
Citation: Serrano-Balbontín, A.J.;

Tejado, I.; Vinagre, B.M.

Field-Programmable Analog Array

Implementation of Neuromorphic

Silicon Neurons with Fractional

Dynamics. Fractal Fract. 2024, 8, 226.

https://doi.org/10.3390/

fractalfract8040226

Academic Editors: Allan G.

Soriano-Sánchez and Didier

López-Mancilla

Received: 1 March 2024

Revised: 9 April 2024

Accepted: 11 April 2024

Published: 15 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Field-Programmable Analog Array Implementation of
Neuromorphic Silicon Neurons with Fractional Dynamics
Andrés J. Serrano-Balbontín * , Inés Tejado * and Blas M. Vinagre

Escuela de Ingenierías Industriales, Universidad de Extremadura, 06006 Badajoz, Spain; bvinagre@unex.es
* Correspondence: ajserranob@unex.es (A.J.S.-B.); itejbal@unex.es (I.T.); Tel.: +34-924289300 (ext. 86767) (I.T.)

Abstract: Silicon neurons are bioinspired circuits with the capability to reproduce the modulation
through pulse-frequency observed in real neurons. They are of particular interest in closed-loop
schemes to encode the control signal into pulses. This paper proposes the analog realization of
neuromorphic silicon neurons with fractional dynamics. In particular, the fractional-order (FO)
operator is introduced into classical neurons with the intention of reproducing the adaptation that
has been observed experimentally in real neurons, which is the variation in the firing frequency even
when considering a constant or periodic incoming stimulus. For validation purposes, simulations
using a field-programmable analog array (FPAA) are performed to verify the behavior of the circuits.

Keywords: neuromorphic; silicon neurons; pulse-frequency modulation; fractional operator;
field-programmable analog array

1. Introduction

Neuromorphic engineering is a discipline inspired by the working principles of the
biological nervous system to develop both hardware and software that are more efficient.
Carver Mead, who believed that the brain could be at least 10 million times more efficient
than digital technology [1], proposed analog silicon systems as the technology capable of
imitating neural systems [2]. Examples of neuromorphic engineering include investigations
into neuromorphic computing to develop new hardware technologies capable of mimicking
the topology of the brain. In software, brain-inspired algorithms, such as artificial neural
networks, have shown remarkable success [3].

Among the many areas of research in neuromorphic technologies, this work is inspired
by the way in which biological neurons transmit information in the form of pulse trains. In
particular, the concept of pulse-frequency modulation (PFM) emerged as an abstraction
from the study of neuronal communication links in physiological control systems [4]. The
application of PFM in current technologies has already provided the first fruitful results.
For example, the use of PFM as a modulation technique for switching regulators has been
shown to be more power efficient at low load conditions than other alternatives, such as
pulse-width modulation (PWM), because it reduces the losses associated with the number
of commutations [5]. In fact, switching regulators currently available on the market use a
combination of these techniques.

In the field of control systems, the concept of neuromorphic control (NC) has recently
emerged. It relies on neuron-inspired modulation techniques to encode the controller signal
into pulses that mimic the operation of the biological motor system [6]. PFM provides
robustness to noise because it encodes information in the distance between pulses rather
than in amplitude. It has also been found to be particularly good at improving the precision
of actuators, even in cases of poor behavior. For example, unlike PWM, PFM naturally
handles static friction in DC motors because the energy delivered by each pulse can be
tuned to overcome static friction at any time [6].

Silicon neurons are low-power circuits that reproduce the spike-based models of
neurons and constitute the main building blocks for the implementation of neuromorphic

Fractal Fract. 2024, 8, 226. https://doi.org/10.3390/fractalfract8040226 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8040226
https://doi.org/10.3390/fractalfract8040226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-1385-7452
https://orcid.org/0000-0001-5542-348X
https://orcid.org/0000-0001-5039-0738
https://doi.org/10.3390/fractalfract8040226
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8040226?type=check_update&version=1

Fractal Fract. 2024, 8, 226 2 of 28

systems. They are hybrid analog/digital very-large-scale integration (VLSI) circuits that
emulate the electrophysiological behavior of real neurons and are suitable for implementing
the real-time interaction of a neuromorphic system with its environment. There are many
types of silicon neurons that vary in complexity depending on the application. In particular,
biophysically realistic models that emulate the detailed internal dynamics of the neuron can
be found in the literature, such as the Hodgkin–Huxley model as well as basic circuits that
attempt to directly mimic the spike-like output of real neurons, such as integrate-and-fire
(I&F) circuits [7]. This paper focuses on the latter. In this sense, a proposal for such a type of
circuits is the fractional-order (FO) I&F neuron, which is able to model the firing frequency
adaptation observed in real neurons to constant or periodic stimuli by introducing only
one parameter, the order of the operator [8].

A field-programmable analog array (hereafter, FPAA) is an integrated circuit using
switched capacitor technology that provides the ability to configure an analog signal
processing system. The FPAA consists of an array of configurable analog blocks (CABs) that
contain the resources to implement comparators, gain blocks, dividers, multipliers, filters,
adders and subtractors, among other functions. FPAAs offer control designers new ways in
simple and rapid verifying and prototyping of the analog implementation of controllers [9].
FPAAs take relevancy in the research of neuromorphic algorithms because they are the
main alternative in the analog domain to digital prototyping with field-programmable gate
arrays (FPGAs).

Recently, two applications related to the FPAA-based implementation of the FO oper-
ator have received much interest: FO chaotic systems and FO filters. With respect to the
former, Charef’s approximation of the FO operator has been implemented in, e.g., [10–12].
For analog FO filters, the realization of the operator using partial fraction expansion (PFE),
Oustaloup’s (in its classical and modified versions), Matsuda’s, and Charef’s methods
can be found in [13]. Likewise, an implementation based on Oustaloup’s approximation
combined with a curve-fitting-based method has been proposed in [14] for power-law
filters (transfer functions raised to an FO) and using particle swarm optimization in [15]. A
comparison study on the Carlson, continued fraction expansion, Padé, Charef, and curve-
fitting approximation techniques can be found in [16]. The curve-fitting methodology is
tested for double-order filters (FO filters raised to an FO) in [17].

To the best of the authors’ knowledge, there is only one paper that uses FPAAs
to implement FO neurons. The type of neuron implemented there is known as the
FitzHugh–Nagumo neuron, which is not expected to be used for signal modulation in
control systems, but it has potential use in spiking neural networks [18].

This paper explores the functionality of the Anadigm® AN231E04 circuit for the analog
implementation of silicon neurons and fractional operators, as well as their combination,
for use in control applications. Three types of integer-order neurons are implemented in
the FPAA, two of which are classical circuits that have been adapted to this technology,
while the third is a neuron proposed here to perform PFM correctly. Three types of FO
operator implementations are compared. Finally, FO variants of two different types of
neurons are proposed based on our previous results. The Anadigm programming and
simulation environment is used to verify the behavior of the designs.

After this introduction, Section 2 covers some basics about silicon neurons and the FO
operator that are necessary for understanding the rest of the paper. Section 3 contains the
description of the implementations of both the selected silicon neurons and the FO operator
in the Anadigm FPAA. Section 4 shows and discusses the results obtained by simulating
the proposed analog circuits. Conclusions are given in Section 5.

2. Fundamentals

This section contains the basics of biological neurons, PFM, silicon neurons by types,
the FO operator, and fractional neurons.

Fractal Fract. 2024, 8, 226 3 of 28

2.1. Biological Neurons

Real neurons transmit information in the form of spikes called action potentials. Evo-
lution has found this type of representation to be more efficient and reliable for transmitting
information compared to continuous signals [6]. At rest, the cell membrane has a negative
polarization. An incoming stimulus causes the depolarization, which is an increase in
the membrane voltage. The summation of these stimulus-induced depolarizations is also
known as integration. When a threshold is reached, a positive feedback loop is activated,
causing the neuron to depolarize even more. When the peak is reached, the membrane
voltage returns to the negative resting state. This short upward and downward variation
in the membrane voltage is the action potential. As action potentials do not change their
shape, information is conveyed in the timing of action potentials. The elapsed time between
action potentials is known as the inter-spike interval (ISI). Figure 1 shows the evolution of
membrane voltage in a neuron.

Figure 1. Illustration of action potentials in biological neurons.

