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Abstract: This paper introduces an analog integrated fractional order type-2 fuzzy PID control
system. Current approaches frequently depend on energy-intensive embedded digital systems,
consuming substantial energy levels ranging from a few µW to mW. To address this limitation
we propose a fully analog design offering insights into the potential of analog circuits for power-
efficient robust control in complex and uncertain environments. It consists of Gaussian function,
min/max, Operational transcoductance amplifier circuits and Resistor-Capacitor networks for the
implementation of the fractional-order components. Crafted for operation under a reduced voltage
supply (0.6 V), the controller attains minimal power usage (861.8 nW), facilitating uninterrupted,
extended-term functioning. Post-layout simulation results confirm the proper operation of the
proposed design. The proposed system is designed and simulated using the Cadence IC Suite in a
TSMC 90 nm CMOS process.

Keywords: PID controller; analog integrated; low-power design; type-2 fuzzy controller

1. Introduction

In the realm of control systems, the evolution from conventional crisp logic to more
nuanced methodologies has paved the way for advanced control strategies. One such
paradigm, fuzzy logic, has garnered substantial attention for its capacity to emulate
human-like decision-making processes [1,2] and effectively handle complex and uncertain
environments [3]. Fuzzy logic, introduced by Lotfi A. Zadeh in the 1960s [4], models im-
precision and uncertainty through linguistic variables and membership functions (MFs),
offering a bridge between the quantitative precision of digital systems and the qualitative
reasoning of human cognition [5].

Fuzzy Set Theory presents essential mathematical instruments for executing numerical
computations grounded in linguistic descriptions and mathematically defined concepts
through membership functions as fuzzy sets [6,7]. A fuzzy set denotes a group of entities
exhibiting varying degrees of membership [8]. This set is defined by an MF assigning a
membership grade from zero to one to each entity [9], denoting the entity’s connection
strength to the fuzzy set. Moreover, within Fuzzy Inference Systems (FIS), pivotal compo-
nents for simulating human expertise and knowledge encompass fuzzy if-then rules [6,7].
The amalgamation of Fuzzy Inference Systems with Neural Networks (NNs) and Machine
Learning (ML) optimizations leads to the emergence of a groundbreaking field known as
Neuro-Fuzzy Computing (NFC), the core of intelligent soft computing systems [10].

A significant offshoot of fuzzy logic’s applications is its integration into Proportional-
Integral-Derivative (PID) controllers, giving rise to the realm of fuzzy PID control [11].
The conventional PID controllers, known for their simplicity and effectiveness, have now
been augmented with fuzzy logic’s ability to handle non-linearity and uncertainty [3].
The synergy of these concepts has led to the development of type-2 fuzzy PID controllers,
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wherein the inherent uncertainties are not only considered but also managed effectively,
enhancing control in intricate systems [12,13].

In assessing the merits of fuzzy PID control over its conventional counterpart, note-
worthy advantages emerge [14]. Fuzzy PID controllers inherently encapsulate imprecision,
enabling them to robustly handle complex systems characterized by vague, uncertain, or
even contradictory information [15]. When evaluating the superiority of fuzzy PID control
compared to its traditional counterpart, several significant benefits become apparent. Fuzzy
PID controllers possess an innate capacity to accommodate imprecision, which equips them to
adeptly navigate intricate systems marked by vague, uncertain, or conflicting information. This
inherent adaptability enables fuzzy PID controllers to robustly address challenges that conven-
tional PID controllers might struggle with [15]. However, it’s important to acknowledge that
the utilization of linguistic rules and membership functions (MFs) within fuzzy PID controllers
can introduce a layer of intricacy into the design process. Designers are thus required to possess
a thorough comprehension of the system’s dynamics and behavior to effectively implement
fuzzy PID control strategies [15]. On the flip side, the reliance on linguistic rules and MFs
might introduce a level of complexity in the design process, necessitating a comprehensive
understanding of the system’s behavior [14]. Despite this potential complexity, the flexibility
and resilience afforded by fuzzy PID controllers make them a compelling choice for managing
complex systems in various domains. Moreover, their ability to gracefully handle uncertainty
and imprecision renders them particularly suitable for applications where precise modeling
is difficult or impractical, ultimately leading to enhanced performance and robustness in
real-world scenarios [14].

