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Abstract: Background: Lyme disease (LD) is an emergent vector-borne disease caused by Borrelia
spp. and transmitted through infected ticks, mainly Ixodes spp. Our objective was to determine
meteorological and environmental factors associated with LD transmission in Europe and the effect of
climate change on LD. Materials and methods: A systematic review following the PRISMA guidelines
was performed. We selected studies on LD transmission in the European Union (EU) and the
European Economic Area (EEA) published between 2000 and 2022. The protocol was registered in the
PROSPERO database. Results: We included 81 studies. The impact of environmental, meteorological
or climate change factors on tick vectors was studied in 65 papers (80%), and the impact on human
LD cases was studied in 16 papers (19%), whereas animal hosts were only addressed in one study
(1%). A significant positive relationship was observed between temperature and precipitation and
the epidemiology of LD, although contrasting results were found among studies. Other positive
factors were humidity and the expansion of anthropized habitats. Conclusions: The epidemiology of
LD seems to be related to climatic factors that are changing globally due to ongoing climate change.
Unfortunately, the complete zoonotic cycle was not systematically analyzed. It is important to adopt
a One Health approach to understand LD epidemiology.

Keywords: climate; Ixodes; emerging infectious diseases; Europe; mediterranean; Lyme disease

1. Introduction

Lyme disease (LD) is a common bacterial vector-borne disease in countries of the
European Union (EU) and European Economic Area (EEA). Its pathogenic agent, Borrelia
sp, is transmitted through the bite of infected ticks, mainly Ixodes spp. [1–3]. Other ticks
that are present in Europe, like Dermacentor spp. and Haemaphysalis spp., have been
identified as carriers of Borrelia spp. spirochete, although little is known about their vector
competence [4–6]. Sporadic infection and transmission by Rhipicephalus spp, Hyalomma spp.
and Amblyomma spp. have been reported [7,8]. Deer and rodents are common animal hosts,
crucial for the maintenance of the zoonotic cycle in the wild [1–3,9].

In the EU/EEA, where it is considered endemic in many places, with more than
360,000 cases reported over the last two decades, the main vector of LD is Ixodes ricinus
and the main pathogens are Borrelia afzelii, B. garinii and B. burgdorferi [1–3]. In 2018, Lyme
neuroborreliosis was included on the list of diseases under EU epidemiological surveillance
due to increasing trends in the diagnosis of LD cases and vector presence [9,10]. Areas of
presence for LD vectors were mapped based on updated information up to March 2022 and
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include regions in Belgium, Croatia, Czech Republic, France, Germany, Netherlands, Poland
and Spain [11].

Environmental factors may influence LD distribution in different ways through their
effects on both vector and/or host populations [12,13]. For example, increased tempera-
tures and changes in rainfall patterns may lead to increases in tick populations, through
direct and indirect effects on their hosts (e.g., increased rodent populations after mast
seeding of trees) [13,14]. However, changes in rainfall can also have negative effects on
tick populations, especially if they are registered in arid areas [15]. In addition, Ixodes
ricinus is expanding into higher altitudes and latitudes as a result of changes in local
climate [13], although, depending on the moment when these changes occur, tick popula-
tions decrease [14]. Therefore, it is important to understand these relationships and their
impact to describe and predict LD dissemination.

This study aimed at reviewing the existing literature to identify the relationship
between meteorological/climatic and environmental factors, as well as the influence of
climate change, on the presence and/or distribution of vectors and LD circulation in ticks,
non-human and human hosts in the EU/EEA.

2. Materials and Methods

We conducted a systematic literature review in accordance with PRISMA guidelines [16]
to examine the impact of various meteorological and/or environmental factors, as well
as their fluctuations, on the presence, dynamics and epidemiology of Lyme disease in the
EU/EEA. We registered the study protocol in the PROSPERO database (https://www.crd.
york.ac.uk/PROSPERO/) on 11 January 2023, and it was accepted on 22 January 2023 (ID
CRD42023391120).

We performed a search in English, French, Portuguese, German, Italian and Spanish
and considered only original research studies with quantitative analyses. We regarded
proxy metrics (e.g., vector density and abundance) and reservoir populations (comprising
animals and humans) as indicative of LD activity. The inclusion and exclusion criteria
are shown in Supplementary Materials: Text S1, Table S1. The complete search strategy is
detailed in Supplementary Materials: Text S2.

We used a 12-item quality assessment tool based on similar studies and on the
Newcastle–Ottawa scale [17–19] to evaluate the internal and external validity of the selected
publications. Quality was scored as a binary variable (yes/no), and the number of yeses
gave the final score: very good (11–12 points), good (9–10 points), moderate (6–8 points),
must be improved or unacceptable (<6 points).

The dataset supporting the conclusions of this article is included within the article
(and its additional files in Supplementary Materials).

Study Variables and Data Analysis

We systematically and thematically reviewed the selected papers. We extracted data
into evidence tables under different headings, which included identifier, reference, first
author, year of publication, journal, vector, disease, host, country of the study, time frame
of observed data or year of study, aim, study design, type of environmental and/or
meteorological factor according to the definition given by the World Meteorological Or-
ganization [20], and data sources, analytical approach, summary of the results, impact
on LD incidence (yes/no), projected prevalence, maps (yes/no) and main limitations. To
guarantee methodical and uniform data collection, we used a standardized Excel (Ver-
sion 2010, Microsoft Corporation, Richmond, WA, USA) spreadsheet. References were
saved in Zotero software (Version 5.0.67, Corporation for Digital Scholarship, Vienna, VA,
USA; www.zotero.org, accessed on 23 January 2023). We used the online tool Rayyan
for systematic reviews (Version 2023, Cambridge, MA, USA; https://rayyan.ai/reviews)
and Mapchart (Version 2023, https://www.mapchart.net/, accessed on 30 June 2023) and
Canva (Version 2023, Sydney, Australia; https://www.canva.com/, accessed on 30 June
2023) for mapping and creating explanatory figures.

https://www.crd.york.ac.uk/PROSPERO/
https://www.crd.york.ac.uk/PROSPERO/
www.zotero.org
https://rayyan.ai/reviews
https://www.mapchart.net/
https://www.canva.com/
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3. Results

The systematic search strategy yielded 1218 references. After screening the titles
and abstracts, we retained 113 articles for full-text screening. Eighty-one articles met all
inclusion criteria (Figure 1).
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3.1. Descriptive Characteristics of the Studies

Most papers (n = 59) were published between 2011 and 2022. Six studies covered more
than one country and three studies focused on the whole European continent (Figure 2).
Most research was carried out in Germany (n = 15), France (n = 12) and Belgium (n = 11).
The most frequently used types of analyses were association/correlation analyses (n = 56),
predictive models (n = 23) and spatial models (n = 15). Twelve studies used two or more
different types of modeling approaches (Table 1). Definitions of analyzed variables are
specified in Supplementary Materials: Table S2.

