by IgG1. IgG2 is a weak activator and only
activates in the presence of a high antigen concentration [8,10].

According to our results, the levels of total IgG, IgG1, and IgG3 were significantly
increased in non-infected and A. cantonensis-infected mice that were treated with IL-33. The
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levels were decreased in infected mice that were treated with anti-IL-33 or anti-ST2 mAb.
The levels of IgG1 and IgG3 were obviously lower in the anti-ST2 mAb-injected groups in
the 3rd and 4th week post-infection. It is necessary to determine the appropriate therapeutic
dose for these injected antibodies in the future. However, the IL-33/ST2 pathway may be
closely related to the production of total IgG, IgG1, and IgG3. IgG1 and IgG3 have similar
properties that activate complement and binding of the Fc receptor [20]. This may be the
reason why they are induced together, indicating a shared switch mechanism.

The levels of IgG2a, IgG2b, and IgG2c were significantly increased in infected mice
with or without IL-33 injection. However, the levels were significantly decreased when
infected mice were treated with anti-IL-33 or anti-ST2 mAb. It seems that IL-33 is necessary
for producing these antibody subclasses.

The ratio changes between antibody classes were taken into account in the 3rd and
4th week post-infection. The proportion of IgG3 was increased in IL-33-treated mice with
or without infection. The proportion of IgG2b was decreased when the mice were treated
with IL-33 or mAbs. The proportion of IgG1 increased when the infected mice were treated
with anti-IL-33 or anti-ST2 mAb. It seems that IL-33 selectively influences the production
of each antibody subclass.

IgE contributes a small but biologically important part of the immune response. The
production of IgE occurs in response to helminthic infections and exposure to allergens.
In allergic disease, IgE is tightly bound to the surfaces of mast cells and some other cells
through the high-affinity IgE receptor FcεRI. The binding of antigen to IgE cross-links the
IgE receptors, causing the release of chemical mediators from these cells. However, the
mechanism by which IgE fights against A. cantonensis is uncertain.

Elevated levels of IL-33 have been found in patients with severe asthma, allergic
rhinitis, and conjunctivitis [21–23]. IL-33 was shown to enhance the production of IgE
in allergic diseases [24]. In this study, IL-33 could enhance the production of IgE in non-
infected mice. There were no significant differences in IgE between A. cantonensis-infected
mice that were treated with or left without IL-33. However, the production of IgE was
significantly decreased in both mAb-treated groups in the 1st and 2nd week post-infection.
Blocking IL-33 could delay the production of IgE, and this result is consistent with our
previous research [19].

The isotype switching of antibodies is influenced by several cytokines secreted by
T helper cells [25,26]. In human peripheral blood, among B cells stimulated with IL-4 or
IL-21, switching is directed to IgG1 and IgG3 [27,28]. It is believed that IFN-γ and IL-4
are antagonistic, and IFN-γ has also been shown to cooperate with IL-6 to induce IgG2
production [29]. In vitro studies have demonstrated that when Th1 IFN-γ is added to the
cell culture of murine B cells, IgG2a production is detected [30]. TGF-β may specifically
inhibit switching to IgE, rather than IgA [25]. In our study, the levels of IL-4, IFN-γ,
and TGF-β were very low, nearly undetectable. The expression levels of these cytokines
might need to be determined in cell cultures of lymphocytes co-cultured with antigens of
A. cantonensis in future work.

It’s demonstrated that IL-33 is able to modulate intestinal nematode expulsion by
inducing the Th2 adaptive response [31,32]. In our study, larva recovery from the infected
brains was significantly reduced in IL-33-injected mice in the second and third weeks post-
infection. The levels of IgG1 and IgG3 were elevated in these groups. These data suggest
that IgG1 and IgG3 could be associated with protective immunity against A. cantonensis
infection. As for the potential mechanism by which IgG1 and IgG3 limit infection, more
experiments are needed.

Taken together, the results of the present study show that exogenous IL-33 enhances
the production of total IgG, IgG1, and IgG3 in mice. These antibody levels are significantly
increased in A. cantonensis-infected mice and may be associated with protective immunity.
IL-33 may play a critical role in the pathogenesis of angiostrongyliasis. And the results may
be useful when developing treatment strategies against this parasitic disease.
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