As technology forges ahead, the choice of implementation platform becomes increas-
ingly versatile. Analog circuitry emerges as a compelling alternative to digital platforms like
embedded systems, Field-Programmable Gate Arrays (FPGAs), and microcontrollers [16].
The analog approach, explored in this paper, can harness the intrinsic parallelism of electri-
cal signals to achieve real-time computation and control, promising potential advantages
in terms of low-power consumption, reduced latency, and area efficiency. However, this
avenue comes with its own set of challenges, such as susceptibility to noise and limited
scalability. Applications of fuzzy controllers span various domains, including industrial
automation [17], automotive control [18], and biomedical systems [19], where real-time
processing, power efficiency, and reliability are paramount.

The goal of the current work is to propose a low-power hardware purely analogue
implementation of a system combining fractional calculus with the advantages fuzzy logic.
The main purpose is to implement the selected control method on hardware with the
proposed architecture and compare with software/Matlab implementation as a proof of
concept. The comparison with other control types should be issued by other works focusing
on the mathematical structures and modelling of the various control approaches. Within
the existing literature are reported such implementations varying from fractional order
(FO) filters to fractional ’LC’ resonators. In [20] a FO filter based on current and voltage
conveyors operating as active elements is proposed. It is implemented on the TSMC 0.18 µm
CMOS process occupying 0.0015 mm2 of silicon area with 380.6 µW power consumption.
In [21] FO low-pass and high-pass filters based on operational transconductance amplifiers
(OTAs) are exhibited. They are designed on the TSMC 0.35 µm CMOS process and consume
power up to 47.5 nW depending on the order and type of the filter. In [22] FO Chaotic
Systems are realized using active filters based on OTAs. They are designed on the UMC
180 nm CMOS node and only one OTA consume power varying between 36 µW and
540 µW. FO differentiators and integrators with low unity-gain frequency of 100 kHz are
presented in [23], while a tunable FO resonator is proposed in [24]. The last two works
are implemented on AMS 0.35 µm CMOS technology. Relying on the need for low-power
systems, here a low-power control system is proposed. The major contributions of this
work are:

• The low-power performance, operating in subthreshold regime.
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• The pure analog implementation of a PID controller that combines both Fuzzy logic
and fractional calculus to control the plant system.

The remainder of this paper is organized as follows. Section 2 delves into the theoretical
underpinnings of type-2 fuzzy PID control. In Section 3 we expound upon the architecture
of the proposed analog controller, elaborating on the main building blocks of it in Section 4.
Section 5 presents simulation results, and juxtaposes the analog approach against software
implementations for a 2nd order stable linear plant along with dead time. Lastly, in Section 6,
conclusive comments are provided that encapsulate the study’s discoveries.

2. Background

Fractional-order fuzzy controllers represent a cutting-edge paradigm in control system
theory, amalgamating the robustness of fractional calculus with the adaptive reasoning
of fuzzy logic [25]. These controllers epitomize a sophisticated fusion of mathematical
precision and cognitive flexibility, ushering in a new era of control strategy refinement [26].
By embracing fractional calculus, they adeptly handle complex, non-integer dynamics,
capturing intricate system behaviors that traditional integer-order controllers struggle to
characterize [27]. Moreover, leveraging the innate adaptability of fuzzy logic, these con-
trollers excel in navigating ambiguous and uncertain environments, employing linguistic
variables and membership functions to interpret imprecise data and make informed control
decisions [28]. This amalgamation offers a versatile toolkit for handling intricate control
problems where conventional approaches fall short, enabling nuanced and adaptive control
in dynamic, real-world systems.

