
Citation: Alharthi, M.; Mahmood, A.

Enhanced Linear and Vision

Transformer-Based Architectures for

Time Series Forecasting. Big Data

Cogn. Comput. 2024, 8, 48. https://

doi.org/10.3390/bdcc8050048

Academic Editor: Carson K. Leung

Received: 5 April 2024

Revised: 2 May 2024

Accepted: 7 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Enhanced Linear and Vision Transformer-Based Architectures for
Time Series Forecasting
Musleh Alharthi * and Ausif Mahmood

Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA;
mahmood@bridgeport.edu
* Correspondence: muslehal@my.bridgeport.edu

Abstract: Time series forecasting has been a challenging area in the field of Artificial Intelligence.
Various approaches such as linear neural networks, recurrent linear neural networks, Convolutional
Neural Networks, and recently transformers have been attempted for the time series forecasting
domain. Although transformer-based architectures have been outstanding in the Natural Language
Processing domain, especially in autoregressive language modeling, the initial attempts to use
transformers in the time series arena have met mixed success. A recent important work indicating
simple linear networks outperform transformer-based designs. We investigate this paradox in detail
comparing the linear neural network- and transformer-based designs, providing insights into why
a certain approach may be better for a particular type of problem. We also improve upon the
recently proposed simple linear neural network-based architecture by using dual pipelines with
batch normalization and reversible instance normalization. Our enhanced architecture outperforms
all existing architectures for time series forecasting on a majority of the popular benchmarks.

Keywords: transformer; linear network; time series forecasting; state-space model

1. Introduction

The goal of time series forecasting is to predict future values based on patterns ob-
served in historical data. It has been an active area of research with applications in many
diverse fields such as weather, financial markets, electricity consumption, health care, and
market demand, among others. Over the last few decades, different approaches have been
developed for time series prediction involving classical statistics, mathematical regression,
machine learning, and deep learning-based models. Both univariate and multivariate
models have been developed for different application domains. The classical statistics-
and mathematics-based approaches include moving average filters, exponential smooth-
ing, Autoregressive Integrated Moving Average (ARIMA), SARIMA [1], and TBATs [2].
SARIMA improves upon ARIMA by also taking into account any seasonality patterns
and usually performs better in forecasting complex data containing cycles. TBATs further
refines SARIMA by including multiple seasonal periods.

With the advent of machine learning where the foundational concept is to develop
a model that learns from data, several approaches to time series forecasting have been
explored including Linear Regression, XGBoost, and random forests. Using random forests
or XGBoost for time series forecasting requires the data to be transformed into a supervised
learning problem using a sliding window approach. When the training data are relatively
small, the statistical approaches tend to yield better results; however, it has been shown that
for larger data, machine-learning approaches tend to outperform the classical mathematical
techniques of SARIMA and TBATs [2,3].

In the last decade, deep learning-based approaches [4] to time series forecasting have
drawn considerable research interest starting from designs based on Recurrent Neural
Networks (RNNs) [5,6]. A detailed study comparing the ARIMA-based architectures and

Big Data Cogn. Comput. 2024, 8, 48. https://doi.org/10.3390/bdcc8050048 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8050048
https://doi.org/10.3390/bdcc8050048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://doi.org/10.3390/bdcc8050048
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8050048?type=check_update&version=1

Big Data Cogn. Comput. 2024, 8, 48 2 of 14

RNNs [6] concluded that RNNs can model seasonality patterns directly if the data have
homogeneous seasonal patterns; otherwise, a deseasonalization step was recommended.
It was also concluded that (semi-) automatic RNN models are no silver bullets but can
be competitive in some situations. The work in [6] compared different RNN designs
and indicated that a Long Short-Term Memory (LSTM) cell with peephole connections
performed relatively better, the Elmann Recurrent Neural Network (ERNN) cell performed
the worst, and the performance of the Gated Recurrent Unit (GRU) was in between.

LSTM and Convolutional Neural Networks (CNNs) [7] have been combined to address
the long-term and short-term patterns arising in data. One notable design was proposed
in [8], termed by the authors as Long- and Short-term Time-series network (LSTNet). It uses
the CNN and RNN to extract short-term local dependency patterns among variables and
to discover long-term patterns for time series trends. Recently, the use of RNNs and CNNs
is being replaced by transformer-based architectures in many applications, such as Natural
Language Processing (NLP) and Computer Vision. Transformers [9], which use an attention
mechanism to determine the similarity in the input sequence, are one of the best models
for NLP applications, as demonstrated by the success of large language models such as
ChatGPT. Some time series forecasting implementations using transformers have achieved
good performance [10–13]; however, the transformer has some inherent challenges and
limitations with respect to time series forecasting in current implementations due to the
following reasons:

• Temporal dynamics vs. semantic correlations: Transformers excel in identifying seman-
tic correlations but struggle with the complex, non-linear temporal dynamics crucial
in time series forecasting [14,15]. To address this, an auto-correlation mechanism is
used in Autoformer [11];

• Order insensitivity: The self-attention mechanism in transformers treats inputs as an
unsequenced collection, which is problematic for time series prediction where order is
important. Even though, positional encodings used in transformers partially address
this but may not fully incorporate the temporal information. Some transformer-
based models try to solve this problem using enhancements in architecture, e.g.,
Autoformer [11] uses series decomposition blocks that enhance the system’s ability to
learn from intricate temporal patterns [11,13,15];

• Complexity trade-offs: The attention mechanism in transformers has high computa-
tional costs for long sequences due to its quadratic complexity O

(
L2), and modifica-

tions of sparse attention mechanisms, e.g., Informer [10], reduce this to O(L × log(L))
by using a ProbSparse technique. Some models reduce this complexity to O(L), e.g.,
FEDformer [12], which uses a Fourier-enhanced structure, and Pyraformer [16], which
incorporates a pyramidal attention module with inter-scale and intra-scale connections
to accomplish the linear complexity. These reductions in complexity come at the cost
of some information loss in the time series prediction;

• Noise susceptibility: transformers with many parameters are prone to overfitting
noise, a significant issue in volatile data like a financial time series where the actual
signal is often subtle [15];

• Long-term dependency challenge: Transformers, despite their theoretical potential, of-
ten find it challenging to handle very long sequences typical in time series forecasting,
largely due to training complexities and gradient dilution. For example, PatchTST [14]
used disassembling a time series into smaller segments and used it as patches to ad-
dress this issue. This may cause some segment fragmentation issues at the boundaries
of the patches in input data;

• Interpretation challenge: Transformers’ complex architecture, with layers of self-
attention and feed-forward networks, complicates understanding their decision-
making, a notable limitation in time series forecasting where rationale clarity is crucial.
An attempt has been made in LTS-Linear [15] to address this by using a simple linear
network instead of a complex architecture; however, this may be unable to exploit the
intricate multivariate relationships between data.