Overall, the studies were of medium or good quality (average 11.42 points). The main
reasons for scoring lower were the improper identification of the sources for data or the
data collection procedures and unclear results (Supplementary Materials: Figure S1).
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Table 1. Characteristics of the selected studies (n = 81).

First Author Year of
Publication

Analyzed
Countries

Analyzed Vector
(Species)

Analyzed Reservoirs
and Hosts Borrelia Species Study Object Analytical

Approach
Scored Points at
Quality Assessment

Linard C [21] 2007 Belgium ND Humans and animals B. burgdorferi s.l. Human cases AM + SM 12

Heylen D [22] 2019 Belgium I. ricinus Animals B. burgdorferi s.l. Tick abundance AM 11

Keukeleire MD [23] 2016 Belgium ND Humans and animals B. burgdorferi s.l. Human cases AM 12

Barrios JM [24] 2013 Belgium ND Humans B. burgdorferi s.l. Human cases PM 9

Tack W [25] 2012 Belgium I. ricinus ND B. burgdorferi s.l. Tick abundance AM 12

Barrios JM [26] 2012 Belgium ND Humans B. burgdorferi s.l. Human cases SM 10

Barrios JM [27] 2012 Belgium ND Humans B. burgdorferi s.l. Human cases AM 10

Heylen D [28] 2013 Belgium I. ricinus Animals B. burgdorferi s.l. Tick abundance PM 11

Hönig V [29] 2015 Czech Republic I. ricinus ND

B. afzelii, B. garinii,
B. burgdorferi s.s.,
B. valaisiana,
B. lusitaniae,
B. spielmanii

Tick abundance AM 11

Daniel M [30] 2009 Czech Republic I. ricinus ND
B. afzelii, B. garinii,
B. burgdorferi s.s.,
B. valaisiana

Tick abundance AM 11

Daniel M [31] 2008 Czech Republic I. ricinus Humans B. burgdorferi s.l. Human cases,
tick abundance AM 11

Hubálek Z [32] 2005 Czech Republic ND Humans B. burgdorferi s.l. Human cases AM 12

Daniel M [33] 2015 Czech Republic I. ricinus ND ND Tick abundance PM 12

Hubálek Z [34] 2003 Czech Republic
I. ricinus,
H. concinna,
D. reticulatus

ND ND Tick abundance AM 11

Tkadlec E [35] 2019 Czech Republic,
Slovakia, Poland ND Humans and animals B. burgdorferi s.l. Human cases AM 12

Jensen PM [36] 2005 Denmark I. ricinus Animals ND Tick density AM 11

Jensen PM [37] 2000 Denmark I. ricinus Animals B. burgdorferi s.l. Tick abundance AM 10

Jensen PM [38] 2000 Denmark I. ricinus ND ND Tick abundance PM 10
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Table 1. Cont.

First Author Year of
Publication

Analyzed
Countries

Analyzed Vector
(Species)

Analyzed Reservoirs
and Hosts Borrelia Species Study Object Analytical

Approach
Scored Points at
Quality Assessment

Kjær LJ [39] 2019 Denmark, Norway,
Sweden I. ricinus ND ND Tick abundance PM 11

Kjær LJ [40] 2019 Denmark, Norway,
Sweden I. ricinus ND ND Tick abundance PM 12

Porretta D [41] 2013 Europe I. ricinus ND ND Tick abundance PM + SM 9

Li S [42] 2012 Europe I. ricinus ND B. afzelii, B. garinii Tick abundance PM 12

Li S [43] 2019 Europe I. ricinus Animals B. burgdorferi s.l. Human LD risk PM 10

Fernández-Ruiz N
[44] 2020 Europe I. ricinus ND ND Tick abundance AM 12

Uusitalo R [45] 2022 Finland I. ricinus,
I. persulcatus Animals B. burgdorferi s.l. Tick abundance PM 12

Mariet AS [46] 2013 France ND Humans B. burgdorferi s.l. Human cases AM 11

Vassalo M [47] 2000 France I. ricinus ND ND Tick density AM 12

Goldstein V [48] 2018 France I. ricinus ND ND Tick abundance AM 12

Vourc’h G [49] 2016 France I. ricinus Animals B. burgdorferi s.l. Tick abundance AM + SM 12

Paul REL [50] 2016 France I. ricinus ND B. burgdorferi s.l.,
B. miyamotoi Tick density AM 12

Halos L [51] 2010 France I. ricinus Animals B. burgdorferi s.l. Tick abundance AM 12

Wongnak P [15] 2022 France I. ricinus ND ND Tick abundance AM 12

Boyard C [52] 2007 France I. ricinus ND ND Tick abundance PM 12

Bourdin A [53] 2022 France I. ricinus ND

B. afzelii, B. burgdorferi
s.l., B. burgdorferi s.s.,
B. garinii, B. lusitaniae,
B. valaisiana

Tick abundance AM 12

Perez G [54] 2016 France I. ricinus Animals ND Tick abundance PM 12

Ehrmann S [55] 2017
France, Belgium,
Germany, Sweden,
Estonia

I. ricinus ND ND Tick abundance AM 10
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Table 1. Cont.

First Author Year of
Publication

Analyzed
Countries

Analyzed Vector
(Species)

Analyzed Reservoirs
and Hosts Borrelia Species Study Object Analytical

Approach
Scored Points at
Quality Assessment

Ehrmann S [56] 2018
France, Belgium,
Germany, Sweden,
Estonia

I. ricinus ND B. burgdorferi s.l. Tick abundance PM 10

Brugger K [57] 2018 Germany I. ricinus Animals ND Tick density PM 9

Nolzen H [58] 2022 Germany I. ricinus ND ND Tick abundance PM + SM 11

Răileanu C [59] 2021 Germany I. ricinus Humans and animals

B. afzelii, B. burgdorferi
s.s., B. garinii,
B. valaisiana,
B. spielmanii,
B. bavariensis

Tick abundance,
tick and host
infection

AM 12

Kohn M [60] 2019 Germany D. reticulatus ND B. miyamotoi, B. afzelii Tick abundance AM 11