2.1. Literature Review

The evolution of fuzzy controllers, extensively documented in a vast and diverse
literature, stems from Lotfi Zadeh’s seminal contributions in the 1960s [4]. Zadeh’s ground-
breaking conceptualization of fuzzy sets and logic laid the early theoretical groundwork,
reshaping how control systems handle imprecise data [4,29]. This foundational phase
delved into the exploration of membership functions, fuzzy rules, and inference mecha-
nisms, laying the cornerstone for managing uncertainties in decision-making processes
within control systems [30].

As the field progressed, the literature expanded its horizons, illustrating a myriad of
practical applications spanning industries. In the realm of industrial automation, fuzzy
controllers found homes in an array of settings, from optimizing power systems [31–33]
and managing traffic flow [34–36] to orchestrating robotic operations [37–39]. These real-
world implementations demonstrated the adaptability and effectiveness of fuzzy logic in
scenarios where traditional mathematical models struggled due to system complexity and
unpredictable variables. Notably, within manufacturing and automotive engineering, the
success stories abound, showcasing how fuzzy controllers optimize production processes
and seamlessly integrate into vehicle control systems, including the critical functionality of
anti-lock braking systems [40,41].

The chronicles of fuzzy control methodologies reveal a rich tapestry of advancements
chronicled in the literature. Hybrid systems emerged as a prominent theme, spotlighting the
fusion of fuzzy logic with other control paradigms like neural networks [42–44] or genetic
algorithms [45–47]. These hybrid models leverage the complementary strengths of different
methodologies, bolstering system performance, resilience, and adaptability across various
applications. The ever-expanding literature on fuzzy controllers dynamically responds to
emerging challenges and frontiers. Recent research has shifted focus towards explainable
AI, seeking to render fuzzy controllers more transparent and interpretable. This thrust
aligns with the imperative for ethical and accountable AI systems, particularly in critical
domains where the rationale behind decisions holds paramount importance. In summation,
the literature landscape surrounding fuzzy controllers offers an expansive panorama that not
only elucidates the theoretical underpinnings and practical applications but also navigates
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the evolving terrains of interdisciplinary collaborations, technological innovations, and ethical
considerations within the domain of control systems and artificial intelligence.

In recent years, there has been a growing interest in the analogue implementation
of fractional-order controllers, driven by their potential in enhancing the performance
and adaptability of control systems. In [48] is explored the integrated technology for
fractional-order proportional-integral-derivative (PID) design, providing insights into the
practical realization of such controllers in engineering applications. Ref. [49] focused
on the efficient analog implementations of fractional-order controllers. The work [50]
contributes to the field by developing fractional-order analog integrated controllers, offering
application examples that demonstrate the versatility of these implementations. In [51]
new alternatives for analog implementation of fractional-order integrators, differentiators,
and PID controllers are presented, highlighting the use of integer-order integrators in
the realization process. Additionally, the presented work in [52,53] laid the foundation
for analogue realizations of fractional-order controllers, exploring their applications in
temperature control and motor control. Further contributions from [54] investigated the
fractional-order feedback control of a DC motor, while [55] delved into CMOS fuzzy
logic controllers supporting fractional polynomial membership functions. This body of
literature collectively underscores the advancements and diverse applications of analogue
fractional-order controllers in various engineering domains.

2.2. Fractional PID Control

A classic integral-order PID controller consists of three responses: proportional, integral
and derivative [56,57]. There are other controllers such as PD, PI, ID, and P controllers, but in
this work, we focus on designing PID controllers [56]. The response u(t) of a PID controller is
the sum of the three aforementioned responses [56] and the equation is as follows:

u(t) = Kp · e(t) + Ki ·
∫ t

0
e(τ)dτ + Kd

de(t)
dt

(1)

where e(t) = r(t)− y(t) is the error between the output y(t) of the system and the reference
input r(t) that the output should follow. The first term in the above equation corresponds
to the proportional (P) part of the controller, the second to the integral (I) and the third to
the derivative (D). Applying the Laplace transform to Equation (1) in order to obtain the
frequency domain response results in:

U(s) = Kp · E(s) + Ki
E(s)

s
+ Kd · sE(s) (2)

where E(s) is the output error in the frequency domain. Dividing by E(s) results in the
transfer function of the integral order PID controller