Big Data Cogn. Comput. 2024, 8, 48 3 of 14

In summary, different approaches for time series forecasting have been explored.
These include classical approaches based on mathematics and statistics, neural network
approaches (including linear networks, LSTMs and CNNs), and recently the transformer-
based approaches. Even though transformer-based models have claimed to outperform
previous approaches, the recent work in [15] questions the use of complex models including
transformers, and shows that a simple linear neural network yields better results than
transformer-based models. This seems counter-intuitive to not utilize the attention capabil-
ities of the transformer, which has revolutionized AI in text generation in large language
models. We investigate this paradox further to see if better models for time series can be
created by using either the linear network or transformer-based approaches. We review the
related work in the next section before elaborating on our enhanced models.

2. Related Work

Some of the recent works related to time series forecasting include models based on
simple linear networks, transformers, and state-space models. One of the important works
related to Long-Term Time Series Forecasting (LTSF), termed LTSF-Linear, was presented
in [15]. It uses the most fundamental Direct Multi-Step DMS [17] model through a temporal
linear layer. The core approach of LTSF-Linear involves predicting future time series data
by directly applying a weighted sum to historical data, as shown in Figure 1.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 3 of 15

• Interpretation challenge: Transformers’ complex architecture, with layers of self-at-
tention and feed-forward networks, complicates understanding their decision-mak-
ing, a notable limitation in time series forecasting where rationale clarity is crucial.
An attempt has been made in LTS-Linear [15] to address this by using a simple linear
network instead of a complex architecture; however, this may be unable to exploit
the intricate multivariate relationships between data.
In summary, different approaches for time series forecasting have been explored.

These include classical approaches based on mathematics and statistics, neural network
approaches (including linear networks, LSTMs and CNNs), and recently the transformer-
based approaches. Even though transformer-based models have claimed to outperform
previous approaches, the recent work in [15] questions the use of complex models includ-
ing transformers, and shows that a simple linear neural network yields better results than
transformer-based models. This seems counter-intuitive to not utilize the attention capa-
bilities of the transformer, which has revolutionized AI in text generation in large lan-
guage models. We investigate this paradox further to see if better models for time series
can be created by using either the linear network or transformer-based approaches. We
review the related work in the next section before elaborating on our enhanced models.

2. Related Work
Some of the recent works related to time series forecasting include models based on

simple linear networks, transformers, and state-space models. One of the important works
related to Long-Term Time Series Forecasting (LTSF), termed LTSF-Linear, was presented
in [15]. It uses the most fundamental Direct Multi-Step DMS [17] model through a tem-
poral linear layer. The core approach of LTSF-Linear involves predicting future time series
data by directly applying a weighted sum to historical data, as shown in Figure 1.

The output of LTSF-Linear is described as 𝑋෠௜ = 𝑊𝑋௜, where 𝑊 ∈ ℝ்×௅ is a temporal
linear layer and 𝑋௜ is the input for the 𝑖௧௛ variable. This model applies uniform weights
across various variables without considering spatial correlations between the variates. Be-
sides LTSF-Linear, a few variations termed NLinear and DLinear were also introduced in
[15]. NLinear processes the input sequence through a linear layer with normalization by
subtracting and re-adding the last sequence value before predicting. DLinear decomposes
raw data into trend and seasonal components using a moving average kernel, processes
each with a linear layer, and sums the outputs for the final prediction [15]. This concept
has been borrowed from the AutoFormer and FedFormer models [11,12].

Figure 1. Linear network predicting 𝑇 future time steps based on past 𝐿 time steps [15].

Figure 1. Linear network predicting T future time steps based on past L time steps [15].

The output of LTSF-Linear is described as X̂i = WXi, where W ∈ RT×L is a temporal
linear layer and Xi is the input for the ith variable. This model applies uniform weights
across various variables without considering spatial correlations between the variates.
Besides LTSF-Linear, a few variations termed NLinear and DLinear were also introduced
in [15]. NLinear processes the input sequence through a linear layer with normalization by
subtracting and re-adding the last sequence value before predicting. DLinear decomposes
raw data into trend and seasonal components using a moving average kernel, processes
each with a linear layer, and sums the outputs for the final prediction [15]. This concept
has been borrowed from the AutoFormer and FedFormer models [11,12].

Although some research indicates the success of the transformer-based models for
time series forecasting, e.g., [10–12,16], the LTSF-Linear work in [15] questions the use of
transformers due to the fact that the permutation-invariant self-attention mechanism may
result in temporal information loss. The work in [15] also presented better forecasting
results than the previous transformer-based approaches. However, important research
later presented in [14] proposed a transformer-based architecture called PatchTST, showing
better results than [15] in some cases. PatchTST segments the time series into subseries-level
patches and maintains channel independence between variates. Each channel contains
a single univariate time series that shares the same embedding and transformer weights
across all the series. Figure 2 depicts the architecture of PatchTST.

Big Data Cogn. Comput. 2024, 8, 48 4 of 14

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 4 of 15

Although some research indicates the success of the transformer-based models for
time series forecasting, e.g., [10–12,16], the LTSF-Linear work in [15] questions the use of
transformers due to the fact that the permutation-invariant self-attention mechanism may
result in temporal information loss. The work in [15] also presented better forecasting re-
sults than the previous transformer-based approaches. However, important research later
presented in [14] proposed a transformer-based architecture called PatchTST, showing
better results than [15] in some cases. PatchTST segments the time series into subseries-
level patches and maintains channel independence between variates. Each channel con-
tains a single univariate time series that shares the same embedding and transformer
weights across all the series. Figure 2 depicts the architecture of PatchTST.

Figure 2. Architecture of PatchTST [15].

In PatchTST, the ith series for L time steps is treated as a univariate 𝑥ଵ:௅௜ =(𝑥ଵ(௜), … , 𝑥௅(௜)). Each of these is fed independently to the transformer backbone after con-
verting to patches, which provides prediction results 𝑥ො = (𝑥ො௅ାଵ(௜) , … , 𝑥ො௅ା்(௜)) ∈ ℝଵ×் for T fu-
ture steps. For a patch length P and stride S, the patching process generates a sequence of
N patches 𝑥௣(௜) ∈ ℝ௉×ே, where 𝑁 = ቔ(௅ି௉)ௌ ቕ + 2. With the use of patches, the number of in-
put tokens can reduce to approximately 𝐿 𝑆⁄ .