Brugger K [61] 2017 Germany I. ricinus Animals ND Tick abundance AM 12

Boehnke D [62] 2015 Germany I. ricinus ND ND Tick density SM 12

Schwarz A [63] 2009 Germany I. ricinus ND ND Tick abundance AM + SM 12

Vollack K [64] 2017 Germany I. ricinus ND ND Tick abundance AM 12

Schulz M [65] 2014 Germany I. ricinus ND ND Tick abundance AM 12

Gethmann J [66] 2020 Germany I. ricinus ND ND Tick abundance AM 12

Lauterbach R [67] 2013 Germany I. ricinus ND ND Tick density PM 12

Hauck D [68] 2020 Germany

I. ricinus,
I. inopinatus,
I. frontalis,
I. hexagonus

ND ND Tick abundance AM 12

Trájer A [69] 2013 Hungary ND Humans B. burgdorferi s.l. Human cases AM 12

Trájer A [70] 2014 Hungary ND Humans B. burgdorferi s.l. Human cases PM 11

Hornok S [71] 2017 Hungary

I. ricinus,
D. reticulatus,
D. marginatus,
H. inermis,
H. concinna

ND B. burgdorferi s.l. Tick abundance AM 12
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Table 1. Cont.

First Author Year of
Publication

Analyzed
Countries

Analyzed Vector
(Species)

Analyzed Reservoirs
and Hosts Borrelia Species Study Object Analytical

Approach
Scored Points at
Quality Assessment

Garcia-Vozmediano
A [72] 2020 Italy I. ricinus,

D. marginatus Animals B. burgdorferi s.l.,
B. miyamotoi Tick abundance AM 9

Rosà R [73] 2007 Italy I. ricinus Animals ND Tick abundance PM 12

Rizzoli A [74] 2002 Italy I. ricinus Animals B. burgdorferi s.l. Tick abundance PM + SM 12

Zanzani SA [75] 2019 Italy ND Humans B. burgdorferi s.l. Human cases SM 12

Altobelli A [76] 2008 Italy I. ricinus Animals B. burgdorferi s.l. Tick abundance AM + SM 11

Bisanzio D [77] 2008 Italy I. ricinus ND ND Tick abundance AM 12

Tagliapietra V [78] 2011 Italy I. ricinus Animals ND Tick abundance AM 12

Rosà R [79] 2018
Italy, Germany,
Czech Republic,
Slovakia, Hungary

I. ricinus ND B. burgdorferi s.l. Tick abundance AM 12

Garcia-Martí I [80] 2017 Netherlands I. ricinus ND ND Tick bites AM + SM 12

Swart A [81] 2014 Netherlands I. ricinus Animals ND Tick abundance PM + SM 10

Qviller L [82] 2014 Norway I. ricinus ND ND Tick density AM 12

Kiewra D [83] 2018 Poland ND Humans B. burgdorferi s.l. Human cases AM 12

Buczek A [84] 2014 Poland I. ricinus ND ND Tick abundance AM 12

Dyczko D [85] 2022 Poland I. ricinus Animals

B. afzelii, B. garinii,
B. valaisiana,
B. lusitaniae,
B. miyamotoi

Tick abundance AM 12

Kiewra D [86] 2014 Poland I. ricinus ND ND Tick abundance AM 12

Domşa C [87] 2018 Romania I. ricinus ND ND Tick abundance PM 12

Pangrácová L [88] 2013 Slovakia I. ricinus ND ND Tick abundance AM 11

Kazimírová M [89] 2016 Slovakia I. ricinus Animals ND Tick density AM 12

Donša D [90] 2021 Slovenia ND Humans and animals B. burgdorferi s.l. Human cases PM + SM 12

Knap N [91] 2009 Slovenia I. ricinus ND ND Tick abundance AM 12
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Table 1. Cont.

First Author Year of
Publication

Analyzed
Countries

Analyzed Vector
(Species)

Analyzed Reservoirs
and Hosts Borrelia Species Study Object Analytical

Approach
Scored Points at
Quality Assessment

Ruiz-Fons F [92] 2012 Spain I. ricinus Animals B. burgdorferi s.l. Tick abundance AM + SM 12

Estrada-Peña A [93] 2001 Spain I. ricinus ND ND Tick abundance AM 10

Alonso-Carné J [94] 2016 Spain I. ricinus ND ND Tick abundance AM 11

Barandika JF [95] 2006 Spain I. ricinus,
H. punctata Animals ND Tick abundance AM 12

Bennet L [96] 2006 Sweden ND Humans B. burgdorferi s.l. Human cases AM 12

Jaenson TG [97] 2009 Sweden I. ricinus Animals ND Tick density AM 10

Jaenson TG [98] 2011 Sweden I. ricinus ND ND Tick abundance AM + SM + PM 12

Keith K [99] 2022 Sweden ND Humans B. burgdorferi s.l. Human cases AM 12

Lindström A [100] 2003 Sweden I. ricinus ND ND Tick abundance AM 10

AM: association/correlation models; LD: Lyme disease; ND: no data; PM: predictive model; SM: spatial model. Study quality: the quality of the included studies was assessed. Further
information can be found in the Material and Methods and Supplementary Materials: Figure S1.
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3.2. Lyme Disease Vectors

Sixty-five studies addressed the impact of environmental factors on LD vectors.
Twenty-four of these studies additionally analyzed Borrelia sp. infection in ticks, which
ranged from 0.25% in Germany [60] to 38.0% in Italy [76] (Tables 1 and 2, Supplementary
Materials: Table S3).

Table 2. Observed Borrelia and Ixodes species in different countries.

