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Abstract: Classification methods based on fine-tuning pre-trained language models often require a
large number of labeled samples; therefore, few-shot text classification has attracted considerable
attention. Prompt learning is an effective method for addressing few-shot text classification tasks
in low-resource settings. The essence of prompt tuning is to insert tokens into the input, thereby
converting a text classification task into a masked language modeling problem. However, constructing
appropriate prompt templates and verbalizers remains challenging, as manual prompts often require
expert knowledge, while auto-constructing prompts is time-consuming. In addition, the extensive
knowledge contained in entities and relations should not be ignored. To address these issues, we
propose a structured knowledge prompt tuning (SKPT) method, which is a knowledge-enhanced
prompt tuning approach. Specifically, SKPT includes three components: prompt template, prompt
verbalizer, and training strategies. First, we insert virtual tokens into the prompt template based on
open triples to introduce external knowledge. Second, we use an improved knowledgeable verbalizer
to expand and filter the label words. Finally, we use structured knowledge constraints during the
training phase to optimize the model. Through extensive experiments on few-shot text classification
tasks with different settings, the effectiveness of our model has been demonstrated.

Keywords: text classification; prompt learning; knowledge enhancement; few-shot learning

1. Introduction

In recent years, pre-trained language models (PLMs) [1,2] have achieved state-of-the-
art results in many benchmarks in the field of natural language processing, such as question
answering [3] and text classification [4]. However, for specific downstream tasks, fine-
tuning PLMs is still necessary, which is time-consuming, and the generalization ability of the
model heavily depends on a large amount of annotated data and computational resources.
These problems lead to an important research task, few-shot learning, which can learn new
categories through several labeled samples and has good generalization ability. At present,
few-shot learning has been extended to a variety of natural language processing tasks,
including text classification [5], relation extraction [6], and so on. Furthermore, few-shot
text classification has important research significance due to its wide range of application
scenarios. The objective of few-shot text classification is to train a classifier when only a
few training samples are given for each category.

Since PLMs are trained on a large amount of general corpus, they contain abundant
knowledge and can be taught using few training samples [7]. However, the application
of the knowledge contained in the model to solve few-shot text classification requires
additional fine-tuning. In addition, due to the small number of labeled training samples
provided by the few-shot text classification task, it is hard to achieve a good fitting effect,
and the model has poor generalization performance [7]. Therefore, prompt learning has
become an effective new approach for addressing few-shot learning tasks. From the time
that GPT-3 [7] was introduced, prompt learning has worked to bridge the gap between
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PLMs and various downstream tasks, since it converts downstream tasks into pre-training
tasks for PLMs. Prompt learning is more effective in low-resource settings because there
are not enough training samples to specify the behavior of the model; therefore, using
text prompts to push the model in the correct direction is particularly effective. One of
the typical ways to use prompt learning is to formalize the text classification task into a
masked language modeling problem, which can better activate the ability of the masked
language model. Additionally, because most of the prompt learning methods usually keep
the parameters of a PLM fixed, they require fewer training parameters, leading to reduced
training costs.

Although traditional prompt learning methods have addressed the shortcomings of
fine-tuning PLMs, there are still other issues: on one hand, it is still hard to construct
appropriate prompt templates, because manual prompt templates often require expert
knowledge [8], while auto-constructing prompt templates often requires significant compu-
tation cost [9]. On the other hand, the input text includes semantic knowledge as well as
structured knowledge, which is overlooked by existing prompt learning methods.

To address these issues, we propose SKPT for few-shot text classification. Specifi-
cally, SKPT includes three components: prompt template construction, prompt verbalizer
construction, and training strategies. First, we extract open entities and relations through
open information extraction (OpenIE) [10]. Based on the semantic information and the
location of open triples, we propose a structured knowledge template and initialize it.
Second, we use an improved knowledgeable verbalizer to expand and filter the label words.
Finally, we use structured knowledge constraints during the training phase to optimize
the embedding. We conduct experiments on two topic text classification datasets, AG
News [11] and DBpedia [12]. The results demonstrate the effectiveness of SKPT, and we
show the effectiveness of each component through an ablation study.