2.2. Pulse-Frequency Modulation

PFM originated as a modulation technique inspired by the output of biological neurons.
The amplitude information of the input signal is encoded in the spacing between impulses
or pulses of constant width [4]. Therefore, the output can be represented as a succession
of pulses:

z(t) = A ∑
k≥1

δ(t− tk) (1)

where z(t) is the output of the PFM, A is the amplitude of the pulses, δ is the Dirac delta
function or unit impulse, and tk is the instant at which the k-th pulse is fired. For PFM that
fires pulses with non-zero width, i.e., rectangular pulses, the output is described by:

z(t) = A ∑
k≥1

[θ(t− tk)− θ(t− tk − th)] (2)

where th is the width of the pulse or high state duration, and θ is the unit step function.
The time between pulses also satisfies th + tl = tk − tk−1, where tl is the duration of the
low state. A representation of the output is depicted in Figure 2. The most common PFM
variant, and the one closest to biological behavior, is the integral PFM (IPFM) [19], which
determines the firing instant tk by integrating the input until a certain amount Kti, called
threshold, is reached, i.e.,

y(tk) =
∫ tk

tk−1

x(t)dt = Kti (3)

where x(t) and y(t) are the integrator input and output, respectively. After each pulse is
fired, the integral is reset, which is denoted by:

y(t+k)← 0 (4)

Fractal Fract. 2024, 8, 226 4 of 28

Traditionally, neuron models have only considered positive inputs, leading to the
concept of single-signed IPFM (SS-IPFM), which includes a rectifier at the input to avoid
negative values (x(t) ≥ 0), as shown in Figure 3.

Figure 2. Illustration of output pulses in PFM and some I&F neurons.

Figure 3. Schematic of SS-IPFM.

2.3. Silicon Neurons

Silicon neurons, also called just neurons, are circuits that use the silicon medium to
reproduce the dynamics of real neurons. There is a wide variety of silicon neurons whose
structure depends on the application and the fidelity to reproduce the different dynamics
of real neurons.

2.3.1. Integrate-and-Fire Neurons

Early designs of silicon neurons were used to mimic the firing frequency of real
neurons by simply using a resistor–capacitor (RC) circuit, leading to the concept of I&F
neuron models [20]. I&F neurons have, at least, the following four properties: (1) a
threshold is set; (2) the input is integrated, usually using a capacitor; (3) a spike is fired
when the integration reaches the threshold; and (4) the neuron returns to the resting
state to begin another cycle, which is usually performed either by a shortcut between the
ends of the capacitor or by feeding a negative input. These are the common approaches,
but there are infinite cases. It is important to clarify the difference between I&F and
IPFM concepts. I&F encompasses a wide variety of integration and firing processes that
model neuron behavior where the input–output relationship may be nonlinear. In contrast,
IPFM uses a specific integration and firing process, which was originated as a modulation
technique, where the dependence of the average output on the average input must be
linear. Appendix A includes an explanation on how to relate IPFM to other neuron models.
The simplest I&F circuit consists of a single capacitor, as shown in Figure 4a. It is charged
by a positive input current and can be reset by connecting a switch in parallel. Each
time the voltage reaches the threshold, a spike is fired by a secondary circuit, Θ, and the
neuron is reset by a brief commutation of the switch. Note that, in contrast to the biological
dynamics of membrane voltage, the integration and generation of pulses (representing
action potentials) are separated. The voltage evolution in the capacitor is given by the
following two equations:

VA(tk) =
1

Cm

∫ tk

tk−1

i(t)dt = Vthr (5)

Fractal Fract. 2024, 8, 226 5 of 28

VA(t+k)← 0 (6)

where Cm is the membrane capacitance, i(t) is the instantaneous current through the
capacitor, VA(t) and Vthr are the voltage across the capacitor and the voltage threshold,
respectively, tk is the instant at which the k-th pulse is triggered, and VA(0) = 0 denotes
the initial condition. In this case, (3) and (4) are imitated by this simple circuit. It is worth
mentioning that constants Cm and Vthr can be combined in a single threshold Kti,A with the
value Kti,A = CmVthr.

(a) (b)

Figure 4. Illustration of (a) simple I&F neuron circuit and (b) A-H circuit. Adapted from [7].

2.3.2. Axon-Hillock Circuit

The Axon-Hillock (A-H) circuit is the evolution of the first I&F models, resulting in
one of the simplest implementations of a silicon neuron for rectangular pulse generation.
The circuit (Figure 4b) comprises the input current, a positive feedback loop created by
an amplifier and two capacitors that form a capacitive voltage divider, and a constant
discharging current controlled by a switch. It was used for control purposes in [6]. Its
output is determined by an integration at two different rates around a threshold, i.e., the
integral is not reset to zero. First, the integral VB(t) of the input signal is performed until
the threshold Vthr is reached, which provides the time to the first pulse. Second, the circuit
adds an offset ∆V to the integral (∆V = VDDC2/(C1 + C2); expression derived from the
capacitive voltage divider) and the input signal is replaced by a negative constant input
until the threshold is reached again, but from above, which determines the width of the
pulse. Third, the same offset is subtracted from the integral and the integration of the
input is started again for the next low duration. The variation of the integral signal VB(t) is
illustrated in Figure 5. This circuit is valuable because it is compact, consumes low power,
and uses asynchronous strategies to determine the time in the high state. More details
about the analog implementation of this circuit and its variants can be found in [2,7].

Figure 5. Evolution of the integral (VB(t)) in an A-H neuron.

Fractal Fract. 2024, 8, 226 6 of 28

The evolution of VB(t), after reaching the threshold the first time, is determined by the
following set of equations:

VB(t) = Vthr − ∆V +
1

CB

∫ t

tk−1+th

i(t) dt if VB(t) < Vthr

VB(t+k)← Vthr + ∆V if VB(tk) = Vthr

VB(t) = Vthr + ∆V − 1
CB

∫ t

tk

Idis dt if VB(t) > Vthr

VB((tk + th)
+)← Vthr − ∆V if VB(tk + th) = Vthr

(7)

where CB is the parallel of capacitors Cm1 and Cm2, and Idis is the discharging current. Also,
CB and ∆V can be combined in a single threshold Kti,B with the value Kti,B = CB∆V. The
output is described by:

zB(t) =

{
A if VB(t) ≥ Vthr

0 if VB(t) < Vthr
(8)

With regard to an A-H neuron, it is important to remark the following issues:

1. It does not actually implement IPFM, but something that is very close to it, for
narrow pulse widths. Therefore, in the next section, a new type of neuron capable of
performing PFM is proposed and compared to the A-H neuron.

2. It cannot be directly reproduced in the FPAA because individual electronic com-
ponents cannot be used. However, CABs, which can implement integrators and
comparators, are available in an FPAA and can be used to mimic the input-to-output
behavior based on analog principles. Having a quickly configurable neuron could
help to verify designs prior to the final fabrication of the silicon neurons.

2.4. Fractional Operator

The Riemann–Liouville definition for the FO derivative of order α ∈ [0, 1] is defined
as follows:

Dα f (t) =
1

Γ(1− α)

d
dt

∫ t

0

f (τ)
(t− τ)α

dτ = f (t) ∗ t−α

Γ(1− α)
(9)

where Γ and ∗ denote the Gamma function and the convolution operation, respectively. In
this definition, the FO derivative of a constant is not equal to zero, which can be observed
in the power-law decaying kernel. Its Laplace transform for zero initial conditions can be
expressed as:

L{Dα f (t)} = sαF(s) (10)

The Oustaloup approximation, also known as the Oustaloup recursive method, con-
sists of the product of pairs of poles and zeros to approximate the FO operator, Dα, with
α ∈ [−1, 1], as follows:

sα ≈ C0

N

∏
k=1

s + ωzk

s + ωpk

(11)

where ωzk and ωpk are the frequencies of the zeros and poles, respectively, N is the order of
the approximation, and C0 is a constant. This approximation is valid in the range [wb,wh],
where ωb and ωh are the low and high transition frequencies, respectively. The correct gain
at 1 rad/s, which is |(jω)α| = 1, can be adjusted by C0, but if 1 rad/s is outside of [wb, wh],
the gain can be adjusted at any other suitable frequency instead [21].

This approximation can also be expressed using PFE as the sum of first order transfer
functions and a constant, i.e.,

sα ≈ c0 +
N

∑
i=1

ci
Tis + 1

(12)

where c0, ci, and Ti are constants.

Fractal Fract. 2024, 8, 226 7 of 28

2.5. Fractional-Order Integrate-and-Fire Neurons

Recently, new models of silicon neurons using FO operators have emerged to model
the spike frequency variation, also known as adaptation or accommodation, observed
in some types of real neurons in response to constant or periodic stimuli. Integer-order
models predict that, for this kind of input, the spikes should follow a uniform pattern over
time. In [8], an FO model was utilized to describe experimental data where adaptation
was relevant. It is thought that these dynamics can provide neurons with additional
mechanisms for the transmission of information, such as

C fDαVf (t) = i(t) (13)

where α ∈ (0, 1] in this case, and C f and Vf are the capacitor and the voltage in this
fractional model, respectively.

3. Analog Implementation

This section addresses the analog implementation of the silicon neurons considered
in this work using the AN231E04 FPAA from Anadigm®. Firstly, details of the FPAA are
given from both hardware and software perspectives. Then, the implementation of the
neurons are presented based on the description in Section 2.

3.1. Anadigm’s FPAA

The AN231E04 device is one of the dynamically reconfigurable FPAAs in the family of
integrated circuits offered by Anadigm®. It consists of, depending on the development kit,
one, two or four FPAA modules. Each FPAA has seven analog input/output (I/O) cells
and four configurable blocks. Every CAB contains two op-amps, a comparator, banks of
programmable capacitors, and a collection of configurable routing and clock resources. For
complex signal processing, it is common to connect several FPAAs together. Its architecture
is illustrated in Figure 6. Configuration data are stored in an on-chip static random access
memory (SRAM) and configuration can be changed dynamically.