Figure 2. Architecture of PatchTST [15].

In PatchTST, the ith series for L time steps is treated as a univariate xi
1:L = (x(i)1 , . . . , x(i)L).

Each of these is fed independently to the transformer backbone after converting to patches,
which provides prediction results x̂ = (x̂(i)L+1, . . . , x̂(i)L+T) ∈ R1×T for T future steps. For
a patch length P and stride S, the patching process generates a sequence of N patches
x(i)p ∈ RP×N , where N =

⌊
(L−P)

S

⌋
+ 2. With the use of patches, the number of input tokens

can reduce to approximately L/S.
Recently, state-space models (SSMs) have received considerable attention in the NLP

and Computer Vision domain [18,19]. For time series forecasting, it has been reported that
SSM representations cannot express autoregressive processes effectively. An important
recent work using SSM is presented in [20] (termed SpaceTimeSSM) that enhances the
traditional SSM model by employing a companion matrix, which enables SpaceTime’s SSM
layers to learn desirable autoregressive processes. The time series forecasting represents
the input series for p past samples as the following:

uk = ∅1uk−1 +∅2uk−2 +∅puk−p (1)

Big Data Cogn. Comput. 2024, 8, 48 5 of 14

Then the state-space formulation is given as follows:

xk+1 = Axk + Buk (2)

yk+1 = Cxk+1 + Duk (3)

yk+1 = uk+1 = C(Ax k + Buk) (4)

The SpaceTimeSSM composes the companion matrix A as a dxd square matrix:

A =



0 0 . . . 0 a0
1 0 . . . 0 a1
0 1 . . . 0 a2
...

. . .
...

...
0 1 . . . 0 ad−1


(5)

where a := [a0a1 · · · ad−1]
T = 0, B = [1 0 · · · 0]T , C =

[
∅1 · · ·∅p

]
.

We provide a comparison of different time series benchmarks on the SpaceTimeSSM
approach in the results Section 4.

3. Methodology
3.1. Proposed Models for Time Series Forecasting

As explained in the previous related works section, there are three competing ap-
proaches for time series forecasting: one based on simple linear networks, the second based
on transformers where the input series is converted to patches, and channel independence
is claimed to be a better scheme, and the third approach based on state-space models with
additional enhancements to incorporate autoregressive behavior. We investigated these
approaches further to see if better models for time series can be created in at least the first
two categories. In the next subsections, we elaborate our enhancements on existing linear-
and transformer-based approaches.

3.2. Enhanced Linear Models for Time Series Forecasting (ELM)

We enhanced the LTSF-Linear approach presented in [15] by performing batch nor-
malization and reversible instance normalization. We further combined the information
in a novel way using a dual pipeline design as shown in Figure 2. The recent important
works, e.g., LTSF-Linear [15], which is based on simple linear networks, and the PatchTST
work in [14], based on transformers’ emphasized channel independence, produce better
results. We maintain this attribute but further augment the linear architecture with batch
normalization. This stabilizes the distribution of input data by normalizing the activations
in each layer. It also allows for higher learning rates and reduces the need for strict ini-
tialization and some forms of regularization such as dropout. By addressing the internal
covariate shift, batch normalization improves network stability and performance across
various tasks.

While one of the enhancements in [15], termed NLinear, accommodated for distribu-
tion shift in the dataset—by subtracting the last value of the sequence and then adding it
back after the linear layer—before doing the final prediction, we incorporate a similar idea
in our architecture as a separate stream, as shown in Figure 3.

One difference in our implementation for the distribution shift is that we further add
batch normalization to combine temporal information more effectively. From Figure 3, it
can be seen that there are two distinct pipelines operating on the input sequence in the
beginning. These two streams are then merged together with the values being averaged,
and after passing through a non-linearity (GeLU) and another batch normalization layer, we
pass through a final Reversible Instance Normalization layer (RevIn). The RevIn originally
proposed in [21] operates on each channel of each variate independently. It applies a

Big Data Cogn. Comput. 2024, 8, 48 6 of 14

learnable transformation to normalize the data during training, such that it can be reversed
to its original scale during prediction.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 6 of 15

While one of the enhancements in [15], termed NLinear, accommodated for distribu-
tion shift in the dataset—by subtracting the last value of the sequence and then adding it
back after the linear layer—before doing the final prediction, we incorporate a similar idea
in our architecture as a separate stream, as shown in Figure 3.

Figure 3. Our Enhanced Linear Model (ELM).

One difference in our implementation for the distribution shift is that we further add
batch normalization to combine temporal information more effectively. From Figure 3, it
can be seen that there are two distinct pipelines operating on the input sequence in the
beginning. These two streams are then merged together with the values being averaged,
and after passing through a non-linearity (GeLU) and another batch normalization layer,
we pass through a final Reversible Instance Normalization layer (RevIn). The RevIn orig-
inally proposed in [21] operates on each channel of each variate independently. It applies
a learnable transformation to normalize the data during training, such that it can be re-
versed to its original scale during prediction.

We also use a custom loss function that combines the L2 (MSE) and L1 (MAE) losses
together in a weighted manner as described below. 𝐿𝑜𝑠𝑠 = 𝛼 × ‖𝑦 െ 𝑦ො‖ଶ + (1 െ 𝛼)‖𝑦 െ 𝑦ො‖ଵ (6)

where α is a weighting factor between 0 and 1. MSE (input, target) calculates the mean
squared error between the input and target values. L1 (input, target) calculates the mean
absolute difference between the input and target values. As demonstrated in our results

Figure 3. Our Enhanced Linear Model (ELM).

We also use a custom loss function that combines the L2 (MSE) and L1 (MAE) losses
together in a weighted manner as described below.

Loss = α × ∥y − ŷ∥2 + (1 − α)∥y − ŷ∥1 (6)

where α is a weighting factor between 0 and 1. MSE (input, target) calculates the mean
squared error between the input and target values. L1 (input, target) calculates the mean
absolute difference between the input and target values. As demonstrated in our results sec-
tion, our enhanced linear network-based architecture produces better results than existing
approaches in many cases on different benchmarks.