The main contributions of this paper are as follows:

• We propose a knowledge-enhanced prompt learning method SKPT for few-shot text
classification. Based on open triples, we insert learnable virtual tokens into the prompt
template to introduce external knowledge.

• We use an improved knowledgeable verbalizer, which utilizes external knowledge
bases to expand each class label into a set of label words. We filter the out-of-vocabulary
words for the PLM and assign learnable weights to different label words for training.

• We apply structured knowledge constraints during the training phase through the
specific loss function.

• We perform experiments on two text classification benchmark datasets to illustrate the
effectiveness of SKPT, especially in low-resource settings.

2. Related Works

Our research goal is to enhance prompt learning with the knowledge to address the
few-shot text classification problem. Therefore, we focus on the existing research on both
prompt learning methods and knowledge-enhanced methods.

2.1. Prompt-Tuning

Many large-scale pre-trained models have been open-sourced in the current research
domain, but fine-tuning is still required to adapt PLMs to target downstream tasks. How-
ever, there are still some issues in fine-tuning. On one hand, fine-tuning usually requires
additional network structures for different downstream tasks; for example, we need to
add a classifier for text classification tasks. Therefore, fine-tuning has weak generalization
ability for different tasks. On the other hand, the amount of parameters that are required to
be trained during the fine-tuning process is still considerable.

Since the introduction of GPT-3 [7], prompt-based learning has attracted significant
attention and has achieved remarkable performance in a variety of natural language
processing tasks. By using prompt information, we can formalize a downstream task into
a pre-training task of a pre-trained model. Since then, numerous effective approaches
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have been developed for prompt learning [13,14]. Schick et al. [15] first propose a prompt
tuning method based on the manual prompt template, which obtains excellent results on
few-shot classification tasks. Prompt learning methods can be categorized into two types:
cloze prompts [16], which insert a slot in the middle of the input text separately; and prefix
prompts [17,18], where the prompt template token comes before the input text. Due to the
significant time and experience required for manually designing templates, and the fact
that even experienced prompt designers are unable to manually discover the best prompt
information [19], some work has begun to explore automatic search protocols for prompt
templates and verbalizers.

Shin et al. [9] propose a gradient-guided search to automatically generate templates
and label words. Gao Tianyu et al. [20] propose a prompt-based method with automatically
searched prompts, which can also select task demonstrations in the context of the input.
However, the quality of prompts from an automatic search in a discrete space is often not
the best, and automatic search requires a large amount of computing resources.

Recently, some external knowledge-enhanced prompt learning methods have also
been proposed. Liu et at. [21] use external knowledge to design knowledge-enhanced
prompts. KP4SR [22] is proposed to use structured knowledge to generate prompts for
sequential recommendation tasks. Hu et al. [23] propose a knowledge-enhanced prompt
method named KPT, which expands label words through external knowledge bases. Since
the key to prompt learning is to design an appropriate prompt template and prompt
verbalizer based on the verbalizer of KPT, we propose a new knowledge-enhanced prompt
learning method for few-shot text classification. We integrate knowledge into the prompt
template as well as the prompt verbalizer to optimize prompt learning.