FPAA programming is carried out with the AnadigmDesigner2 software (version 2.2.7),
a visual programming environment using high level block diagrams. The FPAA modules
are represented as subsystems, while each circuit function is represented by blocks de-
nominated configurable analog modules (CAMs), which are made up by the resources
available from CABs. CAMs must be connected by wires, making up a schematic. In this
environment, it is possible to deal with continuous or sampled signals. When the labels
Φ1 and Φ2 appear next to a pin, it indicates that the corresponding input of that CAM is
sampled on phase 1 or 2, respectively, with respect to its own CAM clock, while for output
pins, it indicates that the output changes only during the specified phase and is held or set
to zero during the opposite phase, also referred to as half-cycle signals.

The relevant considerations related to the analog processing of signals derived from
its architecture are summarized next:

1. The FPAA uses switched capacitor technology, which mimics the behavior of other
components, such as resistors, by controlling the current flowing to or from capacitors.
Figure 7 illustrates the concept. One consequence is that the values of the parameters
of a CAM are quantized and limited to a frequency-dependent range. It also causes
some CAM signals to be sampled in one of two non-overlapping phases of the clock,
while others are processed in continuous time. Therefore, the clock frequency and
the phase in which the signal is processed affect the design process. Continuous-time
CAMs are preferred when possible.

2. The FPAA operates internally with differential signals centered around a mid-rail
voltage (VMR) of 1.5 V, which is the internal signal reference. Therefore, the common
mode voltage of the signals is 1.5 V. The differential mode ranges from −3 to +3 V.
Both differential and non-differential signals can be connected to the FPAA. In the
case of non-differential ones, the negative pin is connected to VMR.

Fractal Fract. 2024, 8, 226 8 of 28

3. The CAMs can be configured as: (a) Integrators and SumIntegrators, which are single-
input and two- or three-input integrators, respectively, with integration constants
programmable for each input (on the scale of µs−1) and with an optional reset func-
tion controlled by a comparator that is part of the same CAM; (b) Comparators, which
produce digital output levels that go high when the input is greater than an internal
programmable reference or an external signal; (c) FilterBilinears (BFs), which can be
programmed as low-pass, high-pass, and all-pass filters or as zero-pole pairs; (d) Gain-
Inv and GainHold, which are the continuous-time and half-cycle gains, respectively;
and (e) SumInv and SumDiff, which are the continuous-time and half-cycle summing
blocks, respectively, with three and four possible inputs, respectively. CAMs are
typically recommended to have a clock frequency of 4 MHz or less, with the exception
of comparators, which can be used at 8 MHz. Here, the highest clock frequency will
be used to achieve neuron behaviors closer to pure analog versions, i.e., closer to
mimicking asynchronous strategies.

Figure 6. Architecture of an Anadigm® FPAA. Image extracted from user manual [22].

Figure 7. Resistance as switched capacitor and non-overlapping phases.

3.2. Integer-Order Neurons

The proposed implementations of neurons in the FPAA are now explained. In particu-
lar, three types of integer-order neurons are considered.

3.2.1. Dirac Delta-Pulsed Neuron

The simplest implementation of an I&F neuron with an impulse-like output of the
form of (1) is achieved by reproducing (5) and (6) directly, which involves only one integral
with reset and a comparator. Figure 8a shows the block diagram of this neuron (DP neuron,
hereafter), whereas Figure 8b illustrates the evolution of the integrator output. VDD = 3
V denotes the maximum voltage of the signals within the FPAA. From now on, i(t) will
represent the input in terms of voltage since it is the working domain of the FPAA, and, for
simplicity, only positive inputs are considered (i(t) ≥ 0).

Fractal Fract. 2024, 8, 226 9 of 28

(a) (b)

Figure 8. DP neuron: (a) block diagram and (b) evolution of the integrator output.

In the FPAA, an integrator block with reset option controlled by a comparator signal
fits the requirements. Figure 9 shows the schematic of this implementation in the Anadig-
mDesigner2 software. As can be seen, a single FPAA is employed. A wave generator is
connected as input to pins 01 and 02 (top-left corner). The output of the integrator will
be fed to the input of the comparator, whereas the output of the comparator will be the
impulse-like output. Actually, it is a pulse of 250 nanoseconds when using a 4 MHz clock
in the CAM (fs = 4 MHz). The output of the comparator is routed to an I/O cell in order
to make it accessible outside the FPAA (pin 39). Since all comparators of the CAMs are
either −2 or +2 V in differential mode internally, the I/O cell has been set to work in
“comparator mode”, which converts a comparator signal to a single-ended signal outside
the FPAA, between 0 and 3.3 V. The probes in the schematic indicate which signals of the
simulation will be plotted. Only the pulse train of the neuron is measured outside the
FPAA because it is the main signal. The intermediate signals, such as integrator output,
are testing points, i.e., signals to monitor the circuitry behavior. Measuring them outside
requires using additional resources. Furthermore, it is easier to interpret the differential
signals inside the FPAA than the two-pin signals outside the FPAA.

Figure 9. Schematic implemented in AnadigmDesigner2 to reproduce the DP neuron.

Mathematically, the behavior is described by:

SA
1 (t) =

∫
τA

1 i(t)dt (14)

SA
1 (t

+
k) ← 0 if CA

1 (tk) = +VC (15)

CA
1 (t) =

{
+VC if SA

1 (t) > UA
1

−VC if SA
1 (t) ≤ UA

1
(16)

where SA
1 (t) and CA

1 (t) are the output of the integrator and the comparator, respectively,
VC = 2 V and UA

1 and τA
1 are the configurable parameters in the CAM, namely, the compara-

Fractal Fract. 2024, 8, 226 10 of 28

tor threshold and the constant of integration, respectively. Comparing this implementation
with the IPFM theoretical model, the following relation can be obtained:

KA
ti =

UA
1

τA
1

(17)

where KA
ti is the equivalent threshold.

3.2.2. Axon-Hillock-Like Neuron

One way to generate an output similar to that of the A-H circuit in the FPAA is to
use two integrators with reset. The proposed implementation is based on the following
operating principles: (1) the input is integrated (S1) up to the threshold of the neuron
(Vthr,1) and it is not yet reset but is ignored (it is ignored as in the A-H circuit); (2) when
the threshold is reached, a second integral (S2) with constant input is activated, which
will determine the time in the high state; (3) when the threshold of the second comparator
(Vthr,2) is reached, both integrals are reset to start a new cycle; and (4) the signal S2 is fed
to a comparator to obtain the output pulses. An illustration of the block diagram of the
implementation and the evolution of both integrals S1 and S2 are shown in Figure 10a and
10b, respectively. The first integrator output, S1, replicates the behavior of V1(t) in the A-H
circuit (Figure 4b) during the low state (i.e., V1 < Vthr), while the second integrator output,
S2, reproduces it during the high state (namely, V1 > Vthr).

(a) (b)

Figure 10. A-H-like neuron: (a) block diagram and (b) evolution of the two integrator outputs.

Having sketched the general idea, the schematic used to reproduce the neuron behavior
is illustrated in Figure 11. It can be observed that it contains two integrators with reset, an
independent comparator, a voltage source (+2), an inverting gain, and an inverted summing
block. Its description is as follows. The first integrator block (top) receives the input signal i(t)
from the wave generator and integrates it until the pulse has been released, i.e.,

SB
1 (t) =

∫
τB

1 i(t)dt (18)

SB
1 ((tk + th)

+) ← 0 if CB
1 (tk + th) = +VC (19)

CB
1 (t) =

{
+VC if CB

2 (t) > UB
1

−VC if CB
2 (t) ≤ UB

1
(20)

Fractal Fract. 2024, 8, 226 11 of 28

where SB
1 (t) is the output of the first integrator block, CB

1 (t) and CB
2 (t) are the output of

the comparators of the first and the second integrator blocks (the latter, at the bottom),
respectively, and UB

1 is the threshold of the comparator of the first integrator block. The
activation of the input of the second integrator block and, therefore, the trigger of a pulse,
is given by the independent comparator with output CB

3 (t) (middle right):

CB
3 (t) =

{
+VC if SB

1 (t) > UB
3

−VC if SB
1 (t) ≤ UB

3
(21)

where UB
3 is the threshold of this comparator, which is, in fact, the neuron threshold Vthr,1.

Figure 11. Schematic implemented in AnadigmDesigner2 to reproduce the A-H neuron.