G(s; Kp, Ki, Kd) ≡
U(s)
E(s)

= Kp +
Ki
s
+ Kd · s (3)

However, PID controllers face difficulties in the presence of non-linearities/non-
idealities due to their inherent linearity [58,59]. Besides, in recent years, fractional calculus
has found applications in the modeling and control of diverse physical systems, as analyzed
explicitly in Section 2.1. Therefore, to effectively account for the above disadvantages, the
idea of fractional order PID (FO-PID) controllers was conceived; the FO-PID controller is the
result of extending the conventional PID controller based on fractional calculus [58,59]. In
the FO-PID controller, in addition to the proportional, integral, and derivative parameters
(Kp, Ki, and Kd) two additional parameters are present: the order of fractional integration λ
and the order of fractional differentiation µ, with 0 < λ, µ < 1 [60]. An FO-PID controller is
denoted as PIλDµ, where λ and µ the parameters mentioned above. Having five parameters
offers extra flexibility to the controller. Fractional calculus allows the differential and
integral terms to be of arbitrary order, not necessarily integers.
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Similarly to the conventional PID controller, the time response of FO-PID controller is

u(t) = Kp · e(t) + Ki · D−λe(t) + Kd · Dµe(t) (4)

where D−λ denotes the fractional integration operator of order λ and Dµ the fractional
differentiation operator of order µ. Applying the fractional Laplace transform yields the
transfer function of the FO-PID controller in the frequency domain

G(s; Kp, Ki, Kd, λ, µ) ≡ U(s)
E(s)

= Kp +
Ki

sλ
+ Kd · sµ (5)

As observed, λ = 1 and µ = 1 corresponds to an integral order PID. Similarly, λ = 0
and µ = 1 is a PD controller, λ = 1 and µ = 0 is a PI controller and λ = 0 and µ = 0 is
a P controller. Various values of λ and µ within the interval (0,1), results in an FO-PID,
showcasing the distinct flexibility and enhanced precision of this controller. It allows
for better adaptation of the dynamic properties of a system, providing the capability for
improved adjustment.

2.3. Type-2 Fuzzy PID Control

Fuzzy logic, an extension of traditional binary logic, addresses the inherent ambiguity in
real-world data by introducing the concept of fuzzy sets. A fuzzy set represents the membership
of elements within a given set with degrees ranging between 0 and 1. The MF, denoted as
µA(x), quantifies the extent to which an element x belongs to the fuzzy set A [4,61].

Fuzzy PID controllers offer a robust and adaptable solution for controlling complex
systems characterized by nonlinearities and uncertainties. By integrating fuzzy logic with
the classic PID algorithm, these controllers can effectively handle varying operating con-
ditions, providing stable and precise control. Their ability to dynamically adjust control
parameters based on linguistic rules enables smoother setpoint tracking, enhanced distur-
bance rejection, and reduced tuning efforts. Fuzzy PID controllers find application across
diverse industries, offering versatility and ease of implementation while delivering reliable
performance in challenging control scenarios. Overall, their combination of robustness,
adaptability, and ease of use makes them a valuable tool for engineers seeking efficient
control solutions for a wide range of systems and applications.

Fuzzy reasoning applies this concept to decision-making, enabling systems to handle
imprecise data effectively [3]. This reasoning operates through a collection of fuzzy rules,
which are typically presented in IF-THEN format, where the “IF” part refers to the condi-
tions or states of the system (antecedents), and the “THEN” part dictates the corresponding
action (consequents) [61]. Fuzzy inference systems comprise rules that connect linguistic
variables through linguistic expressions, offering a means to model human-like thinking
processes [1,2]. The aggregation and combination of multiple fuzzy rules are integral to
the fuzzy inference process. Different fuzzy rules might contribute to the control decision,
and their effects need to be synthesized into a coherent control action. This involves the
utilization of operators such as “AND”, “OR”, and “NOT” to manage the combination
of membership degrees associated with linguistic terms. The “AND” operator, for exam-
ple, captures the intersection of different linguistic terms, allowing for the expression of
more complex conditions. The “OR” operator, on the other hand, models the union of
these terms, enabling the control system to react to a broader range of conditions [61].
Type-2 Fuzzy Inference Systems (FIS), particularly Type-2 Mamdani FIS, extend this by
considering uncertainties in both input and output variables. In such systems, MFs for the
linguistic terms themselves become fuzzy sets, allowing for a more robust representation
of uncertainty [62].