Analyzed Species Countries

Analyzed Borrelia species

B. afzelii Czech Republic [29,30], Germany [59,60], Poland [85]
B. bavariensis Germany [59]

B. burgdorferi s.l.
Belgium [21–28,56], Czech Republic [31,32,35,79], Denmark [37], Estonia [56], Finland [45], France
[46,49–51,53,56], Germany [56,79], Hungary [69–71,79], Italy [72,74–76,79], Poland [35,83], Slovakia
[35,79], Slovenia [90], Spain [92], Sweden [56,96,99]

B. burgdorferi s.s. Czech Republic [29,30], France [53], Germany [59]
B. garinii Czech Republic [29,30], Germany [59], Poland [85]
B. lusitaniae Czech Republic [29], Poland [85]
B. miyamotoi France [50], Germany [60], Italy [72], Poland [85]
B. spielmanii Czech Republic [29], Germany [59]
B. valaisiana Czech Republic [29,30], Germany [59], Poland [85]
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Table 2. Cont.

Analyzed Species Countries

Analyzed vector species

D. marginatus Hungary [71], Italy [72]
D. reticulatus Czech Republic [34], Germany [60], Hungary [71]
H. concinna Czech Republic [34], Hungary [71]
H. inermis Hungary [71]
H. punctata Spain [95]
I. frontalis Germany [68]
I. hexagonus Germany [68]
I. inopinatus Germany [68]
I. persulcatus Finland [45]

I. ricinus

Belgium [22,25,28,55,56], Czech Republic [29–31,33,34,79], Denmark [36–40], Estonia [55,56], Finland
[45], France [15,47–56], Germany [55–59,61–68,79], Hungary [71,79], Italy [72–74,76–79], Netherlands
[80,81], Norway [39,40,82], Poland [84–86], Romania [87], Slovakia [79,88,89], Slovenia [91], Spain
[92–95], Sweden [39,40,55,56,97,98,100]

Temperature was the most frequently analyzed environmental variable. It was
considered a key driver for LD vector abundance [15,28–31,33,34,37,39–42,44,45,48,58,
60,61,63–66,73,76,78,81,85,86,88,91,92,94,95], density [36,47,50,62,67,82] and tick bites [80].
Mean [15,29–31,33,34,36,38–40,44,45,47,48,58,60–67,73,76,80–82,85,86,88,92,94,95],
maximum [29,42,58,73,78,91] and minimum [29,31,41,50,58,73] daily [29,42,58,61,73,88,
91], monthly [15,29–31,33,34,36,38–41,44,45,47,48,50,60,61,63–67,78,81,82,85,86,94,95] or an-
nual [29,39,62,76,92] temperatures were positively related to the abundance and density
of Ixodes ricinus. Moreover, higher daily near-surface temperatures were associated with
earlier tick activities [44,58], and the number of warm days was positively related with
the abundance of both larvae [40,66,92] and nymphal stages [40,66,80,86,92]. On the other
hand, a negative relationship between temperature and nymph densities and abundance
and a positive relationship with adult tick activity were observed [28,50]. In addition,
fifty-two studies used temperature variables to model tick abundance and densities [15,29–
31,33,34,36,38–42,45,47–50,52,55–58,60–68,73,76–79,81,82,84–89,91–95] and tick bites [80].

Thirty-eight studies analyzed the relationship between humidity and tick abundance [15,
22,28,31,33,34,37,42,45,48,49,52,53,58,60,63–66,68,73,76–79,81,85,86,88,91,92,95], density [57,62,
82,89,97] or tick bites [80]. Daily [42,52,57,58,88] and monthly [15,28,33,34,45,48,53,57,60,63–
65,85,86] average [15,28,33,34,42,45,48,52,53,57,58,60,63–65,85,86,88], maximum [42] and
minimum [52] relative humidity were positively related to tick abundance and density.
Average daily vapor pressure deficits [42], soil moisture [81], soil pH [48] and soil water
capacity [37] were also positively related to tick abundance. The monthly mean relative
humidity during spring and autumn and temperature were associated with higher num-
bers of questing D. reticulatus ticks [60]. The degree of ground wetness was also positively
related to tick abundance [95]. The numbers of ticks collected were higher when relative
humidity was high in the six months preceding tick sampling [15,97]. However, the annual
average evapotranspiration showed a negative correlation with I. ricinus abundance [92].

Thirty-one studies analyzed precipitation in relation to tick abundance [15,28–31,34,
38–42,45,55,56,64,65,76–79,84,86,87,91,92,95], density [50,57,67,89] and tick bites of human
hosts [80]. Annual [29,87,92], seasonal [29,38,41,80], monthly [29,30,45,65,84] and daily [29,95]
mean [29,30,38,41,45,65,80,84,87,92,95], maximum [29,92] and minimum [29,80] precipita-
tion were positively related to tick abundance and tick bites. Mean monthly precipitation
was also positively related to I. ricinus and I. persulcatus abundance [45]. Overall, higher
annual precipitation also resulted in higher vector abundance [92], whereas frosty and
snowy days resulted in lower tick and larvae abundance [31,92]. However, precipitation
from May to September was negatively related to tick abundance [38]. The number of
non-rainy days throughout the year was positively related to an increase in human tick
bites [80]. Twenty-three studies analyzed and found no relationship between precipitation
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variables and changes in tick abundance and density [15,28,31,34,39–42,45,50,55–57,67,76–
79,86,87,89,91,95].

Saturation deficit, which describes the functional relationship between saturation va-
por pressure, temperature and relative humidity and provides an integrated measure of the
drying power of the atmosphere, was analyzed in nine studies in relation to tick abundance
and density [48,49,53,62,68,78,86,89,91]. Seven studies observed a positive relationship
between I. ricinus abundance [48,53,78,86,91] or density [89] and saturation deficit.

Daylight and solar radiation were analyzed in relationship to tick abundance in twelve
studies [15,33,40,45,48,65,66,68,81,86,95] and density [36], out of which, five used sun expo-
sure and sunshine duration as model variables [15,48,66,68,95]. Middle infrared reflectance
levels [40,45,81], mean monthly solar radiation [36,86] and the sunshine duration [65]
and day length [33] were positively associated with tick abundance and density [33,36,
40,45,65,81,86]. In addition, daily maximum wind speed was positively related to tick
abundance [42].

Fourteen studies analyzed altitude in relationship to tick abundance [15,30,39,40,45,
48,72,74,76,87,95] and density [62,82,89]. Altitude, especially at values between 380 and
1400 m, was positively related to tick abundance and density [30,40,48,62,72,74,76,82,89,95].