To investigate if a different transformer-based architecture may be more suitable for
time series forecasting, we adapt the popular Swin transformer [22], which has demon-
strated superior results in computer vision. Since the Swin transformer applies attention to
local regions, it may have the capability to extract better temporal information. Further, by
using shifting windows, it ensures that more tokens are involved in the attention process.
We elaborate on this in the next sub-section.

3.3. Adaptation of Vision Transformers to Time Series Forecasting

While one of the recent works on time series forecasting used simple transformer-
based architecture (PatchTST [14]) with channel independence, we explore a more intricate

Big Data Cogn. Comput. 2024, 8, 48 7 of 14

transformer architecture, i.e., the Swin transformer [22]. The Swin transformer presents
an innovative and streamlined structure for vision-related tasks through the utilization of
shifted windows to compute representations. This method tackles the scalability issues
inherent to transformers in vision applications by ensuring a linear computational complex-
ity that correlates with the size of the image. It has the additional advantage of overcoming
the information loss in the patching process by the use of hierarchical overlapping win-
dows. As a result, it has demonstrated superior results across various computer vision
applications. Due to these inherent advantages of the Swin architecture, we adapt it to the
time series forecasting domain. We treat the multivariate input series ∈ RL×d with L past
steps and d channels as an L × d image and convert it to an appropriate number of patches
that are then fed to the Swin model. Due to the use of overlapping, shifted, and hierarchical
windows, it has the potential for learning better cross-channel information in predicting
future time series data. The architecture of our Swin-based time series model is shown in
Figure 4.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 7 of 15

section, our enhanced linear network-based architecture produces better results than ex-
isting approaches in many cases on different benchmarks.

To investigate if a different transformer-based architecture may be more suitable for
time series forecasting, we adapt the popular Swin transformer [22], which has demon-
strated superior results in computer vision. Since the Swin transformer applies attention
to local regions, it may have the capability to extract better temporal information. Further,
by using shifting windows, it ensures that more tokens are involved in the attention pro-
cess. We elaborate on this in the next sub-section.

3.3. Adaptation of Vision Transformers to Time Series Forecasting
While one of the recent works on time series forecasting used simple transformer-

based architecture (PatchTST [14]) with channel independence, we explore a more intri-
cate transformer architecture, i.e., the Swin transformer [22]. The Swin transformer pre-
sents an innovative and streamlined structure for vision-related tasks through the utiliza-
tion of shifted windows to compute representations. This method tackles the scalability
issues inherent to transformers in vision applications by ensuring a linear computational
complexity that correlates with the size of the image. It has the additional advantage of
overcoming the information loss in the patching process by the use of hierarchical over-
lapping windows. As a result, it has demonstrated superior results across various com-
puter vision applications. Due to these inherent advantages of the Swin architecture, we
adapt it to the time series forecasting domain. We treat the multivariate input series ∈ℝ௅×ௗ with 𝐿 past steps and d channels as an 𝐿 × 𝑑 image and convert it to an appropriate
number of patches that are then fed to the Swin model. Due to the use of overlapping,
shifted, and hierarchical windows, it has the potential for learning better cross-channel
information in predicting future time series data. The architecture of our Swin-based time
series model is shown in Figure 4.

Figure 4. Adaptation of Swin transformer architecture for time series forecasting.

For feeding the multivariate time series ∈ Rd×L with L time steps and d variates to
the Swin transformer, the input data need to be converted to n2 patches where n is a power
of 2. We accomplish this by creating n2 = (d×L)−r

k number of patches where r and k are
integers, which are selected to convert the input data to n2 patches. For example, if the
input series data have 512 time steps with 7 channels, then k = 14 and r = 0. This results in
256 patches, i.e., n = 256. We present the evaluation results on different benchmarks in the
next section.

Big Data Cogn. Comput. 2024, 8, 48 8 of 14

4. Results

We tested our architectures and performed analyses on nine widely used datasets from
real-world applications. These datasets consist of the Electricity Transformer Temperature
(ETT) series, which include ETTh1 and ETTh2 (hourly intervals), and ETTm1 and ETTm2
(5-minute intervals), along with datasets pertaining to Traffic (hourly), Electricity (hourly),
Weather (10-minute intervals), Influenza-like illness (ILI) (weekly), and Exchange rate
(daily). The characteristics of the different datasets used are summarized in Table 1.

Table 1. Characteristics of the different datasets used.

Datasets Weather Traffic Electricity ILI ETTh1/ETTh2 Exchange Rate ETTm1/ETTm2

Features 21 862 321 7 7 8 7

Timesteps 52,696 17,544 26,304 966 17,420 7588 69,680

Granularity 10 min 1 h 1 h 1 week 1 h 1 day 5 min

The architecture type of models that we compare to our approach are listed in Table 2.

Table 2. Architecture types of different models used for comparison.

Model Type

FEDformer 1 Transformer-based

Autoformer Transformer-based

Informer Transformer-based

Pyraformer Transformer-based

DLinear Non-transformer

PatchTST Transformer-based

Table 3 shows the detailed results for our Enhanced Linear Model (ELM) on different
datasets and compares it with other recent popular models.

As can be seen from Table 3, our ELM model surpasses most established baseline
methods in the majority of the test cases (indicated by bold values). The underlined values
in Table 3 indicate the second-best results for a given category. Our model is either the best
or the second-best in most categories. Note that each model in Table 3 follows a consistent
experimental setup, with prediction lengths T of {96, 192, 336, 720} for all datasets except
for the ILI dataset. For the ILI dataset, we use prediction lengths of {24, 36, 48, 60}. For our
ELM model, the look-back window L is 512 for all datasets except Exchange and Illness,
which use L = 96. For the other models that we compare to, we select their best prediction
based on look-back window size from either of the (96, 192, 336, 720) [14,15]. Metrics used
for evaluation are MSE (Mean Squared Error) and MAE (Mean Absolute Error).

Table 4 provides the quantitative improvement over two recent best-performing time
series prediction models of PatchTST [14] and DLinear [15]. The values presented are the
average of the percent improvement for the four lookback window sizes of 96, 192, 336,
and 720. With respect to PatchTST, our model lags in performance on the traffic and illness
datasets using the MSE metric but is competitive or exceeds the MSE or MAE metrics
on the other benchmarks. The percentage improvement with respect to DLinear is more
significant than the PatchTST Model, and our ELM model exceeds the DLinear in almost
all dataset categories.

Big Data Cogn. Comput. 2024, 8, 48 9 of 14

Table 3. Comparison of our ELM model with other models on the time series datasets.