Fuzzy control employs fuzzy logic to create control strategies that adapt to dynamic
and uncertain environments. This methodology comprises three main components: fuzzifi-
cation, inference, and defuzzification. Fuzzification translates crisp inputs into linguistic
variables characterized by MFs. The inference process involves applying a set of fuzzy
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rules, to determine control actions. The Type-2 Mamdani FIS, as an example, handles
uncertainties by assigning intervals to membership degrees. The defuzzification step maps
fuzzy control outputs back into crisp control signals [12].

Within the framework of fuzzy PID control, the traditional Proportional-Integral-
Derivative (PID) controller gains remain constant. However, the approach diverges by
employing fuzzy reasoning to modify the controller’s output, as illustrated in Figure 1.
Specifically, the controller receives two inputs; the error e(t) and its derivative de(t)

dt and
scales them to accomodate to the fuzzy MFs’ domain. These inputs are subjected to fuzzy
reasoning within the Type-2 Mamdani FIS which generates an output u(t) that adjusts the
control signal. The altered u(t) is subsequently rescaled and integrated before being fed as
input to the plant [13,63,64].

Figure 1. Integral order PID general type-2 fuzzy logic system structure.

3. Proposed Design Methodology

In this section, the high level architecture of the proposed analog Fuzzy Frac-
tional Order PID controller is presented. In Section 2 the concepts of fuzzy logic con-
trollers and conventional logic integral order controllers were analyzed. Combining
the above two types of control systems, leads to the Fractional Order Fuzzy PID (FO-
FPID) controllers [25,65], that benefit from the advantages of both the extra parameters
of fractional controllers and the flexibility of fuzzy logic to describe physical systems
with inherent non-idealities.

The structure of the proposed analog FO-FPID controller is illustrated in Figure 2. The
input ve(t) corresponds to the error e(t) between the system output and the reference input
scaled to the voltage domains of the circuit. The two single-input single-output amplifiers
provide the required gains KE and KCE to scale the signal prior to the Fuzzy Inference
System, while the other two amplifiers provide the control gains KPD and KPI , that are
tuned in order to achieve the desired performance for the plant. The Constant Phase
Elements (CPEs), explained in Section 4.1, are able to operate as fractional order derivation
and integration circuits [66]. The order of the fractional operation, µ for derivation and
λ for integration, as well as the kind of operation are tuned through the components
comprising each CPE. The core of the controller is the Fuzzy Inference System (FIS) that
consists of the fuzzification block, the fuzzy reasoning system that deals with the rules and
the defuzzification circuit that utilizes the Center Of Gravity (COG) method to provide the
crisp output. The aforementioned blocks are analyzed in Sections 4.1–4.4. Furthermore,
voltage-to-current (V/I) and current-to-voltage (I/V) converters are used so as to perform
the addition of the two terms at the output of the controller and subsequently convert again
this signal to the output voltage of the controller vu(t). This signal is the voltage that is fed
as input to the plant system to control its response.
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Figure 2. The proposed architecture of the Fractional Order Fuzzy PID controller. The input cor-
responds to the error e(t) between the system output and the reference input scaled in the voltage
domains of the circuit, while the output is the voltage that is fed as input to the plant.