The enhanced vegetation index (EVI) [39,40,45,76,81] and the normalized difference
vegetation index (NDVI) [29,39,40,44,45,76,77,79,80,92–94], which are used to quantify
vegetation and photosynthetic activity, forest density and extension [15,22,25,28,40,51,54,92]
and vegetation period [45,92,98], were used in tick abundance models [15,22,25,28,29,
39,40,44,45,51,54,76,77,79,81,92–94,98] and in relation to tick bites [80] in twenty studies.
Negative correlations were observed between the NDVI and tick abundance in the Czech
Republic and Italy [29,76]. However, EVI values [40,81] and vegetation cover [28] were
positively related to tick abundance in Norway, Belgium and the Netherlands. Higher
tick abundance was observed if the vegetation period started and lasted longer [98]. In
contrast, other studies showed that higher values of NDVI correlated positively [39,40,44,
77,79,92,94], i.e., densely vegetated and leaved or cultivated areas presented higher tick
population abundance.

Thirty-nine papers analyzed tick abundance and density in relation to land uses and
land covers [15,22,25,28–30,38,40,42,45,48,49,51–56,59,62,63,65–68,71,72,74,79,85–87,92,93,
95,97,98,100], and one focused on tick bites [80], using data on land coverage [25,28,38,42,45,
49,53–56,65,66,71,72,79,80,92,98,100], forest composition [25,29,30,40,48,49,51,52,55,56,62,
65,67,68,74,85–87,97,98,100], agricultural land use [40,42,51,54,62,74,79,80,95] and urbaniza-
tion [22,49,59,67,68,71,79,80] to model tick outcomes. Forests were important drivers for tick
abundance and density [25,29,38,42,49,52,53,55,56,62,68,71,72,74,80,85,87,93,95,97,98,100].
Ticks were more present in deciduous [71,72,74,93,97], broad-leaved [42,68,85,97], conif-
erous [42,62,72], mixed [29,68,93], oak [25,49,74], beech [74,100], pine [74,100] and chest-
nut [74] forests. The presence of oak trees correlated with a higher abundance of infected
nymphs [49]. Higher nymphal infection prevalence was observed in deciduous forests [49],
whereas a lower abundance of nymphs occurred in areas with heather [49]. Other forest
types and landscapes related to higher tick abundance were hedgerow [52,55,56], wood-
land [51,52,54], grassland [59,63], spruce [30,97], black locust [74], shrub [25], apple and
cherry trees [52], black alder [98] and meadows [66]. In contrast, lower tick numbers
were observed in certain types of forests, i.e., coniferous [29,93], broad-leaved [29] and
deciduous [29] forests and in older forests [67]. Herb cover [67] and the presence of pole
wood [67] also corresponded to a decrease in ticks [67]. Regarding agricultural lands
and urbanization, fields and pastures related positively to tick abundance [55,56,59] and
parks to tick bites [80]. Moderate forest fragmentation near agricultural areas [15] and an
increased forest edge length [25] were also positive predictors. In addition, the farther away
any forest road, the higher the abundance of nymphal ticks [49].

Soil-related variables were analyzed in twelve studies in relation to tick abundance [15,
29,39,40,48,49,52,55,56,63,74] and tick bites [80], of which, only three studies found positive
relationships [49,63,74]. Clay and silt soils were related to a higher abundance of nymphal
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ticks, and sandy soil was related to higher nymphal infection prevalence [49]. Lower
nymphal infection prevalence values, however, were observed with silt soil [49]. Moder
humus, i.e., a kind of forest floor in deciduous and mixed-wood forests characterized
by a thick layer of fragmented leaves, was strongly associated with nymph abundance
in France [48]. Limestone [74] and increased soil water content [63] were also related to
increased tick abundance.

Twenty-one studies analyzed animal host abundance in relation to tick abundance and
density [22,28,36,37,45,49,51,54,57,61,72–74,76,78,81,85,89,92,95,97], which increased with un-
gulates [97], particularly deer [36,37,45,49,51,74,76,78,81,97], cattle [51,92,95], horse [92,95]
or wild boar [49] abundance. Different host species were analyzed in relation with tick
abundance, like rodents [49,54,73,97], hares [45,97], shrews [97], birds [97] or foxes [97],
of which, roe deer was the most frequently analyzed species [36,37,45,49,51,74,76,81]. No
relationships were observed between ticks and moose [45] and mouflon [89] abundance.
Landscape connectivity, which is the likelihood that an animal will travel a particular
distance through a certain habitat, showed a positive relationship with tick abundance [22].

Human population [38,39,41,45,80,95] and infection [31,36–38,81,84] were assessed in
relation to tick abundance [31,36–39,41,45,81,84,95] and tick bites [80]. Human demographic
growth, together with sustainable greenhouse gas emissions, were related to increased tick
abundance in northern and eastern Europe [41].

Both medium–low- and high-emission scenarios [98] and future climate change
projections [41] were positive predictors for current and future I. ricinus densities in
Scandinavia [98] and Europe [41].

Figure 3 shows the significant effects of the analyzed environmental variables on LD
vector abundance and density.
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yellow (right). The factors significantly related to vector abundance and density in each country are
shown inside the country’s shape. The distribution of environmental variables inside each country’s
shape is arbitrary. Countries with no data are shown in gray.

3.3. Lyme Disease in Human Hosts

Sixteen studies addressed the impact of environmental variables on human LD cases
(Supplementary Materials: Table S4). Two studies focused on specific forms of LD infection,
i.e., human neuroborreliosis [99] and erythema migrans (EM), a pathognomonic skin rash
that appears following infection in up to 80% of cases [96]. The impact of temperature on hu-
man neuroborreliosis [99], EM [96] and LD incidence [24,31,32,69,70] was assessed in seven
studies. Mean [31,69,70,96,99] and minimum [31] monthly [31,96,99] and weekly [69,70]
air [31,69,70,96,99] and soil [31] temperatures were positive predictors for human LD cases.
Higher numbers of winter days with an average temperature below 0 ◦C in Sweden were
related to lower numbers of reported EM cases in the study region [96]. Growing degree
days, an indicator of heat accumulation, was also positively related to increased human LD
incidence [24]. Only one study showed no relationship between temperature and human
LD incidence [32].