In order to take only the positive part of this comparator output, a constant voltage of
2 V is added by using the voltage block (middle left), the inverted summing block, and the
inverting gain (bottom right). Taken together, these three blocks act much like a half-wave
rectifier (RB

1 (t)). Note that a half-wave rectifier block was not used instead because it was
observed to cause significant distortion in the dynamics. Therefore, the output of this set of
blocks is:

RB
1 (t) =

{
+VDD if CB

1 (t) > 0
0 if CB

1 (t) ≤ 0
(22)

The second integrator block receives the rectified signal and integrates it until it reaches
its own threshold, i.e.,

SB
2 (t) =

∫
τB

2 RB
1 (t)dt (23)

SB
2 ((tk + th)

+) ← 0 if CB
2 (tk + th) = +VC (24)

CB
2 (t) =

{
+VC if SB

2 (t) > UB
2

−VC if SB
2 (t) ≤ UB

2
(25)

where SB
2 (t) and UB

2 are the output and the threshold (Vthr,2) of the second integrator with
reset block, respectively. Finally, the single-ended output of this schematic is obtained by
feeding an I/O cell, operating in comparator mode, with the output CB

3 (t) (similar to the
previous implementation).

Fractal Fract. 2024, 8, 226 12 of 28

The properties of the output pulses can be described by the following expressions:

tB
l =

UB
3

τB
1 ī

(26)

tB
h =

UB
2

τB
2 VDD

(27)

where ī can be a constant input or the average value of i(t) over the time interval in which
it participates (tB

l in this case). This model is related to the A-H model as follows:

KB
ti =

UB
3

τB
1

(28)

IB
dis = VDD

UB
3

UB
2

τB
2

τB
1

(29)

By making UB
2 = UB

3 , more similarity to an A-H neuron can be achieved. The value of
threshold UB

1 is chosen to reset the integrators SB
1 and SB

2 at the same time (e.g., UB
1 = 0).

3.2.3. True-PFM Neuron

An alternative to the previously presented schematic to perform correct PFM modu-
lation is what we call the true-PFM (TPFM) neuron, which operates as follows. First, the
input (S1) is integrated up to the threshold (Vthr,1) and immediately reset (similar to the
delta-pulsed neuron). Then, a positive feedback involving a second integrator (S2) starts the
integration when the impulse of the previous integrator is received. The positive feedback
stops when the threshold of the second integrator (Vthr,2) is reached, which determines
the high state duration. Note that real neurons use positive feedback to generate action
potentials. Finally, the output S2 is given as input to a third comparator to obtain the
rectangular output pulses (Vthr3 close to 0). Figure 12a shows the block diagram of the
neuron, while Figure 12b illustrates a possible scenario for the evolution of the two integrals.

(a) (b)

Figure 12. TPFM neuron: (a) block diagram and (b) evolution of the two integrators outputs.

Fractal Fract. 2024, 8, 226 13 of 28

The proposed implementation for the FPAA contains an integrator block, a summing
integrator block, two independent comparators, an inverted summing stage, and an in-
verted gain, as shown in Figure 13. The first integrator with reset, which behaves as a DP
neuron, is described by:

SC
1 (t) =

∫
τC

1 i(t)dt (30)

SC
1 (t

+
k) ← 0 if CC

1 (tk) = +VC (31)

CA
1 (t) =

{
+VC if SC

1 (t) > UC
1

−VC if SC
1 (t) ≤ UC

1
(32)

The output signal of the comparator CA
1 is processed with a rectifier similar to the

previous implementation. The combined output of the blocks is then:

RC
1 (t) =

{
+VDD if CC

1 (t) > 0
0 if CC

1 (t) ≤ 0
(33)

The integrator–adder block receives the rectified delta pulse from the first integrator
block and its own output, forming a positive feedback. The duration in the high state is
determined by the time it takes for the integral to integrate the sum since the delta pulse is
triggered until it reaches the threshold of its comparator:

SC
2 (t) =

∫
(τC

2,1RC
1 (t) + τC

2,2SC
2 (t))dt (34)

SC
2 ((tk + th)

+) ← 0 if CC
2 (tk + th) = +VC (35)

CC
2 (t) =

{
+VC if SC

2 (t) > UC
2

−VC if SC
2 (t) ≤ UC

2
(36)

where τC
2,1 and τC

2,2 are the integrator–adder block gains. Thus, the second integral follows
a differential equation of the form:

d
dt

SC
2 (t) = τC

2,2SC
2 (t) + τC

2,1VDDδ(t− tk), SC
2 (0) = 0 (37)

whose solution is:

SC
2 (t) = τC

2,1VDDeτC
2,2(t−tk)θ(t− tk) (38)

Note that (37) and (38) are simplifications in which a single pulse has been considered to
facilitate the following deductions. In particular, at the moment when the integral reaches
the threshold UC

2 , the following holds:

SC
2 (tk + th) = τC

2,1VDDeτC
2,2th = UC

2 (39)

Since the maximum value of UC
2 is VDD, τC

2,1 must be less than 1. From (39), the
following expression is deducted for the high state duration:

tC
h =

1
τC

2,2
ln

(
UC

2

τC
2,1VDD

)
(40)

while the elapsed time between pulses is the same as in the DP neuron, i.e.,

ISIk = tC
l + tC

h =
UC

1

τC
1 ī

(41)

Fractal Fract. 2024, 8, 226 14 of 28

The equivalent threshold, KC
ti , is obtained as:

KC
ti =

UC
1

τC
1

(42)

Figure 13. Schematic implemented in AnadigmDesigner2 to reproduce the true-PFM neuron.

Table 1 contains a comparison of the three implementations of integer-order neurons,
namely DP, A-H, and TPFM neurons.

Table 1. Comparison of integer-order neuron implementations.

Characteristic DP Neuron A-H Neuron TPFM Neuron

Pulse width Non-tunable

tA
h =

1
fs

Tunable

tB
h =

UB
2

τB
2 VDD

Tunable

tC
h =

1
τC

2,2
ln

(
UC

2
τC

2,1VDD

)

Firing frequency
Linear

f A =
τA

1 ī
UA

1

Nonlinear

f B =

(
UB

3
τB

1 ī
+

UB
2

τB
2 VDD

)−1
Linear

f C =
τC

1 ī
UC

1

CAM needed Integrator with
comparator

Two Integrators with
comparators
Comparator
Inverting Sum Stage
DC Voltage Source
Inverting Gain Stage

Integrator and Sum Integrator
with comparators
Comparator
Inverting Sum Stage
DC Voltage Source
Inverting Gain Stage

Power consumption
(software estimation)

40 mW 94 mW 96 mW

3.3. Fractional-Order Operator

Figure 14 shows the schematics used to implement the FO operator in AnadigmDe-
signer2. Based on the two forms of the approximation of the FO operator (i.e., transfer
functions (11) and (12)), three different implementations are developed:

• Setting up the BFs as zero-pole pairs in series to match transfer function (11), similar
to [23]. This implementation will be referred to as BFs in series. Each of these CAMs
has the following transfer function:

Vout(s)
Vin(s)

= −GHF
s + 2π fz

s + 2π fp
(43)

Fractal Fract. 2024, 8, 226 15 of 28

where GHF is the gain at high frequencies, and fz and fp are the zero and pole frequen-
cies, respectively, with the condition:

GDC =
fz

fp
GHF (44)

where GDC is the static gain. In this form, the number of BFs required is equal to
the order of the approximation to match the number of poles and zeros. Because the
BFs have an inverted output, when dealing with an odd approximation order, an
inverted gain must be connected to achieve a non-inverted operator. To implement
the constant C0 of (11), its value can be distributed among the BFs gains and/or the
additional inverting gain. Furthermore, as recommended in the documentation, the
I/O cell is configured as an input with sample and hold that samples during phase 2.
Figure 14a shows the implementation for this case for an approximation of order three
(i.e., N = 3).

• Using the BFs as low-pass filters, along with summing blocks and a gain, to obtain
transfer function (12). This implementation will be referred to as BFs in parallel. Each
of these CAMs has the following transfer function:

Vout(s)
Vin(s)

= ± 2π f0G
s + 2π f0

(45)

where f0 is the corner frequency, and G is the gain. The CAM output can either be
inverted or non-inverted. To implement the FO operator in the PFE form, the num-
ber of BFs required is equal to the order of the approximation in order to match the
number of poles. The corner frequency in each CAM is chosen to be equal to each
pole frequency (f0i = (2πTi)

−1), while G is used to adjust the filter gain (Gi = ci),
where subscript i denotes each zero-pole pair of the approximation. The constant
c0 is implemented as a gain block and it is added to the BF outputs thanks to the
summing blocks. When using half-cycle summing blocks, the output is held using
a sample and hold block or I/O cell configured as output with sample and hold. In
Figure 14b, the schematic of this implementation is illustrated again for an approxima-
tion of order three.

• Using individual integrators and gains to assemble low-pass filters and thus transfer
function (12), similar to [24]. This implementation will be referred to as individual
integrators. Each negative loop making up the low-pass filter has the following
transfer function:

Vout(s)
Vin(s)

= − Gτ1

s + Gτ2
(46)

where τ1 and τ2 are the constants of the integration of the individual integrator, and
G is the value of the gain connected to it. The number of loops required is equal
to the order of the approximation, i.e., N integrators and N gains. The integration
constants are chosen to satisfy Gτ2 = T−1

i , and τ1τ−1
2 = ci (again, subscript i denotes

the pairs zero-pole of the approximation). The constant c0 is implemented through an
additional inverting gain. The loop outputs and the constant c0 are added by using
summing blocks. The schematic of this implementation is shown in Figure 14c also
for an approximation of order three.