4. Circuit Implementation
4.1. Fractional Order Circuits

Integrators and differentiators play a pivotal role as building components for the real-
ization of filters, oscillators, control systems and more. The literature has already featured
published works on fractional-order digital implementations of these circuits [67,68]. Currently,
there are no commercially available devices for the physical implementation of fractional-order
circuits and systems. Consequently, classic integral-order devices are used utilizing approxi-
mations, like Continued Fraction Expansions (CFEs) [69,70] as well as rational approximation
methods [71,72], to achieve the desired performance. A substantial research endeavor is un-
derway to advance the development of fractional-order capacitors, commonly referred to
as Constant Phase Elements (CPEs), functioning as independent two-terminal devices and
realizing the transfer function

H(s) = ksa (6)

where k is a constant and a denotes the order of the fractional operation [73].
Current methodologies for emulating a CPE predominantly depend on passive RC

trees. The components of these trees can be derived through various techniques, including
the continued fraction expansion method. Adhering to this methodology, numerous
fractional-order circuits have been documented in the literature, employing diverse RC
network topologies [74–78]. In this work, for the required fractional-order elements, that
implement the fractional derivative and integral, the 5th order Cauer I form [73], is selected
after simulating among various forms and addressing for the accuracy of the approximation
along with their simplicity.

The expression for the impedance of this two-terminal network is

Z(s) = R1 +
1

C1s+
1

R2+
...

1
Rn+

1
Cns+

1
Ro

(7)

where n is the order of the approximation. The Cauer I nth-order approximation used for a
CPE is illustrated in Figure 3. The values of R-C elements are summarized in Table 1.

R1

C1 C2

R2 Rn

Cn Ro

Figure 3. The Cauer I form for approximating a CPE via CFE.
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Table 1. Cauer I form R-C values.

Resistors R (kΩ) Capacitors C (pF)

R0 833.6 - -
R1 696.3 C1 20
R2 561.6 C2 137.2
R3 504.6 C3 428.7
R4 496.5 C4 1069.3
R5 545.2 C5 2835.6

4.2. Gaussian Function Circuit

The fuzzification module serves as a critical intermediary between the Fuzzy Inference
System (FIS) and the external environment, typically interfacing with sensors that deliver
signals in voltage mode. Additionally, this module interacts with the fuzzy inference
block (FI), particularly utilizing the min-max operator. In this context, a Bump circuit
functions as the fuzzification block. While numerous Bump circuits have been developed
across various applications, for the purposes of this investigation, a customized version
of the Bump circuit (with an aspect ratio of 7) has been chosen to enhance the quality of
the Gaussian curve. This modified circuit, as depicted in Figure 4 and detailed in [79],
facilitates an improved Gaussian curve generation. Specifically, the circuit incorporates
a symmetric current correlator (comprising transistors Mp1 −Mp6 in Figure 4) to ensure
symmetry around the mean value, even with minute currents [80]. The output current
Iout of the Gaussian circuit is illustrated in Figure 5. Moreover, by setting the ratio to 7, an
expansion of the circuit’s linear region is achieved, resulting in higher variance for the same
Vc. To further enhance mirroring performance, especially with low bias currents, a cascode
current mirror including transistors Mn5 −Mn10 (Figure 4) has been integrated. The mean
value of the Gaussian curve is determined by the voltage Vr, while the variance and height
are regulated by the voltages Vc and the bias current Ibias, respectively. The dimensions of
the transistors used in the circuit are summarized in Table 2.

✄ ☎ ✠

✄ ☎ ✞

✄ ☎ ✡

☛

☞ ✌ ✍ ✎

☛

☞ ✌ ✍ ✌

✏ ✑ ✒

✄ ☎
✟

✄ ☎
✓

✄ ☎
✔

✒ ✑ ✏

✄ ☎ ✠ ✠

✜

✢ ☞ ✣ ✤

✁ ✁

Mn7

Mn4Mn3Mn2Mn1 1 : 77 : 1

Mn6Mn5

Ibias

Vin
VDD Vc Vc Vr

VSS

Vs1 Vs2

Mp4
Mp1

Mp3

Iout

✄ ✝ ✠

Mp2

✁ ✁ ✁ ✁VDD ✁ ✁

I1 I2

Mp5 Mp6

✄ ☎
✔Mn10Mn9Mn8

Figure 4. The employed Bump circuit is shown. The resultant output current, denoted as Iout, mirrors
a Gaussian function modulated by the input voltage Vin. The voltage parameters Vr, Vc, and the bias
current Ibias adjust the mean value, variance, and peak value of the Gaussian function, respectively.
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Table 2. Bump Circuit Transistors’ Dimensions.