Four studies focused on precipitation and human LD incidence. Mean monthly precip-
itation was positively associated with increases in neuroborreliosis cases [99]. A reduced
number of frost days was also positively related to increased human LD incidence because
of its critical effect on small mammals, the main hosts for questing larvae and nymphs. This
is because of higher host mortality during harsh winters. Ticks are therefore unable to find
suitable hosts to survive, which then reflects on lower human LD incidence [31]. However,
two other studies found no relationship between precipitation and human LD cases [32,96].

Humidity was assessed in relation to human LD [27,31], neuroborreliosis [99] and
EM incident cases [96]. Both the annual cumulative Normalized Difference Water Index
(NDWI) [27] and the number of summer days with relative humidity above 86% [96]
correlated positively with the number of human cases. In contrast, neither mean monthly
relative humidity [96,99] nor soil humidity at the end of winter [31] showed any relation to
the number of human cases.

Altitude was a positive predictor for human LD cases [46,90], i.e., human LD cases
were also registered at higher altitudes.

Regarding NAO (North Atlantic Oscillation), a cyclical meteorological phenomenon,
and human LD incidence, one study showed no relationship [32]. Another study found a
negative correlation between NAO index and the number of human cases and was used to
accurately predict human cases in Europe [35].

Land use and land cover were assessed in seven studies in relation to human
LD [21,26,75,90] and EM incidence [46] and LD seroprevalence [23,83]. Distances to for-
est [21,23,46,75,83,90], woodland [26,83,90], grassland [26,90], crops and pastures [23,90], ur-
ban land [21,90], wetlands [23], moors [26], heathlands [26], meadows [90] and shrubs [90]
were used to model the occurrence of human LD cases. The proximity to forests, espe-
cially deciduous forests [83], was a positive predictor for LD incidence and prevalence
in Belgium [21,23], Italy [75] and Poland [83]. Other factors associated with a higher in-
cidence of human LD cases were distance to semi-natural habitats [23,75], meadows [75]
and the distance to small woodlands [90]. However, incidence rates decreased with forest
patch density in France [46], and seroprevalence was lower in arable land and grasslands
compared to forests and wetlands in Belgium [23].

Three studies analyzed human LD incidence in relation to vegetation. One study
found no relationship between the mean monthly NDVI and increases in human LD
cases in Slovenia [90], whereas it was a positive predictor for human LD incidence in
Belgium [24,26].

Five studies analyzed animal host abundance in relation to LD incidence [21,35,85,90] and
prevalence [23] in humans. The presence and abundance of deer [21,23], rodents [35,85,90],
birds [90], ungulates [90], carnivores [90], rabbits [90] and wild boars [23] were assessed in
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Belgium [21,23], Slovenia [90], the Czech Republic [35] and Poland [85]. Roe deer [21] and
common vole [35] abundances were related to increased human LD cases in Belgium [21]
and the Czech Republic [35].

Human population density [21,26,70,90] and exposure to ticks [21,70,83] were assessed
in relation to human LD incidence [21,26,70,90] and prevalence [83] in Belgium [21,26],
Slovenia [90], Hungary [70] and Poland [83]. The proportion of people living in spatially
dispersed houses and those with higher incomes in periurban areas, as well as high
population densities in Belgium [21] and high human outdoor activity in Hungary [70],
were positive predictors for human LD incidence.

Climate change predictions, i.e., warmer temperatures, higher CO2 emissions and
changes in rainfall patterns, among others, showed a positive relationship with human LD
incidence in Slovenia as a result of the vector niche shifting to new habitats [90].

Figure 4 shows the significant effects of the analyzed environmental variables on
human LD incidence.
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3.4. Lyme Disease in Animal Hosts

Only one study analyzed animal hosts’ infections in relation to land use. The presence
of pastures and natural grasslands in Romania was a positive predictor for Borrelia spp.
infection in wild boars, roe deer and cattle. Most infections were due to B. afzelii, B. burgdor-
feri sensu stricto and B. garinii, although B. valaisiana, B. spielmanii and B. bavariensis were
also detected [59].
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3.5. Lyme Disease Risk and Expansion

Eight studies analyzed and predicted an expansion of LD to other regions both within
countries and cross-border because of the influence of environmental variables [26,41,43,
44,58,72,90,98], of which, one study modeled the ecological risk of LD in Europe focusing
on the whole transmission cycle under future climate change scenarios. It considered
species distribution mapping for animal hosts, i.e., deer, rodents and birds, as well as ticks
and human LD risk [43]. Human LD cases will expand to western regions of Slovenia,
especially those of lower altitude and rich in wood forests under future climate change sce-
narios [90], and to southern and northeastern Belgium under the influence of an enhanced
NDVI [26]. LD vectors are expected to expand to northern regions of Italy, especially the
Piedmont [72], and to northwestern Germany [58] and large regions in Scandinavia as far
as 70◦ N [41,43,44,98]. This expansion will be exacerbated by the presence of coniferous
and deciduous forests [72] and black alder trees [98], as well as increases in mean temper-
atures [41,44,58] and future climate change scenarios [41,43]. According to two studies,
by 2030, vectors will have expanded to Nordic countries and central Europe because of
increases in temperature and NDVI and future climate change scenarios. However, some
models predict that by 2050, LD transmission may be disrupted in some areas of southern
Europe because of decreased suitability and no niche overlap between ticks and hosts, due
to future predictions of climate change and the transformation of forests into crops [43,44].

4. Discussion

Our results show that some studies focused on different Borrelia and Ixodes species,
with the most frequently analyzed being Borrelia burgdorferi [21–32,35,37,43,45,46,49–51,
53,56,59,69–72,74–76,79,83,90,92,96,99] and Ixodes ricinus [15,22,25,29–31,33,34,36–42,44,45,
47–52,54–59,61–68,71–74,76–79,81,82,84–89,91–95,97,98,100]. However, new vectors like
Dermacentor reticulatus, Hyalomma lusitanicum, Hyalomma marginatum, Ixodes persulcatus
and Rhipicephalus sanguineus have been identified throughout Europe in the last year [11].
Unfortunately, the number of studies analyzing the impact of environment on these other
tick species is still reduced.