2.2. Knowledge-Enhanced Methods

The foundation for incorporating knowledge into other PLMs or prompt-based meth-
ods is knowledge representation. Knowledge graph embedding serves as a technological
application of knowledge representation. Knowledge graph embedding is originally in-
troduced to solve the knowledge graph completion problem. It projects the entities and
relations of the knowledge graph to a vector space, thereby preserving the structured
information in the knowledge graph. Knowledge graph embedding methods can be mainly
divided into two categories: distance-based models such as TransE [24], and semantic
matching models such as RESCAL [25] and DistMult [26]. Among them, distance-based
models mainly include translation models and rotation models. The representatives of
translation models are TransE, TransH [27], and TransR [28], and they consider the relation
in a triple as a translation from the head entity to the tail entity. Rotation models consider
the relation in a triple as a rotation from the head entity to the tail entity, such as RotatE [29]
and QuatE [30]. Semantic matching models obtain the semantic similarity by using the
bilinear product [25] or neural network [31]. In our model, we optimize the embedding
representation based on the idea of translation models.

Although the research methods for knowledge-enhanced prompt learning are not
numerous, there is a considerable amount of research on knowledge-enhanced pre-trained
language models [32–34]. The simplest knowledge injection method is just combining entity
embedding with the word embedding of pre-trained models [35], but the problem with this
method is that embedding obtained from multiple sources cannot be aligned. Meanwhile,
in the process of introducing knowledge, there is a risk of also introducing noise. To solve
this problem, CoLAKE [36] treats words in the text as nodes in a fully connected graph,
identifies entities in them, and links triple knowledge, achieving a 5.6% improvement over
BERT in entity classification tasks. K-BERT [37] introduces a method that combines external
knowledge with pre-trained models, utilizing sentence trees and a visibility matrix to avoid
knowledge noise. Knowledge-enhanced pre-trained language models are of great importance
for the development of knowledge-enhanced prompt learning methods, because although
knowledge-enhanced pre-trained language models incorporate knowledge during the pre-
training phase, and knowledge-enhanced prompt learning methods introduce knowledge
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during the prompt tuning phase, the core idea behind both approaches is to enhance the
power of pre-trained models with external knowledge for downstream tasks.

3. Methods

The model presented in this paper, named SKPT, consists of three main components:
knowledge-enhanced prompt template, knowledge-enhanced verbalizer, and training
strategies. The model is illustrated in Figure 1. First, we extract open entities and relations
from text data through open information extraction (OpenIE) [10] and propose a structured
knowledge prompt template based on these triples, which initializes the template embed-
ding by introducing prior knowledge. Second, we use the improved knowledgable prompt
tuning verbalizer to expand class labels into a set of label words with different levels and
perspectives and then filter them. On one hand, we filter the out-of-vocabulary (OOV)
words for the PLM. On the other hand, we assign learnable weights to different label words
for training. Finally, we design a loss function under structured knowledge constraints
based on the classic translation model TransE and refine the model parameters through the
incorporation of context.

Figure 1. The illustration of SKPT.

3.1. Knowledge-Enhanced Prompt Template

Prompt learning mainly consists of two components, prompt template and prompt
verbalizer. The design of prompt templates is crucial for leveraging the model’s abilities
and has a significant impact on the accuracy of the model. Therefore, the key to improving
task performance is to construct prompt templates for specific tasks and use knowledge
prompts to guide PLMs.

There are many forms of prompt templates, such as prefix templates, cloze templates,
and so on. Different templates are suitable for different downstream tasks, for example,
prefix templates are usually more suitable for solving generative tasks. For few-shot text
classification tasks, we choose the cloze template as our prompt template. To solve the text
classification task, the prompt template formalizes this task as the pre-training task of the
masked language model by adding additional template tokens. x represents input data,
and the goal of our task is to classify x into a class label y ∈ Y . Taking a manual template
as an example, after being wrapped by the template, the template is as follows:
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xprompt = [CLS] x It was [MASK]. [SEP] (1)

where [CLS]and [SEP] are special tokens used to represent the beginning and separation of
sentences, respectively.

In this case, the task of text classification is transformed into a cloze task where the
[MASK] position needs to be completed. Following this, we use the PLM to encode xprompt
and obtain the probability distribution P([MASK]|xprompt), which describes the probability
of words in Y being able to replace the [MASK] token.

We propose a new prompt template, a structured knowledge prompt template, which
can inject external knowledge from open triples into the prompt template.