It is important to highlight that the implementation using BFs in series requires fewer
resources than the other two alternatives considered. This is because it does not require
summing blocks, resulting in a decrease in the number of CAMs used and, consequently,
in power consumption. Additionally, the free FPAA components could be utilized for other
tasks. However, in terms of versatility, the third option, individual integrators, may be
more suitable. In contrast to the use of BFs, where the placement of poles and zeros is
directly determined by the sampling frequency of the CAM, the poles in the third form
are linked to the values of the integration constants and the gain. This feature allows for

Fractal Fract. 2024, 8, 226 16 of 28

a wider frequency range in which the approximation of the FO operator is valid and for
placing the band limits with less dependence on the sampling frequency.

(a) (b)

(c)

Figure 14. Schematic implemented in AnadigmDesigner2 to reproduce a third-order approximation
of the FO operator using: (a) CAMs as zero-pole pairs in series, (b) CAMs as low-pass filters, and
(c) integrators and gains.

3.4. Fractional-Order Neurons

Many papers on fractional I&F neurons can be found in the technical literature. How-
ever, most of them are limited to the calculation of the mathematical equations and do
not deal with their analog implementation. Usually, the memory of the FO operator is
preserved during the operation of the neuron because it is computed separately, i.e., the
so-called memory trace is guaranteed [8,25]. In these works, the adaptation is observed to
have two properties at the output for a constant input: (1) the firing frequency decreases
or increases with time, and (2) the baseline frequency depends on the FO operator. The
existing works dealing with the analog implementation of FO neurons fail to achieve real
adaptation because they use an FO integrator that loses memory as soon as it is reset after
firing a pulse, as shown, for example, in [26]. Although the firing frequency is observed to
depend on the FO operator, the first property is not achieved.

Fractal Fract. 2024, 8, 226 17 of 28

Here, to solve this issue, the combination of classical integer- and fractional-order
operators is used. In particular, the FO operator of order β = 1− α is added to the block
diagram of each integer-order neuron before the first integrator for two purposes: (1) to
allow the reset of the neuron by means of the integer-order integral (local operator), and
(2) to preserve the dynamic memory (non-locality by time) thanks to the unaltered FO
derivative. Therefore, the proposed FO-I&F neuron is ruled by:

y(tk) =
∫ tk

tk−1

Dβi(t)dt = K f
ti (47)

where Dβ is the FO operator of order β in the Riemann–Liouville sense, taking advantage
of the non-zero derivative of a constant. After each pulse is fired, only the integer-order
integrator is reset, which is denoted by:

y(t+k)← 0 (48)

Among all the silicon neurons, two types were chosen, namely DP and TPFM cases,
which will be referred to as FO-DP and FO-TPFM, respectively. This selection was based
on the fact that the A-H neuron does not correctly modulate its input for wide pulses, and
for thinner pulses, similar results would be expected. The analog implementation of an
FO version of the A-H neuron can be found in our previous work [27], where simulation
results in the MATLAB/Simulink environment are given to show its behavior. Figure 15
show the block diagrams of FO-DP neurons and FO-TPFM neurons based on this idea.

(a) (b)

Figure 15. Block diagram of: (a) FO-DP neuron and (b) FO-TPFM neuron.

To implement the FO neurons in the FPAA, the FO operator is connected to an
integer-order neuron in order to reproduce (47). The FO operator can be implemented
by one of the previously presented forms. However, it is worth mentioning that the
implementation of the FO operator using BFs in series is considered to be more appro-
priate for its use in NC systems because the limited resources are efficiently employed
and can be freed for the controller itself and for other signal processing. The schematics
in AnadigmDesigner2 corresponding to the FO-DP and FO-TPFM neurons are shown in
Figures 16a and 16b, respectively.

Fractal Fract. 2024, 8, 226 18 of 28

(a)

(b)

Figure 16. Schematic implemented in AnadigmDesigner2 to reproduce: (a) FO-DP neuron using BFs in
series and (b) FO-TPFM neuron using BFs in series.

4. Results

This section contains the simulation results corresponding to the analog schematics
presented earlier, obtained using the AnadigmDesigner2 software (version 2.2.7).

4.1. Integer-Order Neurons

The three types of integer-order neurons implemented in Section 3.2 (namely, DP, A-H,
and TPFM) were tested for a constant input equal to 0.1 V. The parameters of the first
integrator and the corresponding firing threshold in each implementation were chosen to
be the same, i.e.,: τA

1 = τB
1 = τC

1 = 0.2 µs−1, and UA
1 = UB

3 = UC
1 = 0.2 V. For the A-H

and TPFM neurons, the parameters were selected to obtain a pulse width of tB
h = tC

h = 5 µs.
Therefore, τB

2 = 0.06 µs−1, UB
1 = 0 V, UB

2 = 0.9 V, τC
2,1 = 1 µs−1, τC

2,2 = 0.303 µs−1, and
UC

2 = 3 V (see Appendix B for additional considerations in parameter selection).
The simulation results obtained are shown in Figure 17. They are visualized in the

oscilloscope of AnadigmDesigner2, which can display a maximum of four signals simultane-
ously, corresponding to one probe per channel (CH). On the right side, the volts and time
per division can be adjusted, as well as the position offset. The lower left corner shows the
start and end times of the simulation. In particular:

Fractal Fract. 2024, 8, 226 19 of 28

(a)

(b)

(c)

Figure 17. Simulation results for integer-order neurons in AnadigmDesigner2: (a) DP neuron, (b) A-H
neuron, and (c) TPFM neuron.

• Figure 17a shows the signals of the DP neuron, consisting of the input (CH3), the
integrator output (CH1), and the pulse train output (CH4). In CH1, the integral starts
at 0 and integrates the input up to the selected threshold (namely, 200 mV), causing
a pulse to be fired, as seen in CH4. The integral is then reset and a new cycle begins.
This behavior causes the integral to appear as a sawtooth wave, and a uniform firing
pattern is observed at the output.

• Figure 17b corresponds to the A-H neuron. The plotted signals are the input (CH3),
the integrator output (CH1), the integral in the high state (CH2), and the output
pulses (CH4). The integral of the input differs from that of the DP neuron in that
it reaches 200 mV and starts the second integration in CH2, but it is not reset. In
fact, it is observed that the integral reaches almost 400 mV. The second integral that
was initiated integrates at a constant rate until it reaches 0.9 V, the threshold chosen
to obtain a pulse width of 5 µs. In CH4, the pulses coincide in time with the CH2
triangles. The obtained pulses have a width of 5 µs, as desired.

• Figure 17c illustrates the results for the TPFM neuron, namely the input (CH3), the
integrator output (CH1), the positive feedback involving the second integral (CH2),
and the output pulses (CH4). It is observed that the signal in CH2 behaves like that

Fractal Fract. 2024, 8, 226 20 of 28

of the DP neuron by resetting the integral at 200 mV. In CH3, the positive feedback
is initiated each time that CH1 reaches the threshold, with a shape reminiscent of a
slice of an exponential as derived in (38). The output fires pulses of width 5 µs in CH4.
The main difference between the A-H and TPFM neurons is observed at the output:
although the pulse width is the same, the firing frequency is not. The TPFM preserves
the firing frequency of the DP neuron when using the same ‘equivalent threshold’ Kti
and just adds more width to the pulse (causing the gain of the neuron to increase).
However, the firing frequency of the A-H neuron decreases compared to the other
two types because the integrator is ignored during the high state, resulting in delayed
firing. The firing frequency does not depend linearly on the input amplitude, and,
therefore, the A-H neuron does not modulate the input properly. As mentioned earlier,
the differences are reduced for narrow pulses. Note that the duration of the first low
state is longer than the successive ones caused by an initialization.