Models (Our Model)
ELM PatchTST/64 DLinear FEDformer Autoformer Informer Pyraformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.140 0.184 0.149 0.198 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405 0.896 0.556

192 0.183 0.226 0.194 0.241 0.22 0.282 0.275 0.329 0.325 0.37 0.419 0.434 0.622 0.624

336 0.233 0.266 0.245 0.282 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543 0.739 0.753

720 0.306 0.319 0.314 0.334 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705 1.004 0.934

Traffic

96 0.398 0.265 0.360 0.249 0.41 0.282 0.576 0.359 0.597 0.371 0.733 0.41 2.085 0.468

192 0.408 0.269 0.379 0.256 0.423 0.287 0.61 0.38 0.607 0.382 0.777 0.435 0.867 0.467

336 0.417 0.274 0.392 0.264 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434 0.869 0.469

720 0.456 0.299 0.432 0.286 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466 0.881 0.473

Electricity

96 0.131 0.223 0.129 0.222 0.14 0.237 0.186 0.302 0.196 0.313 0.304 0.393 0.386 0.449

192 0.146 0.236 0.147 0.240 0.153 0.249 0.197 0.311 0.211 0.324 0.327 0.417 0.386 0.443

336 0.162 0.253 0.163 0.259 0.169 0.267 0.213 0.328 0.214 0.327 0.333 0.422 0.378 0.443

720 0.200 0.287 0.197 0.29 0.203 0.301 0.233 0.344 0.236 0.342 0.351 0.427 0.376 0.445

Illness

24 1.820 0.809 1.319 0.754 2.215 1.081 2.624 1.095 2.906 1.182 4.657 1.449 1.42 2.012

36 1.574 0.775 1.579 0.87 1.963 0.963 2.516 1.021 2.585 1.038 4.65 1.463 7.394 2.031

48 1.564 0.793 1.553 0.815 2.13 1.024 2.505 1.041 3.024 1.145 5.004 1.542 7.551 2.057

60 1.512 0.803 1.470 0.788 2.368 1.096 2.742 1.122 2.761 1.114 5.071 1.543 7.662 2.1

ETTh1

96 0.362 0.389 0.370 0.400 0.375 0.399 0.376 0.415 0.435 0.446 0.941 0.769 0.664 0.612

192 0.398 0.412 0.413 0.429 0.405 0.416 0.423 0.446 0.456 0.457 1.007 0.786 0.79 0.681

336 0.421 0.427 0.422 0.440 0.439 0.443 0.444 0.462 0.486 0.487 1.038 0.784 0.891 0.738

720 0.437 0.453 0.447 0.468 0.472 0.490 0.469 0.492 0.515 0.517 1.144 0.857 0.963 0.782

ETTh2

96 0.263 0.331 0.274 0.337 0.289 0.353 0.332 0.374 0.332 0.368 1.549 0.952 0.645 0.597

192 0.318 0.369 0.341 0.382 0.383 0.418 0.407 0.446 0.426 0.434 3.792 1.542 0.788 0.683

336 0.348 0.399 0.329 0.384 0.448 0.465 0.4 0.447 0.477 0.479 4.215 1.642 0.907 0.747

720 0.409 0.444 0.379 0.422 0.605 0.551 0.412 0.469 0.453 0.49 3.656 1.619 0.963 0.783

ETTm1

96 0.291 0.338 0.293 0.346 0.299 0.343 0.326 0.39 0.51 0.492 0.626 0.56 0.543 0.51

192 0.332 0.361 0.333 0.370 0.335 0.365 0.365 0.415 0.514 0.495 0.725 0.619 0.557 0.537

336 0.362 0.377 0.369 0.392 0.369 0.386 0.392 0.425 0.51 0.492 1.005 0.741 0.754 0.655

720 0.418 0.409 0.416 0.420 0.425 0.421 0.446 0.458 0.527 0.493 1.133 0.845 0.908 0.724

ETTm2

96 0.160 0.246 0.166 0.256 0.167 0.260 0.18 0.271 0.205 0.293 0.355 0.462 0.435 0.507

192 0.219 0.288 0.223 0.296 0.224 0.303 0.252 0.318 0.278 0.336 0.595 0.586 0.73 0.673

336 0.271 0.321 0.274 0.329 0.281 0.342 0.324 0.364 0.343 0.379 1.27 0.871 1.201 0.845

720 0.360 0.380 0.362 0.385 0.397 0.421 0.41 0.42 0.414 0.419 3.001 1.267 3.625 1.451

Exchange

96 0.084 0.201 0.081 0.203 0.148 0.278 0.197 0.323 0.847 0.752 0.376 1.105

192 0.156 0.296 0.157 0.293 0.271 0.38 0.3 0.369 1.204 0.895 1.748 1.151

336 0.266 0.403 0.305 0.414 0.46 0.5 0.509 0.524 1.672 1.036 1.874 1.172

720 0.665 0.649 0.643 0.601 1.195 0.841 1.447 0.941 2.478 1.31 1.943 1.206

Figures 5 and 6 show the graphs of predicted vs. actual data for two of the datasets
with different prediction lengths using a context length of 512 for our ELM model for the
first channel (pressure for the weather dataset, and HUFL—high useful load for the ETTm1
dataset). As can be seen, if the data are more cyclical in nature (e.g., HUFL in ETTm1), our
model is able to learn the patterns nicely, as shown in Figure 6. For complex data such as
the pressure feature in weather, the prediction is less accurate, as indicated in Figure 5.

Big Data Cogn. Comput. 2024, 8, 48 10 of 14

Table 4. Quantitative improvements of our ELM model with respect to best-performing existing models.

Dataset Average % Improvement of Our
ELM Model PatchTST/64

Average % Improvement of Our
ELM Model Over DLinear

Metric MSE MAE MSE MAE

Weather 4.79% 5.86% 13.65% 17.68%

Traffic −7.54% −4.96% 3.25% 6.20%

Electricity −0.45% 1.14% 4.16% 5.26%

Illness −10.31% 1.11% 25.09% 23.49%

ETTh1 2.07% 3.22% 4.18% 3.66%

ETTh2 −0.74% −0.99% 20.17% 12.89%

ETTm1 0.60% 2.80% 1.78% 1.94%

ETTm2 1.76% 2.59% 4.83% 6.55%

Exchange 1.58% −1.34%

Table 5 presents our results on the Swin transformer-based implementation for time
series. As explained earlier, we divide the input multivariate time series data into 16 × 16,
i.e., 256 patches, before feeding it to a Swin model with three transformer layers. The
embeddings used in the three layers are [128,128,256]. As can be seen, the Swin transformer-
based approach has the inherent capability to combine information between different
channels as well as between different time-steps but does not perform as well as our
linear model (ELM); only on the traffic dataset it produces the best result. This could be
attributed to the fact that this dataset has the most number of features, which Swin can
effectively use for more cross-channel information. Comparing our Swin transformer-
based model to the PatchTST model [14] (also transformer-based), the PatchTST that uses
channel independence performs better than our Swin-based model. Note that the PatchTST
performs worse than our ELM model, which is based on a linear network.