NMOS Differential Block W/L (µm/µm) Current Correlator W/L (µm/µm)

Mn1,Mn4 2.8/0.4 Mp1,Mp2 1.6/1.6
Mn2,Mn3 0.4/0.4 Mp3,Mp4 0.4/1.6
Mn5–Mn8 0.4/1.6 Mp5,Mp6 0.4/1.6
Mn9,Mn10 1.6/1.6 - -

Figure 5. The output current of the applied Gaussian function circuit is analyzed with regard to the
sizing of the input differential pair transistors. The simulation was carried out with Vr set to 0 V, Vc at
180 mV, and Ibias at 6 nA.

To understand the high-level structure of the Fuzzification subsystem within the
utilized FIS, let’s consider Vin1 as the input to the system, representing the fuzzy variable
A. This variable is characterized by n linguistic terms, denoted as A1 to An. These terms
correspond to a fuzzy set characterized by a Gaussian Membership Function (MF), defined
at the system level by its respective FMF circuit and biasing parameters. As mentioned
earlier, the output current IFMF from each FMF circuit signifies the membership grade or
the degree of compatibility between the input Vin1 and the specific fuzzy set it represents.
The high-level structure of the Fuzzification block in the FIS is depicted in Figure 6.

Vin1

... ...
Ibias

VDD

VrA1

FMF A1

Modified Bump

VrVc

Iout

VSS

Vin

VcA1

IFMFA1

VDD

IbiasVDD

VSS

Ibias

VDD

VrA2

FMF A2

Modified Bump

VrVc

Iout

VSS

Vin

VcA2

IFMFA2

VDD

IbiasVDD

VSS

Ibias

VDD

VrAi

FMF Ai
Modified Bump

VrVc

Iout

VSS

Vin

VcAi

IFMFAi

VDD

IbiasVDD

VSS

Ibias

VDD

VrAn

FMF An

Modified Bump

VrVc

Iout

VSS

Vin

VcAn

IFMFA1

VDD

IbiasVDD

VSS

Figure 6. The Fuzzification block within the FIS exhibits a high-level architecture where each FMFAi

circuit corresponds to a specific linguistic term, Ai, associated with the linguistic variable A. The
bias current Ibias remains a constant across all FMF circuits, set at 3 nA in our case. Meanwhile, the
voltages Vr and Vc are variable, ranging from−300 mV to +300 mV. The resulting output current IFMF

signifies the degree of compatibility existing between the input Vin of the FMF and the particular
fuzzy set it represents.
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4.3. MIN/MAX Circuit

The MIN/MAX operators are widely used in a variety of applications within nonlinear
signal processing tasks or control theory. Various methods have been suggested in the
literature, encompassing Winner-Take-All or Loser-Take-All circuits alongside comparators,
related to Fuzzy theory [81,82]. The implemented design of the MIN/MAX operator, as
proposed in [83] opts for systems with only two inputs. However, it can also handle rules
with multiple antecedents, by connecting these cells in cascaded format. Although this
approach does not prioritize area and power efficiency, it facilitates intricate fuzzy logic
with rules combining AND-ed and OR-ed antecedents.

Additionally, the design employed in this architecture executes all operations concur-
rently, circumventing the drawbacks of high chip (area) usage and energy consumption
linked to employing distinct designs for MAX and MIN operations. Given the absence
of multi-input circuits integrating these two operations, the requirement for two separate
blocks becomes necessary otherwise. The Fuzzy Inference (FI) circuit utilized to determine
the firing strength of the implemented FIS rules is founded on a pioneering current-mode
max-min design [84], depicted in Figure 7.