Therefore, we first extract entity and relation objects through relation extraction. We
use open information extraction methods to perform open relation extraction on the input
text, extracting structured knowledge from the data. Open information extraction is a
method to extract open triples from unstructured text. It can extract triples from text
without a predetermined word set, and the system consists of a series of relation extraction
models. Open triples consist of open entities and relations. Different from defined entities
and relations, open entities and relations do not have a unified standard but contain more
information. Figure 2 shows an example of triple extraction.

Figure 2. Example of triple extraction. On the top is an unstructured input text; at the bottom are
some example triples corresponding to the original text.

We input a sentence x, which includes n tokens, which is denoted as x = {v1, v2, v3, . . . , vn}.
After relation extraction, we obtain triples {vh, vt, vr}. Among them, vh represents the head
entity, vt represents the tail entity, and vr represents the relation. Both entities and relations
can be composed of multiple tokens, which are simplified by vh, vt, and vr. Through the
extraction process, we can obtain two types of useful information: the entities and relations
themselves, and the positions of entities and relations in the original input.

We introduce virtual template tokens based on the manual template to incorporate
external knowledge. In detail, we insert a token on one side of the located head entity
vh, tail entity vt, and relation vr as a part of our prompt template. For instance, when the
extracted triple is (“Barack Obama”, “gave”, “his speech”), we insert the virtual token
[entity] before the head entity “Barack Obama” and the tail entity “his speech”, as well
as the virtual token [relation] before the relation “gave”. The use of virtual tokens in the
prompt template allows for the introduction of prior knowledge as well as enables the
incorporation of structured information between relations and entities during the training
process. This is illustrated in Figure 3.

The template tokens we inserted are virtual and need to be initialized first. The process
of embedding initialization is the process of introducing prior knowledge. The task is text
classification, and open triples, to some extent, contain the main information of the input
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text. Therefore, triples also contain the category information of the entire sentence, to
a certain extent. For example, in the sentence “Swimming is a very effective exercise.”,
after performing open information extraction, we know the head entity is “swimming”,
the tail entity is “exercise” and the relation is “is”. Both the head and tail entity point to the
class “sports”.

Figure 3. The illustration of structured knowledge prompt template.

For entities, we only need to consider whether their categories are included in the
class labels set Y . The distributions of vh and vt over Y are denoted as ϕh and ϕt, and they
are computed based on normalized statistical data. In detail, we encode the texts of entity
vh and all the category texts with RoBERTa, then we compute the cosine similarity for vh
across all categories and normalize these similarities to obtain ϕh. The calculation process
for ϕt is also the same. We use the pre-trained language model to encode the class labels set
Y , so we obtain the class labels embedding set PLM(Y). Therefore, we obtain the weighted
embedding eh and et of virtual tokens vh and vt, and they are initialized as follows:

eh = ϕh · PLM(Y) (2)

et = ϕt · PLM(Y) (3)

3.2. Knowledge-Enhanced Prompt Verbalizer

After processing with the prompt template, prompt learning maps the predicted label
words to the real classes through a verbalizer. Let M : V → Y be a mapping from the label
words V of PLM to the class labels.

In existing research, the prompt verbalizer often maps a label word to each category,
whereas it is more realistic for a category to have label words that represent multiple levels
and perspectives. We use the verbalizer of KPT [23], which is based on external knowledge
bases, to expand label words. Furthermore, we improve the verbalizer.

First, we need to construct a prompt verbalizer, which primarily involves leveraging
external knowledge bases to expand the existing class words. We use Related Words [38] as
our external knowledge base, which is a knowledge graph that integrates many resources,
including WordNet [39] and ConceptNet [40], and is denoted as G. We use the class label v
for each category as the source of search and select neighbor nodes of v in G, denoting the
set as NG(v). The correlation score of the neighbor node should be less than a threshold
θ; thus, we obtain the set of label words NG(v) ∪ {v} corresponding to each category.
Therefore, a category’s label is expanded into a set of label words that represent different
levels and perspectives.