We also compare our ELM model to the newly proposed state-space model-based
time series prediction [20]. State-space models such as Mamba [18], VMamba [19], Vision
Mamba [23], and Time Machine Mamba [24] are drawing significant attention for modeling
temporal data such as time series, and therefore we compare our ELM model with the
recently published work of [20] and [24,25], which are based on state-space models. Table 6
shows the results of our ELM model with the work in [20,24]. In one case, the SpaceTime
model is better but most of the time our ELM model performs better than both the state-
space and the previous DLinear models. The context length in Table 6 is 720, and the
prediction is also 720 time steps.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 10 of 15

prediction based on look-back window size from either of the (96, 192, 336, 720) [14,15].
Metrics used for evaluation are MSE (Mean Squared Error) and MAE (Mean Absolute
Error).

Table 4 provides the quantitative improvement over two recent best-performing time
series prediction models of PatchTST [14] and DLinear [15]. The values presented are the
average of the percent improvement for the four lookback window sizes of 96, 192, 336,
and 720. With respect to PatchTST, our model lags in performance on the traffic and illness
datasets using the MSE metric but is competitive or exceeds the MSE or MAE metrics on
the other benchmarks. The percentage improvement with respect to DLinear is more sig-
nificant than the PatchTST Model, and our ELM model exceeds the DLinear in almost all
dataset categories.

Table 4. Quantitative improvements of our ELM model with respect to best-performing existing
models.

Dataset Average % Improvement of Our
ELM Model PatchTST/64

Average % Improvement of Our
ELM Model Over DLinear

Metric MSE MAE MSE MAE
Weather 4.79% 5.86% 13.65% 17.68%
Traffic −7.54% −4.96% 3.25% 6.20%

Electricity −0.45% 1.14% 4.16% 5.26%
Illness −10.31% 1.11% 25.09% 23.49%
ETTh1 2.07% 3.22% 4.18% 3.66%
ETTh2 −0.74% −0.99% 20.17% 12.89%
ETTm1 0.60% 2.80% 1.78% 1.94%
ETTm2 1.76% 2.59% 4.83% 6.55%

Exchange 1.58% −1.34%

Figures 5 and 6 show the graphs of predicted vs. actual data for two of the datasets
with different prediction lengths using a context length of 512 for our ELM model for the
first channel (pressure for the weather dataset, and HUFL—high useful load for the
ETTm1 dataset). As can be seen, if the data are more cyclical in nature (e.g., HUFL in
ETTm1), our model is able to learn the patterns nicely, as shown in Figure 6. For complex
data such as the pressure feature in weather, the prediction is less accurate, as indicated
in Figure 5.

(a) T = 96 (b) T=720

Figure 5. Predicted vs. actual forecasting using ELM model with L= 512 and T = {96, 720} for Weather
dataset.
Figure 5. Predicted vs. actual forecasting using ELM model with L= 512 and T = {96, 720} for
Weather dataset.

Big Data Cogn. Comput. 2024, 8, 48 11 of 14

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 11 of 15

(a) T=96 (b) T=720

Figure 6. Predicted vs. actual forecasting using ELM Model with L = 512 and T = {96, 720} for ETTm1
dataset.

Table 5 presents our results on the Swin transformer-based implementation for time
series. As explained earlier, we divide the input multivariate time series data into 16 × 16,
i.e., 256 patches, before feeding it to a Swin model with three transformer layers. The em-
beddings used in the three layers are [128,128,256]. As can be seen, the Swin transformer-
based approach has the inherent capability to combine information between different
channels as well as between different time-steps but does not perform as well as our linear
model (ELM); only on the traffic dataset it produces the best result. This could be at-
tributed to the fact that this dataset has the most number of features, which Swin can ef-
fectively use for more cross-channel information. Comparing our Swin transformer-based
model to the PatchTST model [14] (also transformer-based), the PatchTST that uses chan-
nel independence performs better than our Swin-based model. Note that the PatchTST
performs worse than our ELM model, which is based on a linear network.

Table 5. Comparison of our Swin transformer model with other models on the time series datasets.
Results highlighted in bold signify the best performance, while those underlined indicate the sec-
ond-highest achievement.

Models
(Our) Swin

Transformer
(Our Model)

ELM PatchTST/64 DLinear FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.173 0.224 0.140 0.184 0.149 0.198 0.176 0.237 0.238 0.314

192 0.227 0.268 0.183 0.226 0.194 0.241 0.22 0.282 0.275 0.329

336 0.277 0.305 0.233 0.266 0.245 0.282 0.265 0.319 0.339 0.377

720 0.333 0.345 0.306 0.319 0.314 0.334 0.323 0.362 0.389 0.409

Traffic

96 0.621 0.342 0.398 0.265 0.360 0.249 0.41 0.282 0.576 0.359

192 0.651 0.359 0.408 0.269 0.379 0.256 0.423 0.287 0.61 0.38

336 0.648 0.353 0.417 0.274 0.392 0.264 0.436 0.296 0.608 0.375

720 0.384 0.4509 0.456 0.299 0.432 0.286 0.466 0.315 0.621 0.375

Electricity

96 0.189 0.296 0.131 0.223 0.129 0.222 0.14 0.237 0.186 0.302

192 0.191 0.296 0.146 0.236 0.147 0.240 0.153 0.249 0.197 0.311

336 0.205 0.3107 0.162 0.253 0.163 0.259 0.169 0.267 0.213 0.328

720 0.228 0.327 0.200 0.287 0.197 0.29 0.203 0.301 0.233 0.344

ILI 24 5.806 1,800 1.820 0.809 1.319 0.754 2.215 1.081 2.624 1.095

Figure 6. Predicted vs. actual forecasting using ELM Model with L = 512 and T = {96, 720} for
ETTm1 dataset.

Table 5. Comparison of our Swin transformer model with other models on the time series datasets.
Results highlighted in bold signify the best performance, while those underlined indicate the second-
highest achievement.