4.2. Fractional-Order Operator

Once the neuron implementations were observed to behave as desired, the next step
was to validate the FO operator implementations. For illustration purposes, an FO operator
of order 0.5 was considered for a sinusoidal input with a frequency of 30 kHz and an
amplitude of 50 mV. The parameters used to obtain the Oustaloup approximation for the
BFs in series and BFs in parallel were N = 3, f BF

b = 2 kHz, and f BF
h = 400 kHz, which are

the minimum and maximum frequencies available to place poles and zeros in these CAMs
running at 4 MHz. For the implementation using individual integrators, an approximation
of the same order (N = 3), but with f I I

b = 63.66 Hz, and f I I
h = 4 kHz, which were chosen

based on the frequency-dependent range limits of the integration constants of integrator
blocks and gains when running the CAMs at 4 MHz. This range was selected to show the
versatility of this implementation. The transfer functions of the approximations are:

HBF(s) = 3.76
(s + 1.954× 104)(s + 1.143× 105)(s + 6.683× 105)

(s + 4.730× 104)(s + 2.763× 105)(s + 1.616× 106)
(49)

HI I(s) = 1.2
(s + 6.843× 102)(s + 5.861× 103)(s + 5.020× 104)

(s + 2.002× 103)(s + 1.715× 104)(s + 1.469× 105)
(50)

where HBF denotes the transfer function for implementations using BFs, i.e., BFs in series
and BFs in parallel, and HI I , corresponds to individual integrators. The parameters used
in the CAMs for each implementation are listed in Table 2. Note that, for individual
integrators, the magnitude was adjusted to obtain the same operator gain as in the other

cases, at the same frequency (fc =
√
(f BF

b f BF
l) = 28 kHz), by using the gain of the summing

block (GS).
The three types of analog implementations of the FO operator are compared in

Figure 18. In particular, Figure 18a shows the input signal in CH3, together with its integer-
order derivative in CH1 and the output (i.e., fractional-order derivative) in CH4 for the
case where BFs are used in series. As can be observed, the FO derivative of s0.5 causes the
wave to be delayed almost π/4 rad with respect to the input, while the integer derivative
produces π/2 rad as expected. In Figure 18b, the FO operator using BFs both in series (CH4)
and in parallel (CH1) and that using integrators and gains (CH2) are plotted. Regarding
the first two, it can be seen that there are only small differences in the performance of such
implementations. However, the implementation using BFs in series requires fewer CAMs.
Concerning the third one, a similar performance is observed for a single frequency, but, in
contrast to the use of BFs, the working range of the approximation is between 63.6 Hz and
40 kHz. Likewise, it is observed that the phase is slightly different from the previous cases
because of the range of the approximation, and, therefore, the phase at the given frequency
changes. The primary disadvantage is that it consumes more resources compared to BFs
in series.

Fractal Fract. 2024, 8, 226 21 of 28

Table 2. Parameters used in the three types of implementations for s0.5.

BFs in Series BFs in Parallel Individual Integrators
Approximation fb = 2 kHz fb = 63.66 Hz

(N = 3) fh = 400 kHz fh = 400 kHz

Implementation

fp1 = 7.52 kHz f01 = 7.52 kHz τ1 = 0.532 µs−1

fp2 = 43.98 kHz f02 = 43.98 kHz τ2 = 0.147 µs−1

fp3 = 257.22 kHz f03 = 257.22 kHz τ3 = 1.570 µs−1

fz1 = 3.11 kHz G1 = 0.26 τ4 = 1.710 µs−1

fz2 = 18.19 kHz G2 = 0.72 τ5 = 0.055 µs−1

fz3 = 106.37 kHz G3 = 2.52 τ6 = 0.203 µs−1

GC0 = 3.76 Gc0 = 3.76 Gc0 = 5.00
GHF1 = 1.00 G1 = 1.00
GHF2 = 1.00 G2 = 0.01
GHF3 = 1.00 G3 = 0.01

GS = 0.24

(a)

(b)

Figure 18. Simulation results for the FO operator of order 0.5 in AnadigmDesigner2: (a) input, integer
derivative (s), and FO derivative using BFs in series and (b) FO derivative using BFs in series, BFs in
parallel, and using individual integrators.

4.3. Fractional-Order Neurons

After verifying that both the neuron and the FO operator functioned correctly, their
combination was evaluated as an FO neuron. The simulation results obtained in Anadig-
mDesigner2 with such FO neurons are described next. In both cases, a constant voltage of
100 mV was considered as the input signal.

First, the simulation of the FO-DP neuron is described. The neuron parameters were
τA

1 = 0.6 µs−1 and UA
1 = 0.2 V; the value of the neuron order, α, was changed to evaluate

its effect on the neuron output. Figure 19a shows the main signals involved in the analog
circuit for α = 0.5: input i(t) (CH3), FO derivative of the input Dβi(t) (CH2), integrator
output S1 (CH1), and output pulses z(t) (CH4). As can be seen, the FO derivative of the

Fractal Fract. 2024, 8, 226 22 of 28

input decays over time, causing the integrator to slow down over time. The output pulses
are no longer evenly distributed but spread out over time, which is reminiscent of the
adaptation observed in some types of real neurons. In Figure 19b, the output pulses of
the circuit, but varying the neuron order, are shown, i.e., α1 = 1 (CH1), α2 = 0.75 (CH2),
α3 = 0.5 (CH3), and α4 = 0.25 (CH4). From these results, it is observed that, as the order
increases, the firing frequency decreases, but the effect of adaptation increases; i.e., the
difference in the frequency of the first pulses with respect to the last ones is greater.

(a)

(b)

Figure 19. Simulation results for FO-DP neuron in AnadigmDesigner2: (a) input, FO derivative, in-
tegration and fired pulses for α = 0.5 and (b) output pulses for α1 = 1, α2 = 0.75, α3 = 0.5, and
α4 = 0.25.

Similar simulations were performed for the FO-TPFM neuron. The parameters chosen
for the neuron were tC

h = 3 µs and KC
ti = 9× 10−6, resulting in UC

1 = 3 V, τC
1 = 2.233 µs−1,

τC
2,1 = 1 µs−1, τC

2,2 = 0.573 µs−1, UC
2 = 3 V; again, the value of order α was changed

to evaluate its effect on the output pulses. Figure 20a displays the simulation results
for the neuron with α = 0.5, where the plotted signals are the same as in the previous
case. Likewise, Figure 20b shows the output pulses for neurons with order α1 = 1 (CH1),
α2 = 0.75 (CH2), α3 = 0.5 (CH3), and α4 = 0.25 (CH4). It can be observed that both
recognizable properties of adaptation are also achieved with the FO-TPFM neuron, as
detailed below.

To illustrate the two properties of adaptation in the implemented FO-TPFM neuron,
two figures are described next. First, Figure 21a shows the frequency measured in the
first 16 ISIs, normalized with respect to the inverse of the time to the first spike, which is
represented as zero on the ISI axis. The dependence of the change in firing frequency with
the order, i.e., the strength of adaptation with the order, is visible. It can be seen that, for
the integer case (α = 1), the firing frequency remains constant except at the beginning due
to the initialization of the neuron. For FO neurons, the lower the order of the neuron, the
greater the difference between the first and the last measured frequency. Second, Figure 21b
shows the dependence of the frequency baseline on the order by plotting the frequency
measured in the last ISI for each neuron order. It can be observed that the frequency level

Fractal Fract. 2024, 8, 226 23 of 28

increases with increasing neuron order, following a nonlinear relationship. The maximum
value is determined by the integer case, which has a frequency of 174 kHz. In contrast, the
frequency in the smallest order, α = 0.125, is almost ten times smaller, at 16.6 kHz.

(a)

(b)

Figure 20. Simulation results for FO-TPFM neuron in AnadigmDesigner2: (a) input, FO derivative,
integration, and fired pulses for α = 0.5 and (b) output pulses for α1 = 1, α2 = 0.75, α3 = 0.5, and
α4 = 0.25.

4.4. Discussion

The discussion of the main results is elaborated next:

• Three types of integer-order I&F neurons have been implemented: the DP neuron,
which fires impulse-like trains; the A-H neuron, which imitates one of the most popular
neurons used in the literature, especially for control purposes, but is unable to perform
appropriate modulation for large pulse widths; and a proposed neuron called TPFM,
which preserves the ability to modulate signals even for large pulse widths, making
it crucial in control applications. Unlike the A-H and TPFM neurons, the DP neuron
lacks the ability to generate pulses of custom width, which is necessary for certain
applications, such as those involving systems with significant static friction, which
are the basis for NC. In terms of implementation, the DP neuron is highly compact,
requiring only a single CAB and consuming only 40 mW of power. Implementations
of the A-H and TPFM neurons were designed to fit into a single FPAA. In each case,
three out of four CABs were used, and similar power consumption levels are expected
(94 and 96 mW, respectively).

• Three types of FO operator implementations were tested to compare the quality of the
approximation, hardware utilization, and power consumption. Two implementations,
BFs in series and BFs in parallel, used BFs as zero-pole pair and low-pass filters,
respectively. The third implementation used individual integrators. The use of BFs in
series is the most compact solution for implementing FO derivatives, requiring at most
N + 1 blocks for an approximation of order N while providing similar performance to
BFs in parallel. However, in some circumstances, that based on individual integrators
is a more versatile option, allowing for a better approximation. For NC, BFs in series
are more appropriate due to the limited resources in the FPAA.

Fractal Fract. 2024, 8, 226 24 of 28

(a)

(b)

Figure 21. Simulation results corresponding to FO-TPFM neuron when changing the neuron order α:
(a) normalized pulse frequency and (b) last frequency dependence.