The set of label words obtained by expanding through knowledge bases may not be
effective, and they may contain some noise. Therefore, it is necessary to filter the verbalizer.

First, there are some words that are out of vocabulary for the PLM in our expanded
set of label words V . Theoretically, out-of-vocabulary words, when processed by a PLM,
should result in a probability of 0. However, these words have real meanings; so, in order
to avoid ignoring the meaning of these OOV words, we assign probabilities to them. Let
an OOV word be denoted as vo, and let the set of words that are not out of vocabulary be
denoted as Vno. We can calculate its probability by taking the average probability of all other
words that are not OOV from the set Vno, that is, we can perform the following calculation:

PPLM([MASK] = vo|xprompt) =
1

|Vno| ∑
v∈Vno

PPLM([MASK] = v|xprompt) (4)
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Second, in few-shot learning, we can calculate the impact of each label word on the
prediction results. Furthermore, the crucial aspect of the verbalizer’s filtering algorithm
is to retain high-quality label words while removing low-quality ones. Consequently, we
provide each label word in label words set Vy with a wv, which is a learnable weight in the
training phase and is fixed in the testing phase. The predicted label ŷ is as follows:

ŷ = argmaxy∈Y
exp(h(y|xprompt))

∑y′ exp(h(y′|xprompt))
, (5)

where h(y|xprompt) is

h(y|xprompt) = ∑
v∈Vy

wvlogPPLM([MASK = v]|xprompt) (6)

3.3. Training Strategies

Pre-trained language models can be divided into various types based on the type of
pre-training task. Common examples include left-to-right language models, such as GPT [7],
masked language models, like BERT [1], and encoder–decoder language models, like T5 [2].
Different language models are suitable for different downstream tasks. For instance, left-
to-right language models, given their computational direction from left to right, are more
suitable for prediction tasks. Masked language models are more suited to our few-shot
text classification tasks, so RoBERTa [41] is chosen as the main pre-trained model in this
paper. After processing with the prompt template, the few-shot text classification task is
transformed into a cloze task of RoBERTa, allowing for the better utilization of PLM and
bridging the gap between the PLM and the downstream tasks.

Compared to normal prompt learning without knowledge injection, the SKPT template
incorporates triple information into the template. Our loss function consists of two parts: a
structured knowledge loss function denoted as LossSK and a cross-entropy loss function
for the entire prompt template denoted as LossMLM.

Loss = α1LossSK + α2LossMLM, (7)

where α1 and α2 are weight parameters, and the sum of them is 1.
The entities and relations in triples contain structured knowledge, which is not utilized

in normal prompt learning. In addition, after embedding initialization, the virtual template
tokens are not associated with contextual information. The principle of the translation
model TransE in the knowledge graph, that is, h + r ≈ t, states that the head entity vector
plus the relation vector is approximately equal to the tail entity vector in the vector space.
Therefore, we propose a new structured knowledge constraint loss function to associate the
virtual template token with its surrounding context.

LossSK = −logsigmoid(γ − ||vh + vr − vt||22)−
n

∑
i=1

1
n

logsigmoid(||v′
hi + v

′
ri − v

′
ti||

2
2 − γ), (8)

where γ represents the margin. The calculation process includes two types of training
samples, namely positive samples and negative samples. Positive samples are triples
obtained by open information extraction. We randomly shuffle the extracted entities and
relations to construct n negative samples, ensuring that the negative samples do not belong
to the set of original triples from the dataset.

There are two types of parameters in the model: parameters from the PLM and
parameters from prompt learning. We adopt a training strategy that freezes the parameters
of the PLM and optimizes only the parameters of the prompt.