We observed that different environmental factors, such as temperature, rainfall and
different patterns of land use, influence the epidemiology of LD in several countries in
the EU/EEA [21,23,25,26,28–30,32,34,43–46,49,50,53,56,60,67–72,74–76,79,80,82,83,85,88,92,
96–99]. Although these changes affect different elements of the LD zoonotic cycle, most stud-
ies focused on the abundance [15,22,25,28–31,33,34,37–42,44,45,48,49,51–56,58–61,63–66,68,71–
74,76–81,84–88,91–95,98,100] and density [36,47,50,57,62,67,82,89,97] of vectors or the inci-
dence on human hosts [21,23,24,26,27,31,32,35,46,69,70,75,83,90,96,99]. To our knowledge,
this is the first comprehensive assessment of the impact of these factors on LD expansion in
the EU/EEA.

Most of the included papers were published during the second half of the study’s
timeframe (2012–2022). This may be due to rising awareness and interest in LD, since the
diagnosis of human cases is increasing in the EU/EEA [9,12].

Most studies were carried out in Germany [55–68,79], France [15,46–56] and Bel-
gium [21–28,42,55,56], whereas no or few studies were performed in certain countries
where cases of LD or increased presence have been reported, like Baltic countries and
Austria [101,102]. Reasons for this may be the differences in reporting and conducting LD
surveillance across European countries, the lack and difficulty of diagnosis of LD among
clinicians and universal diagnostic guidelines, the usually nonspecific presentation of clini-
cal cases and relatively low awareness among the general population [9,103]. Additionally,
only four studies focused on the whole European continent [41–44]. Therefore, a more
comprehensive and cross-border approach is needed to provide the whole picture. While
it is interesting to know how LD can spread locally in certain areas or countries, how the
disease is expanding throughout the continent also urgently needs to be identified.

We observed contradictory results for some meteorological variables [15,34,37,42,44,45,
48,52,58,60,61,63–65,81,84–86,88,92,95,97]. This might have been a result of different climate
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zones in Europe, different vegetation cover and different suitability for ticks: southern
Europe is characterized by a subtropical climate, where increasing temperatures may even
be a limiting factor for suitable tick habitats, whereas higher precipitation may favor tick
establishment. However, most parts of Scandinavia present a cold climate, whereas the
climate in central Europe is temperate maritime in the west and temperate transitional
in the east [104]. Not only the environment, such as certain flora and vegetation cover
found in northern latitudes [105], but also fauna, such as Cervus elaphus and Capreolus
capreolus, which are widely present in central and northern Europe and act as hosts for adult
ticks, play a major role in LD epidemiology [106]. In addition, some studies analyzed the
meteorological or environmental variations within a season, while others focused on several
years and analyzed the interannual variations and provided climate change projections.
These different methodological approaches may explain some of the observed differences.

Those studies that considered human LD cases mainly focused on LD incidence [21,24,
26,27,31,32,35,46,69,70,75,90,96,99], and only two studies analyzed the seroprevalence of LD
antibodies in humans [23,83]. This might have been due to the lack of prevalence studies in
endemic regions, difficulties in diagnosing LD, the development of new diagnostic methods
and the lack of standardized diagnostic protocols and the lack of routine screening for
LD antibodies [107,108]. Higher temperature [31,69,70,96,99] and less precipitation [31,99]
were associated with an increase in human LD cases. This might be due to human outdoor
activity and, thus, exposure to infected ticks, being higher on warm and sunny, non-rainy
days, as people might go to the countryside or parks or perform outdoor activities [109]. In
addition, the number of questing ticks is higher during summer [110]. Given that extremely
high temperatures and droughts were registered during the summer of 2023 in southern
and southwestern Europe [111], this may influence future LD epidemiology, leading to
higher human LD incidence. In the case of human exposure to LD vectors, additional
factors, i.e., animal host abundance or human social behavior, may be important, since
the degree of human activity in nature varies and may be affected by the environment.
Therefore, both the environment and human behavior have important effects on the whole
zoonotic cycle [112].

Most studies focused on tick abundance [15,22,25,28–31,33,34,37–42,44,45,48,49,51–
56,58–61,63–66,68,71–74,76–81,84–88,91–95,98,100] and density [36,47,50,57,62,67,82,89,97]
and incidence in human hosts [21,23,24,26,27,31,32,35,46,69,70,75,83,90,96,99], whereas only
one study included animal hosts [59]. However, wild animals, i.e., ungulates like deer, are
the main hosts of LD, and the spread of the disease and the maintenance of the zoonotic
cycle relies completely on them. Some animals nurture ticks and, thus, contribute to the
establishment of higher tick populations [113,114], e.g., hundreds of ticks can feed on a
single ungulate individual [113]. In addition, some birds and small rodents retain Borrelia
spp. spirochetes and act as reservoirs for LD [114]. Consequently, changes in the abundance
of these vertebrates may have important impacts on the abundance of ticks. This is the
case for red deer, where increases in their population may drive important increases in
Ixodes populations [115]. Therefore, it is necessary to adopt a One Health approach and
perform studies that consider all parts of this zoonotic cycle, considering changes in the
abundance of hosts but also how environmental conditions affect LD prevalence in their
main vertebrate hosts. However, this was only performed in one study [43]. One of the
components of this One Health approach is humans themselves, because human behavior
when approaching nature or when working in natural environments may have important
consequences for exposure to ticks, tick bites and LD [116], and some of these behaviors
may be affected by the environment in general and climate in particular. Furthermore, social
aspects that influence contact rates between ticks and humans are another important aspect.

The most frequent limitations identified by the studies’ authors were the lack of the
analysis of other variables that may influence LD dynamics (n = 44) and concerns about the
study and/or model accuracy (n = 11). This might compromise the results of the papers
and highlights the importance of developing comprehensive and holistic models when
analyzing other variables.
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5. Limitations

Our study has some shortcomings. We performed a search that was bound to certain
inclusion criteria. Other relevant articles might therefore have not been included. However,
all included articles were published in English, which is why we believe that most relevant
articles were included. We followed the PRISMA guidelines for systematic reviews to limit
selection bias. In addition, we observed different methodological qualities in the included
studies. Therefore, we used a specific tool to evaluate the studies’ quality, which on average
scored very high.