• Two types of FO neurons were implemented based on integer-order neurons and FO
derivatives connected at their inputs to search for behaviors inspired in real neurons.
Specifically, the FO-DP and FO-TPFM neurons were created by combining the integer-
order neurons, which can perform PFM, and the FO derivative using BFs in series.
The results showed that both types of FO neurons are capable of adapting to inputs,
i.e., evidenced the change in firing patterns observed when dealing with constant
or periodic stimuli. The study evaluated two properties of adaptation based on
theoretical analysis in the literature: (1) the increasing or decreasing spacing between
spikes for a constant stimulus over time, and (2) the dependence of baseline frequency
on FO. Here, an analog approach to obtain both properties simultaneously has been
achieved, which was an open problem in the literature.

• In this work, the key to obtain the FO version of the neurons was not to replace the
components of their associated circuit with their analogous FO but rather to use their
equivalent block diagram (shown in Figures 8a and 12a for the DP and TPFM cases,
respectively), which can be related to blocks in the FPAA. Note that, as reported
in [26], the generalization of a capacitor to FO (i.e., the use of a fractional impedance)
causes the loss of the adaptation properties of the FO neuron. In the context of
traditional analog circuits (non-programmable), the proposed block diagram could be
implemented by using an op-amp-based FO differentiator connected to the input of
the integer-order neuron.

5. Conclusions

In this paper, the analog implementation of the Axon-Hillock (A-H) silicon neuron,
with the functionalities available in a field-programmable analog array (FPAA) has been
carried out. A new type of silicon neuron, the true-pulse-frequency modulation (TPFM)
neuron, useful for modulation with appreciable pulse width, was also implemented. Only
one FPAA was required for each neuron. In addition, the implementation of fractional-

Fractal Fract. 2024, 8, 226 25 of 28

order (FO) neurons, which show adaptation like some biological neurons in response to
constant or periodic stimulus, was accomplished.

Simulations were performed in the programming environment AnadigmDesigner2.
The results obtained showed that the implemented neurons work correctly, which can be
directly downloaded into a real FPAA.

The FPAA is convenient for prototyping when dealing with analog circuits, such
as those of silicon neurons. Some limitations were found due to the switched capacitor
technology used in the FPAA, like having sampled signals and quantized parameters.

Regarding future works, experimental tests have been planned to evaluate the neurons
in real conditions. Also, its application to neuromorphic control (NC) will be tested.

Author Contributions: Conceptualization, I.T. and B.M.V.; methodology, A.J.S.-B., I.T. and B.M.V.;
software, A.J.S.-B.; validation, A.J.S.-B.; formal analysis, A.J.S.-B.; investigation, A.J.S.-B.; resources,
I.T. and B.M.V.; data curation, A.J.S.-B.; writing—original draft preparation, A.J.S.-B. and I.T.; writing—
review and editing, A.J.S.-B., I.T. and B.M.V.; visualization, A.J.S.-B.; supervision, I.T. and B.M.V.;
project administration, I.T. and B.M.V.; funding acquisition, I.T. and B.M.V. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Agencia Estatal de Investigación (Ministerio de Cien-
cia e Innovación) through the projects PID2019-111278RB-C22/AEI/10.13039/501100011033 and
PID2022-141409OB-C22/AEI/10.13039/501100011033/FEDER, UE and by the European Regional
Development Fund (FEDER) “A way to make Europe”. Andrés Serrano would like to thank the Minis-
terio de Ciencia, Innovación y Universidades for its support through the scholarship no. FPU22/00885
of the FPU Program.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

A-H Axon-Hillock
BF Bilinear filter
CAB Configurable analog block
CAM Configurable analog module
CH AnadigmDesigner2 oscilloscope channel
DP Dirac delta-pulsed
FO Fractional order
FO-DP Fractional-order Dirac delta-pulsed
FO-I&F Fractional order integrate and fire
FO-TPFM Fractional-order true-pulse-frequency modulation
FPGA Field-programmable gate array
FPAA Field-programmable analog array
I&F Integrate and fire
I/O Input/output
IPFM Integral pulse-frequency modulation
ISI Inter-spike interval
LUT Look-up table
NC Neuromorphic control
PFE Partial fraction expansion
PFM Pulse-frequency modulation
SRM Spike response model
TPFM True-pulse-frequency modulation
VMR Mid-rail voltage

Fractal Fract. 2024, 8, 226 26 of 28

Appendix A

The IPFM neuron model presented in this paper can be related to other neuron
models through generalized models, such as the spike response model (SRM) [28], which
is modeled using the following equation:

u(t) = ∑
f

η(t− t f) +
∫ ∞

0
κ(s)Iext(t− s)ds + urest (A1)

where u(t) is the membrane potential, Iext is the stimulating current, κ describes the voltage
response to the input, η is the spike after-potential function (i.e., how the potential changes
after firing a pulse), urest is the resting potential, and t f is the instant at which a spike is
fired. Spike firing is defined by a threshold process. If the membrane potential reaches the
threshold ϑ, an output spike is triggered at t = t f .

This model can be seen as a generalization of I&F models and includes phenomena
of real neurons such as adaptation, refractoriness, and stochastic spiking by using the
kernels [28].

Hence, it is possible to relate the SRM and IPFM by particularizing the SRM and combin-
ing Equations (3) and (4) of the IPFM in one equation as follows. First, let us assume a resting
potential of zero (urest = 0) in the SRM, as is considered in the IPFM by Equation (4):

u(t) = ∑
f

η(t− t f) +
∫ ∞

0
κ(s)Iext(t− s)ds (A2)

Second, if the after-potential function η is selected to behave as in (4) (when Kti is
reached, the potential suddenly drops to 0), the first term of the SRM equation can be
rewritten as:

∑
f

η(t− t f) = ∑
f

Ktiδ(t− t f) (A3)

Third, the second term of the SRM equation can be interpreted as a convolution
involving the kernel κ(s) and the incoming stimulus Iext, i.e., as the linear response of
the membrane potential to an input current or as the neuron responsiveness to incoming
stimuli. If a unitary kernel (i.e., κ(s) = 1) is selected to imitate (3) (namely, the neuron
responds equally to all incoming stimuli and they are not filtered), the SRM equation is
simplified to:

u(t) = ∑
f

Ktiδ(t− t f) +
∫ ∞

0
Iext(t)dt (A4)

Lastly, Equations (3) and (4) express the firing condition of the IPFM in terms of two
successive pulses, i.e., what happens to the integrator output between tk−1 and tk, while
the SRM equation describes the voltage curve from 0 to ∞, with t f being the firing instants.
We can express the integrator output of the IPFM in a similar way to the SRM by using an
equation with two terms on the right side:

y(t) = ∑
k

Ktiδ(t− tk) +
∫ ∞

0
x(t)dt (A5)

Under these assumptions, it is noticeable that variables x(t), y(t), and tk in the IPFM
have similar interpretations as variables Iext(t), u(t), and t f from the SRM, respectively.

In summary, there exist many types of neuron models, but not all of them exhibit
the behavior of the IPFM, which results in a firing frequency that is directly proportional
to the input amplitude. Linear modulation is not properly achieved when the SRM uses
other assumptions, such as different kernels, or when stochastic firing and refractoriness
are introduced.

Fractal Fract. 2024, 8, 226 27 of 28

Appendix B

Because the signals in an FPAA are sampled and the simulations are based on differ-
ence equations, the solution may differ slightly from what would be expected in purely
analog circuits. This appendix details the sampled dynamics of the proposed TPFM neuron.

The first integrator, acting as a DP neuron, does not fire impulses but a pulse with a
duration equal to the inverse of the block frequency, in this case Ts = 250 ns. This causes
the second integrator to start with an initial condition equal to the area of this pulse times
the integration constant of the input, i.e., VDDTsτC

2,1 instead of VDDτC
2,1 corresponding to

the continuous case. In addition, the time in the high state, th, depends on the difference
equation that describes the behavior of the second integrator, which, according to the
documentation, is given as follows:

y(n) = τC
2,2y(n− 1)∆t + y(n− 1) (A6)

where n represents discrete time. The solution of this equation is:

y(n) = c1(1 + τC
2,2Ts)

n−1 (A7)

with y(1) = VDDTsτC
2,1, where n = 1 was considered at the beginning of the pulse for

simplification. Therefore, for the pulse to end, the following condition must be satisfied:

VDDTsτC
2,1(1 + τC

2,2Ts)
n−1 ≥ UC

2 (A8)

which leads to the following number of simulation steps until the condition is satisfied:

n ≥ 1 +

ln

(
UC

2

VDDTsτC
2,1

)
ln
(

1 + τC
2,2Ts

) (A9)

Likewise, the actual value of th is a multiple of Ts, which can be obtained from the
value of n as:

th = nTs (A10)

In short, the following equation is used to adjust the threshold to obtain the desired th:

UC
2 = VDDTsτC

2,1(1 + τC
2,2Ts)

⌈ th
Ts ⌉−1 (A11)

where ⌈.⌉ denotes the ceiling operator. Alternatively, the gain can be tuned using:

τC
2,2 =

1
Ts

(
UC

2

VDDTsτC
2,1

(
⌈ th

Ts ⌉−1
)−1

− 1

)
(A12)

In this work, (A12) was used to adjust the value of the integrator gain, making UC
2

equal to VDD.