Models (Our) Swin
Transformer (Our Model) ELM PatchTST/64 DLinear FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.173 0.224 0.140 0.184 0.149 0.198 0.176 0.237 0.238 0.314

192 0.227 0.268 0.183 0.226 0.194 0.241 0.22 0.282 0.275 0.329

336 0.277 0.305 0.233 0.266 0.245 0.282 0.265 0.319 0.339 0.377

720 0.333 0.345 0.306 0.319 0.314 0.334 0.323 0.362 0.389 0.409

Traffic

96 0.621 0.342 0.398 0.265 0.360 0.249 0.41 0.282 0.576 0.359

192 0.651 0.359 0.408 0.269 0.379 0.256 0.423 0.287 0.61 0.38

336 0.648 0.353 0.417 0.274 0.392 0.264 0.436 0.296 0.608 0.375

720 0.384 0.4509 0.456 0.299 0.432 0.286 0.466 0.315 0.621 0.375

Electricity

96 0.189 0.296 0.131 0.223 0.129 0.222 0.14 0.237 0.186 0.302

192 0.191 0.296 0.146 0.236 0.147 0.240 0.153 0.249 0.197 0.311

336 0.205 0.3107 0.162 0.253 0.163 0.259 0.169 0.267 0.213 0.328

720 0.228 0.327 0.200 0.287 0.197 0.29 0.203 0.301 0.233 0.344

ILI

24 5.806 1,800 1.820 0.809 1.319 0.754 2.215 1.081 2.624 1.095

36 6.931 1.968 1.574 0.775 1.579 0.87 1.963 0.963 2.516 1.021

48 6.581 1.904 1.564 0.793 1.553 0.815 2.13 1.024 2.505 1.041

60 6.901 1.968 1.512 0.803 1.470 0.788 2.368 1.096 2.742 1.122

ETTh1

96 0.592 0.488 0.362 0.389 0.370 0.400 0.375 0.399 0.376 0.415

192 0.542 0.514 0.398 0.412 0.413 0.429 0.405 0.416 0.423 0.446

336 0.537 0.518 0.421 0.427 0.422 0.440 0.439 0.443 0.444 0.462

720 0.614 0.571 0.437 0.453 0.447 0.468 0.472 0.490 0.469 0.492

ETTh2

96 0.360 0.405 0.263 0.331 0.274 0.337 0.289 0.353 0.332 0.374

192 0.386 0.426 0.318 0.369 0.341 0.382 0.383 0.418 0.407 0.446

336 0.372 0.421 0.348 0.399 0.329 0.384 0.448 0.465 0.4 0.447

720 0.424 0.454 0.409 0.444 0.379 0.422 0.605 0.551 0.412 0.469

Big Data Cogn. Comput. 2024, 8, 48 12 of 14

Table 5. Cont.

Models (Our) Swin
Transformer (Our Model) ELM PatchTST/64 DLinear FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.400 0.421 0.291 0.338 0.293 0.346 0.299 0.343 0.326 0.39

192 0.429 0.443 0.332 0.361 0.333 0.370 0.335 0.365 0.365 0.415

336 0.439 0.447 0.362 0.377 0.369 0.392 0.369 0.386 0.392 0.425

720 0.477 0.466 0.418 0.409 0.416 0.420 0.425 0.421 0.446 0.458

ETTm2

96 0.210 0.292 0.160 0.246 0.166 0.256 0.167 0.260 0.18 0.271

192 0.264 0.325 0.219 0.288 0.223 0.296 0.224 0.303 0.252 0.318

336 0.311 0.356 0.271 0.321 0.274 0.329 0.281 0.342 0.324 0.364

720 0.408 0.412 0.360 0.380 0.362 0.385 0.397 0.421 0.41 0.42

Table 6. Comparison of our ELM model to other recently published models. Results highlighted in
bold signify the best performance, while those underlined indicate the second-highest achievement.

Models (Our Model)
ELM SpaceTime DLinear FEDformer Autoformer Time Machine

(Mamba)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 720 0.448 0.463 0.499 0.48 0.440 0.453 0.506 0.507 0.514 0.512 0.462 0.475
ETTh2 720 0.387 0.428 0.402 0.434 0.394 0.436 0.463 0.474 0.515 0.511 0.412 0.441
ETTm1 720 0.415 0.409 0.408 0.415 0.433 0.422 0.543 0.49 0.671 0.561 0.430 0.429
ETTm2 720 0.348 0.377 0.358 0.378 0.368 0.384 0.421 0.415 0.433 0.432 0.380 0.396

5. Discussion

One of the recent unanswered questions in time series forecasting has been as to
which architecture is best suited for this task. Some earlier research papers have indicated
better results with transformer-based models than previous approaches, e.g., Informer [10],
Autoformer [11], Fedformer [12], and Pyraformer [16]. Of these models, FedFormer demon-
strated much better results as it uses Fourier-enhanced blocks and Wavelet-enhanced blocks
in the transformer structure that can learn important patterns in series through frequency
domain mapping. A simpler transformer-based architecture yielding even better results
was proposed in [14]. This architecture, termed PatchTST, uses independent channels
where an input channel is divided into patches. All channels share the same embedding
and transformer weights. Since PatchTST is a simple transformer design with a simple
independent channel architecture, we explored replacing this design with a Swin trans-
former with patching across channels. The Swin transformer has the capability to combine
information across patches due to its hierarchical overlapping window design. Our detailed
experimental results on the Swin architecture-based design did not produce better results
as compared to the channel-independent design of PatchTST; however, compared with
other transformer-based designs, it yielded improved results in many cases.

To answer the question of the best architecture for time series forecasting, we improve
the recently proposed simple linear network-based model in [15] by creating dual pipelines
with batch and reversible instance normalizations. We maintain channel independence and
our results on the benchmarks show the best results obtained so far as compared to existing
approaches in the majority of the standard datasets used in time series forecasting.

6. Conclusions

We perform a detailed investigation as to the best architecture for time series fore-
casting. We have implemented time series forecasting on the Swin transformer to see if
aggregated channel information is useful. We also analyzed and improved an existing

Big Data Cogn. Comput. 2024, 8, 48 13 of 14

simpler model based on linear networks. Our study highlights the significant potential
of simpler models, challenging the prevailing emphasis on complex transformer-based
architectures. The ELM model developed in this work, with its straightforward design, has
demonstrated superior performance across various datasets, underscoring the importance
of re-evaluating the effectiveness of simpler models in time series analysis. Compared
to the recent transformer-based PatchTST model, our ELM model achieves a percentage
improvement of approximately 1–5% on most benchmarks. With respect to the recent linear
network-based models, the percentage improvement by our model is more significant,
ranging between 1 and 25% for different datasets. It is only when the number of variates in
the dataset is large that the Swin transformer-based design we adapt for the time series
prediction seems to be effective.