6. Conclusions

LD is expanding across Europe. The epidemiology of LD is related to the presence
of vectors, which is related to climate and other environmental factors that are changing
globally due to ongoing climate change. The environmental factors that most frequently
correlated to changes in LD dynamics were temperature, precipitation, humidity and the
incursion of human beings into different natural land habitats. Most studies found a
positive relationship, although agricultural habitats were associated with decreased human
LD incidence. Unfortunately, the complete zoonotic cycle was not systematically analyzed
in most papers. Thus, it is difficult to determine the independent impact of environment
on the different components of the transmission cycle. It is important to adopt a One
Health approach to understand LD epidemiology and to strengthen the surveillance of this
emerging disease and its vector. While temperature is increasing worldwide, the impacts of
climate change on precipitation present important geographical variations according to the
latest Intergovernmental Panel on Climate Change (IPCC) report [117], and consequently,
the global impact of climate change on tick populations and LD epidemiology may present
important variations within Europe.
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71. Hornok, S.; Mulvihill, M.; Szőke, K.; Gönczi, E.; Sulyok, K.M.; Gyuranecz, M.; Hofmann-Lehmann, R. Impact of a Freeway on the
Dispersal of Ticks and Ixodes ricinus-Borne Pathogens: Forested Resting Areas May Become Lyme Disease Hotspots. Acta Vet.
Hung. 2017, 65, 242–252. [CrossRef] [PubMed]

72. Garcia-Vozmediano, A.; Krawczyk, A.I.; Sprong, H.; Rossi, L.; Ramassa, E.; Tomassone, L. Ticks Climb the Mountains: Ixodid
Tick Infestation and Infection by Tick-Borne Pathogens in the Western Alps. Ticks Tick-Borne Dis. 2020, 11, 101489. [CrossRef]
[PubMed]

73. Rosà, R.; Pugliese, A.; Ghosh, M.; Perkins, S.E.; Rizzoli, A. Temporal Variation of Ixodes ricinus Intensity on the Rodent Host
Apodemus flavicollis in Relation to Local Climate and Host Dynamics. Vector-Borne Zoonotic Dis. 2007, 7, 285–295. [CrossRef]
[PubMed]

74. Rizzoli, A.; Merler, S.; Furlanello, C.; Genchi, C. Geographical Information Systems and Bootstrap Aggregation (Bagging) of
Tree-Based Classifiers for Lyme Disease Risk Prediction in Trentino, Italian Alps. J. Med. Entomol. 2002, 39, 485–492. [CrossRef]
[PubMed]

75. Zanzani, S.A.; Rimoldi, S.G.; Manfredi, M.; Grande, R.; Gazzonis, A.L.; Merli, S.; Olivieri, E.; Giacomet, V.; Antinori, S.; Cislaghi,
G.; et al. Lyme Borreliosis Incidence in Lombardy, Italy (2000–2015): Spatiotemporal Analysis and Environmental Risk Factors.
Ticks Tick-Borne Dis. 2019, 10, 101257. [CrossRef] [PubMed]

76. Altobelli, A.; Boemo, B.; Mignozzi, K.; Bandi, M.; Floris, R.; Menardi, G.; Cinco, M. Spatial Lyme Borreliosis Risk Assessment in
North-Eastern Italy. Int. J. Med. Microbiol. 2008, 298, 125–128. [CrossRef]

https://doi.org/10.3389/fevo.2022.891908
https://doi.org/10.1186/s13071-016-1296-9
https://www.ncbi.nlm.nih.gov/pubmed/26767788
https://doi.org/10.1186/s12898-017-0141-0
https://doi.org/10.1186/s13071-017-2590-x
https://doi.org/10.1007/s10493-018-0267-6
https://doi.org/10.1371/journal.pone.0267196
https://doi.org/10.3390/microorganisms9061266
https://www.ncbi.nlm.nih.gov/pubmed/34200876
https://doi.org/10.1016/j.ttbdis.2018.10.003
https://www.ncbi.nlm.nih.gov/pubmed/30385074
https://doi.org/10.1007/s10493-017-0197-8
https://www.ncbi.nlm.nih.gov/pubmed/29181672
https://doi.org/10.1186/s12942-015-0015-7
https://www.ncbi.nlm.nih.gov/pubmed/26272596
https://doi.org/10.1016/j.ijheh.2007.12.001
https://doi.org/10.1007/s00484-017-1362-9
https://www.ncbi.nlm.nih.gov/pubmed/28462449
https://doi.org/10.1111/j.1948-7134.2014.12070.x
https://www.ncbi.nlm.nih.gov/pubmed/24820556
https://doi.org/10.1007/s00436-020-06666-8
https://www.ncbi.nlm.nih.gov/pubmed/32219549
https://doi.org/10.1371/journal.pone.0055365
https://doi.org/10.1016/j.ttbdis.2020.101464
https://www.ncbi.nlm.nih.gov/pubmed/23772569
https://doi.org/10.1080/09603123.2013.807329
https://doi.org/10.1556/004.2017.024
https://www.ncbi.nlm.nih.gov/pubmed/28605964
https://doi.org/10.1016/j.ttbdis.2020.101489
https://www.ncbi.nlm.nih.gov/pubmed/32723635
https://doi.org/10.1089/vbz.2006.0607
https://www.ncbi.nlm.nih.gov/pubmed/17760511
https://doi.org/10.1603/0022-2585-39.3.485
https://www.ncbi.nlm.nih.gov/pubmed/12061445
https://doi.org/10.1016/j.ttbdis.2019.07.001
https://www.ncbi.nlm.nih.gov/pubmed/31285164
https://doi.org/10.1016/j.ijmm.2008.05.005


Trop. Med. Infect. Dis. 2024, 9, 113 21 of 22

77. Bisanzio, D.; Amore, G.; Ragagli, C.; Tomassone, L.; Bertolotti, L.; Mannelli, A. Temporal Variations in the Usefulness of
Normalized Difference Vegetation Index as a Predictor for Ixodes ricinus (Acari: Ixodidae) in a Borrelia lusitaniae Focus in Tuscany,
Central Italy. J. Med. Entomol. 2008, 45, 547–555. [CrossRef]

78. Tagliapietra, V.; Rosà, R.; Arnoldi, D.; Cagnacci, F.; Capelli, G.; Montarsi, F.; Hauffe, H.C.; Rizzoli, A. Saturation Deficit and Deer
Density Affect Questing Activity and Local Abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Vet. Parasitol. 2011, 183, 114–124.
[CrossRef]

79. Rosà, R.; Andreo, V.; Tagliapietra, V.; Baráková, I.; Arnoldi, D.; Hauffe, H.; Manica, M.; Rosso, F.; Blaňarová, L.; Bona, M.; et al.
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