References
1. Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78, 1629–1636. [CrossRef]
2. Mead, C. Analog VLSI and Neural Systems; Addison Wesley: Boston, MA, USA, 1989.
3. Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510.

[CrossRef]
4. Jones, R.W.; Li, C.C.; Meyer, A.U.; Pinter, R.B. Pulse Modulation in Physiological Systems, Phenomenological Aspects. IRE Trans.

Bio-Med. Electron. 1961, 8, 59–67. [CrossRef] [PubMed]
5. Liou, W.R.; Yeh, M.L.; Kuo, Y.L. A High Efficiency Dual-Mode Buck Converter IC For Portable Applications. IEEE Trans. Power

Electron. 2008, 23, 667–677. [CrossRef]

http://doi.org/10.1109/5.58356
http://dx.doi.org/10.1038/s42254-020-0208-2
http://dx.doi.org/10.1109/TBMEL.1961.4322853
http://www.ncbi.nlm.nih.gov/pubmed/13790591
http://dx.doi.org/10.1109/TPEL.2007.915047

Fractal Fract. 2024, 8, 226 28 of 28

6. DeWeerth, S.; Nielsen, L.; Mead, C.; Astrom, K. A simple neuron servo. IEEE Trans. Neural Netw. 1991, 2, 248–251. [CrossRef]
[PubMed]

7. Indiveri, G.; Linares-Barranco, B.; Hamilton, T.; van Schaik, A.; Etienne-Cummings, R.; Delbruck, T.; Liu, S.C.; Dudek, P.; Häfliger,
P.; Renaud, S.; et al. Neuromorphic Silicon Neuron Circuits. Front. Neurosci. 2011, 5. [CrossRef] [PubMed]

8. Teka, W.; Marinov, T.M.; Santamaria, F. Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire
Model. PLoS Comput. Biol. 2014, 10, e1003526. [CrossRef] [PubMed]

9. Angkeaw, K.; Pongyart, W.; Prommee, P. Design and Implementation of FPAA based LQR Controller for Magnetic Levitation
Control System. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP),
Budapest, Hungary, 1–3 July 2019; IEEE: Piscataway, NJ, USA, 2019. [CrossRef]

10. Silva-Juarez, A.; Tlelo-Cuautle, E.; de la Fraga, L.G. Chapter Eight - FPAA-based implementation of fractional-order multidi-
rectional multiscroll chaotic oscillators. In Fractional Order Systems; Radwan, A.G., Khanday, F.A., Said, L.A., Eds.; Emerging
Methodologies and Applications in Modelling; Academic Press: Cambridge, MA, USA, 2022; Volume 1, pp. 341–374. [CrossRef]

11. Altun, K. FPAA Implementations of Fractional-Order Chaotic Systems. J. Circuits Syst. Comput. 2021, 30, 2150271. [CrossRef]
12. Silva-Juárez, A.; Tlelo-Cuautle, E.; de la Fraga, L.G.; Li, R. FPAA-based implementation of fractional-order chaotic oscillators

using first-order active filter blocks. J. Adv. Res. 2020, 25, 77–85. [CrossRef] [PubMed]
13. Hassanein, A.M.; Madian, A.H.; Radwan, A.G.G.; Said, L.A. On the Design Flow of the Fractional-Order Analog Filters Between

FPAA Implementation and Circuit Realization. IEEE Access 2023, 11, 29199–29214. [CrossRef]
14. Kapoulea, S.; Psychalinos, C.; Elwakil, A.S. FPAA-Based Realization of Filters with Fractional Laplace Operators of Different

Orders. Fractal Fract. 2021, 5, 218. [CrossRef]
15. Singh, N.; Mehta, U.; Kothari, K.; Cirrincione, M. Optimized fractional low and highpass filters of (1+α) order on FPAA. Bull. Pol.

Acad. Sci. Tech. Sci. 2020, 68, 635–644. [CrossRef]
16. Emad, S.; Hassanein, A.M.; AbdelAty, A.M.; Madian, A.H.; Radwan, A.G.; Said, L.A. A Study on Fractional Power-Law

Applications and Approximations. Electronics 2024, 13, 591. [CrossRef]
17. Pagidas, A.; Psychalinos, C.; Elwakil, A.S. Field Programmable Analog Array Based Non-Integer Filter Designs. Electronics 2023,

12, 3427. [CrossRef]
18. Khanday, F.A.; Kant, N.A.; Dar, M.R.; Zulkifli, T.Z.A.; Psychalinos, C. Low-Voltage Low-Power Integrable CMOS Circuit

Implementation of Integer- and Fractional–Order FitzHugh–Nagumo Neuron Model. IEEE Trans. Neural Netw. Learn. Syst. 2019,
30, 2108–2122. [CrossRef] [PubMed]

19. Li, C.; Jones, R. Integral pulse frequency modulated control systems. IFAC Proc. Vol. 1963, 1, 186–195. [CrossRef]
20. Abbott, L. Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 1999, 50, 303–304. [CrossRef]

[PubMed]
21. Valério, D.; Sá da Costa, J. An Introduction to Fractional Control; Institution of Engineering and Technology: Hong Kong,

China, 2012. [CrossRef]
22. Anadigm. AnadigmApex dpASP Family User Manual; Anadigm: Paso Robles, CA, USA, 2006.
23. Caponetto, R.; Dongola, G.; Fortuna, L.; Petras, I. Fractional Order Systems: Modeling And Control Applications; World Scientific:

Singapore, 2020. [CrossRef]
24. Kapoulea, S.; Psychalinos, C.; Elwakil, A.S. Versatile Field-Programmable Analog Array Realizations of Power-Law Filters.

Electronics 2022, 11, 692. [CrossRef]
25. AbdelAty, A.; Fouda, M.; Eltawil, A. On numerical approximations of fractional-order spiking neuron models. Commun. Nonlinear

Sci. Numer. Simul. 2022, 105, 106078. [CrossRef]
26. Bertsias, P.; Psychalinos, C.; Elwakil, A.S. Fractional-Order Mihalas–Niebur Neuron Model Implementation Using Current-

Mirrors. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT),
Paris, France, 23–26 April 2019; pp. 872–875. [CrossRef]

27. Serrano-Balbontín, A.J.; Tejado, I.; Vinagre, B.M. Fractional Integrate-and-Fire Neuron: Analog Realization and Application to
Neuromorphic Control. In Proceedings of the 2023 International Conference on Fractional Differentiation and Its Applications
(ICFDA), Ajman, United Arab Emirates, 14–16 March 2023; pp. 1–6. [CrossRef]

28. Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition;
Cambridge University Press: Cambridge, UK, 2014. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/72.80335
http://www.ncbi.nlm.nih.gov/pubmed/18276378
http://dx.doi.org/10.3389/fnins.2011.00073
http://www.ncbi.nlm.nih.gov/pubmed/21747754
http://dx.doi.org/10.1371/journal.pcbi.1003526
http://www.ncbi.nlm.nih.gov/pubmed/24675903
http://dx.doi.org/10.1109/tsp.2019.8769081
http://dx.doi.org/10.1016/B978-0-12-824293-3.00013-2
http://dx.doi.org/10.1142/S0218126621502716
http://dx.doi.org/10.1016/j.jare.2020.05.014
http://www.ncbi.nlm.nih.gov/pubmed/32922976
http://dx.doi.org/10.1109/ACCESS.2023.3260093
http://dx.doi.org/10.3390/fractalfract5040218
http://dx.doi.org/10.24425/bpasts.2020.133123
http://dx.doi.org/10.3390/electronics13030591
http://dx.doi.org/10.3390/electronics12163427
http://dx.doi.org/10.1109/TNNLS.2018.2877454
http://www.ncbi.nlm.nih.gov/pubmed/30442620
http://dx.doi.org/10.1016/S1474-6670(17)69653-8
http://dx.doi.org/10.1016/S0361-9230(99)00161-6
http://www.ncbi.nlm.nih.gov/pubmed/10643408
http://dx.doi.org/10.1049/pbce091e
http://dx.doi.org/10.1142/7709
http://dx.doi.org/10.3390/electronics11050692
http://dx.doi.org/10.1016/j.cnsns.2021.106078
http://dx.doi.org/10.1109/CoDIT.2019.8820514
http://dx.doi.org/10.1109/ICFDA58234.2023.10153307
http://dx.doi.org/10.1017/cbo9781107447615

	Introduction
	Fundamentals
	Biological Neurons
	Pulse-Frequency Modulation
	Silicon Neurons
	Integrate-and-Fire Neurons
	Axon-Hillock Circuit

	Fractional Operator
	Fractional-Order Integrate-and-Fire Neurons

	Analog Implementation
	Anadigm's FPAA
	Integer-Order Neurons
	Dirac Delta-Pulsed Neuron
	Axon-Hillock-Like Neuron
	True-PFM Neuron

	Fractional-Order Operator
	Fractional-Order Neurons

	Results
	Integer-Order Neurons
	Fractional-Order Operator
	Fractional-Order Neurons
	Discussion

	Conclusions
	Appendix A
	Appendix B
	References