4. Experiments

In this section, we conduct a series of experiments with different settings and provide
explanations for benchmark datasets and comparative models.
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4.1. Datasets

Our model is evaluated using two topic classification benchmark datasets, AG News [11]
and DBpedia [12]. AG News: AG News is a topic classification dataset about news, where
each sample contains a headline and content body. In this dataset, samples have to be
classified as World, Sports, Business, and Science. Each class contains 30,000 training
samples and 1900 testing samples. DBpedia: The DBpedia ontology dataset includes
fourteen non-overlapping categories selected from DBpedia 2014. Every class contains
40,000 training samples and 5000 testing samples.

We define labeled samples as training set Dtrain and unlabeled samples as testing set
Dtest. We randomly select data from the training set in the form of k-shot and n-ways to
construct the few-shot training dataset Dtrain. K-shot represents the number of samples in
each category; here, we set k as 5, 10, and 20 in our main experiments. N-ways represents
the number of categories in the dataset; for example, n is 14 for the DBpedia dataset, and for
the AG News dataset, n is 4. Meanwhile, the number of samples in the validation set Dval ,
and the training set remains the same. The testing set Dtest is the original testing set of the
benchmark dataset.

4.2. Experiment Settings

We use the Micro-F1 score as our test metric, so all experimental results are the F1
scores from the testing phase. For PLM, we utilize RoBERTalarge [41] for all experiments to
make a fair comparison. Further, we use OpenIE 6 [10] to extract the open triples.

We conduct 5 shot, 10 shot, and 20 shot experiments following KPT [23] to measure
the performance across these two datasets. To reduce the error caused by randomness,
every experiment uses a fixed seed set, and we take the average value as the final result.

During the training, we set the maximum epochs to 5, the batch size to 2, and the
maximum sequence length to 512. To improve the training process, we employ a learning
rate warm-up strategy. Specifically, we initialize the learning rate to 3 × 10−4 and set the
warm-up steps to 500.

4.3. Baselines

Fine-tuning: Fine-tuning is the further training of PLMs using a few sample training
data to adapt to new tasks or domains. The traditional fine-tuning method is to input the
embedding of [CLS] into the classification layer for classification.

Prompt-tuning: We choose the typical prompt learning method PET as an example of
prompt-tuning. The prompt template of PET [15] uses a manual template. Further, for its
verbalizer, there is only one label word corresponding to a category. In order to represent the
general prompt-tuning method, we do not include PET’s additional optimization method
in the experiment.

Knowledgeable Prompt-tuning (KPT) [23]: This is a typical method of knowledge-
enhanced prompt-tuning, which focuses on incorporating external knowledge into the
prompt verbalizer. Specifically, it utilizes external knowledge bases to introduce external
knowledge, expand the label words, and filter the prompt verbalizer. As our model extends
and improves some of its methods, we consider KPT as one of the baselines.

5. Results
5.1. Main Results

By comparing our model with the baseline methods through experiments, we demon-
strate the effectiveness of SKPT in the few-shot text classification task.

From Table 1, we find that SKPT outperforms fine-tuning, prompt-tuning, and KPT in
most of the experiments, especially in the 5 shot and 10 shot experiments, which proves the
effectiveness of our method.
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Table 1. Results of few-shot text classification.