Future work involves the development of hybrid models that leverage both linear
and transformer elements such that each contributes to the effective learning of the time
series behavior. For example, the frequency domain component as used in FedFormer
could aid a linear model when past periodicity pattern is more complex. The recent
developments in state-space models and their applications to time series forecasting such
as TimeMachine [24,25] (based on Mamba) also deserve further research in optimizing
these models for better prediction.

Author Contributions: Conceptualization, M.A. and A.M.; methodology, M.A.; software, M.A.;
validation, M.A. and A.M.; formal analysis, M.A.; investigation, M.A.; resources, M.A.; data curation,
M.A.; writing—original draft preparation, M.A. and A.M.; writing—review and editing, M.A. and
A.M.; visualization, M.A.; supervision, A.M.; project administration, A.M. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors received no financial support for this research.

Data Availability Statement: All materials related to our study, including the trained models, detailed
results reports, source code, and datasets, are publicly accessible via our dedicated GitHub repository:
https://github.com/muslehal/Enhanced-Linear-Model-ELM-, Dataset link: https://drive.google.
com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy (accessed on 1 April 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,

USA, 2015.
2. De Livera, A.M.; Hyndman, R.J.; Snyder, R.D. Forecasting time series with complex seasonal patterns using exponential smoothing.

J. Am. Stat. Assoc. 2011, 106, 1513–1527. [CrossRef]
3. Cerqueira, V.; Torgo, L.; Soares, C. Machine Learning vs. Statistical Methods for Time Series Forecasting: Size Matters. arXiv 2019,

arXiv:1909.13316v1.
4. Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [CrossRef]

[PubMed]
5. Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks.

Int. J. Forecast. 2020, 36, 1181–1191. [CrossRef]
6. Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current Status and Future

Directions. Int. J. Forecast. 2021, 37, 388–427. [CrossRef]
7. Sen, R.; Yu, H.F.; Dhillon, I.S. Think globally, act locally: A deep neural network approach to high-dimensional time series

forecasting. In Advances in Neural Information Processing Systems 32 (NeurIPS 2019); Neural Information Processing Systems
Foundation, Inc. (NeurIPS): San Diego, CA, USA, 2019.

8. Lai, G.; Chang, W.-C.; Yang, Y.; Liu, H. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. In
Proceedings of the SIGIR ‘18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval,
Ann Arbor, MI, USA, 8–12 July 2018.

9. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Advances in Neural Information Processing Systems 30 (NIPS 2017); Neural Information Processing Systems Foundation, Inc.
(NeurIPS): San Diego, CA, USA, 2017.

10. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence
time-series forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [CrossRef]

https://github.com/muslehal/Enhanced-Linear-Model-ELM
https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
https://doi.org/10.1198/jasa.2011.tm09771
https://doi.org/10.1098/rsta.2020.0209
https://www.ncbi.nlm.nih.gov/pubmed/33583273
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1016/j.ijforecast.2020.06.008
https://doi.org/10.1609/aaai.v35i12.17325

Big Data Cogn. Comput. 2024, 8, 48 14 of 14

11. Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting.
In Advances in Neural Information Processing Systems 34 (NeurIPS 2021); Neural Information Processing Systems Foundation, Inc.
(NeurIPS): San Diego, CA, USA, 2021; pp. 22419–22430.

12. Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term series
forecasting. In Proceedings of the 39th International Conference on Machine Learning PMLR 2022, Baltimore, MD, USA, 17–23
July 2022; pp. 27268–27286.

13. Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting. In Advances in Neural Information Processing Systems 32 (NeurIPS 2019); Neural Information
Processing Systems Foundation, Inc. (NeurIPS): San Diego, CA, USA, 2019.

14. Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A Time Series is worth 64 words: Long-term forecasting with Transformers.
arXiv 2022, arXiv:2211.14730.

15. Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers effective for Time Series Forecasting? Proc. AAAI Conf. Artif. Intell. 2023,
37, 11121–11128. [CrossRef]

16. Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A.X.; Dustdar, S. Pyraformer: Low-complexity pyramidal attention for long-range time
series modeling and forecasting. In Proceedings of the International Conference on Learning Representations 2022, Online, 25–29
April 2022.

17. Guillaume, C. Direct multi-step estimation and forecasting. J. Econ. Surv. 2007, 21, 746–785.
18. Albert, G.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752.
19. Liu, Y.; Tian, Y.; Zhao, Y.; Yu, H.; Xie, L.; Wang, Y.; Ye, Q.; Liu, Y. Vmamba: Visual state space model. arXiv 2024, arXiv:2401.10166.
20. Zhang, M.; Saab, K.K.; Poli, M.; Dao, T.; Goel, K.; Ré, C. Effectively Modeling Time Series with Simple Discrete State Spaces. arXiv

2023, arXiv:2303.09489v1.
21. Kim, T.; Kim, J.; Tae, Y.; Park, C.; Choi, J.H.; Choo, J. Reversible instance normalization for accurate time-series forecasting against

distribution shift. In Proceedings of the International Conference on Learning Representations 2021, Online, 3–7 May 2021.
22. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted

windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 10–17
October 2021; pp. 10012–10022.

23. Zhu, L.; Liao, B.; Zhang, Q.; Wang, X.; Liu, W.; Wang, X. Vision mamba: Efficient visual representation learning with bidirectional
state space model. arXiv 2024, arXiv:2401.09417.

24. Wang, Z.; Kong, F.; Feng, S.; Wang, M.; Zhao, H.; Wang, D.; Zhang, Y. Is Mamba Effective for Time Series Forecasting? arXiv 2024,
arXiv:2403.11144.

25. Ahamed, M.A.; Cheng, Q. TimeMachine: A Time Series is Worth 4 Mambas for Long-term Forecasting. arXiv 2024,
arXiv:2403.09898.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1609/aaai.v37i9.26317

	Introduction
	Related Work
	Methodology
	Proposed Models for Time Series Forecasting
	Enhanced Linear Models for Time Series Forecasting (ELM)
	Adaptation of Vision Transformers to Time Series Forecasting

	Results
	Discussion
	Conclusions
	References