Shot Method AG News DBpedia

5 shot

Fine-tuning 0.375 0.955
PET 0.864 0.965
KPT 0.865 0.968

SKPT 0.873 0.973

10 shot

Fine-tuning 0.770 0.944
PET 0.869 0.970
KPT 0.876 0.979

SKPT 0.881 0.980

20 shot

Fine-tuning 0.848 0.978
PET 0.869 0.973
KPT 0.869 0.979

SKPT 0.868 0.979

Full dataset Fine-tuning 0.944 0.991
SKPT 0.952 0.991

Specifically, our model shows an average improvement of up to 20.9% and 1.93%
compared with fine-tuning. In particular, in the AG News dataset, our method is 49.8%
superior to fine-tuning. But overall, the gap between SKPT and other methods decreases
with the increase in labeled training samples. For 20 shot, we believe that the training
samples are enough to optimize the model; so, this model requires little additional external
knowledge. Thus, we know that SKPT generalizes well in low-resource settings. For
DBpedia, we find that the advantage of SKPT is not obvious. On one hand, it is evident
from Table 1 that the DBpedia dataset has already reached a performance level above 0.9,
suggesting that there is limited scope for further improvement. On the other hand, DBpedia
can be utilized as a knowledge graph, so external knowledge from knowledge graphs could
lead to limited effectiveness.

For few-shot learning, the training data typically consists of a few or several dozen
examples. To assess the experimental performance of the task under standard training
resources, we conduct experiments with fine-tuning and KPT using the entire dataset.
From Table 1, we find that both models perform better with the full dataset, but the compu-
tational cost is too high in this experimental setting. Furthermore our model also achieves
comparable results to the baseline model fine-tuning under the standard training resources.

5.2. Ablation Study

To verify the effectiveness of each component in SKPT, we conduct ablation experi-
ments on the AG News dataset. Considering that in comparative experiments, knowledge
injection is more effective under low-resource settings, we believe that 20 training sam-
ples are sufficient to provide the textual information for training. So, we only conduct
experiments separately under the 5 shot and 10 shot settings. We propose three additional
model structures.

To validate the effectiveness of the structured knowledge template, we propose Model1,
which differs from SKPT in that it uses a simple manual template. Meanwhile, since there
are no triples, LossSK is not added during the training process, so the model just uses the
cross-entropy loss in the training process.

To validate the effectiveness of the knowledge-enhanced verbalizer, we propose
Model2. The difference between Model2 and SKPT is the verbalizer. For the verbalizer in
Model2, one category is only mapped to one label word.

To validate the effectiveness of the structured knowledge constraint, we propose
Model3. The only difference between Model3 and our model is that Model3 only uses
cross-entropy loss to optimize the model.

From Table 2, we know that the results of all these three models do not exceed our
model. Therefore, all components in our model are necessary. With the use of a normal
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prompt template, Model1 achieves less impressive results, suggesting the importance of
incorporating knowledge into the template. For most of the results, Model2 achieves
better performance among these three comparison models, suggesting that the knowledge
verbalizer may not have a significant effect on the datasets.

Table 2. Ablation study of SKPT on AG News.

Shot Method AG News DBpedia

5 shot

Model1 0.859 0.962
Model2 0.865 0.965
Model3 0.862 0.963
SKPT 0.873 0.973

10 shot

Model1 0.875 0.969
Model2 0.874 0.977
Model3 0.876 0.976
SKPT 0.881 0.980

6. Conclusions

In this paper, we present SKPT for few-shot text classification, which enhances knowl-
edge in three phases. First, we insert structured knowledge prompt template tokens into a
manual template based on open triples, and these virtual template tokens are initialized
by prior knowledge. Second, we use the improved knowledgeable verbalizer to expand
the label words based on external knowledge bases. Third, we use structured knowledge
constraints during the training phase. We find that SKPT achieves good results in the
few-shot text classification task. Our work achieved the highest F1 score compared with
baselines, especially in low-resource settings.

However, our research still has certain limitations. We introduce knowledge at three
stages: constructing the prompt template, constructing the prompt verbalizer, and training.
This leads to an intricate process. In the future, we will extract more effective features
from external knowledge graphs or knowledge bases to enhance the performance of PLMs
in few-shot text classification tasks. In our study, we explore the use of SKPT for text
classification, utilizing a masked language model, since the cloze pre-training task is more
appropriate for classification tasks. However, for other generative tasks, it is more suitable
to use decoder-based pre-trained models. SKPT can also inject structured knowledge into
decoder-based models by modifying the initial manual templates. We will explore SKPT to
enhance other models of different architectures.
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