Mn1

Mn7

VSS

Imin

Mn5

Mn11

VSS

ΔI

ΔI

Ιmin+ΔI=ΙmaxMp1 Mp2

I1 I2

Imin

VDD

Imin

VDD

Ιmax

Mp3

Mp5 Mp6

Mp4 Mp7

Mp9 Mp10

Mp8

Mn8

Mn2 Mn3

Mn9 Mn10

Mn4 Mn6

Mn12

Figure 7. The implementation of the Min/Max circuit. It provides both operations.

Given that the input parameters (currents) within the design are expected to be
small, on the order of nA, larger elements are incorporated to bolster the design’s efficacy.
However, augmenting the length consequently escalates the output impedance while
concurrently reducing the input impedance. Conversely, diminishing the width contributes
to heightened precision in mirroring small currents. The dimensions of the transistors are
equal to W

L = 0.2µm
1.6µm . In Figures 8 and 9 the transient outcomes of the FI circuit within the

implemented architecture showcase two currents in sinus format, each with an magnitude
of 10 nA and a phase delay of one hundred ten deg.
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Figure 8. Maximum output current of the FI circuit for two input sinusoidal current waveforms with
10 nA amplitude and a phase shift of 110 deg.

Figure 9. Minimum output current of the FI circuit for two input sinusoidal current waveforms with
10 nA amplitude and a phase shift of 110 deg.

Within the implemented FIS, each FI block embodies a specific fuzzy rule by employing
a series of FI circuits to amalgamate multiple antecedents. Each individual FI circuit
integrates a fuzzy rule comprising two antecedents. The output current of the FI circuit is
purposefully chosen as either the MIN or MAX current, culminating in either ANDed or
ORed antecedents, respectively.

4.4. COG Circuit

Following the mathematical framework, and considering that the firing strength ωi
of Rulei equates to the output current IFIRulei of the i-th FI block, while the centroid of the
consequent Gaussian membership function (MF) of the same rule corresponds to the voltage
setting VrRulei, the determination of the center of gravity (COG) for the comprehensive
output MF of the envisioned Fuzzy Inference System (FIS) comprising m rules is expressed
as follows:
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COG =
∑m

i=1 IFIRulei ·VrRulei

∑m
i=1 IFIRulei

. (8)

Among the array of analog COG defuzzification strategies documented in the litera-
ture [85,86], the implemented design incorporates a voltage follower-aggregation method
initially introduced by Carver Mead in [83,87]. This technique, depicted in Figure 10, serves
as the foundational architecture.

Vout

OTA1

IFIRule1

VrRule1

OTA2

IFIRule2

VrRule2

OTAi

IFIRulei

VrRulei

...
OTAm

IFIRulem

VrRulem

...

Figure 10. The high-level architecture of the Defuzzification block within the FIS comprises a
follower aggregation circuit. This circuit is pivotal in the system’s operation, leveraging a follower-
aggregation technique to determine the output’s center of gravity. This technique, derived from
Carver Mead’s work, forms the core of the system’s defuzzification strategy, ensuring accurate and
efficient computation of the final output from the fuzzy logic inference process.

Utilizing a collective of m Operational Transconductance Amplifiers (OTAs), denoted
as OTA1 to OTAm, the system aggregates the weighted inputs VrRule1 through VrRulem
while computing the weighted average outlined in Equation (8) across each dimension of
the system’s output vector [83]. This operation hinges on the feedback loop illustrated in
Figure 10 and adheres to Kirchhoff’s current law to attain:

m

∑
i=1

Gmi · (VrRulei −Vout) = 0 (9)

The transconductance Gmi pertaining to the operational mode of OTAi, while it oper-
ates within its linear range, is expressed as:

Gmi =
IFIRulei

2kT/(qκ)
. (10)

In this context, IFIRulei stands as the bias current specific to OTAi.
For the range of input values that the OTA circuits are adjusted to operate in their

linear region with transconductance described from Equation (10) and supposing that the
OTAs in the OTA-bank of Figure 10 are matched, the evaluation of Equation (9) leads to the
desired result of Equation (8) as output of the follower-aggregation structure. Due to the
fact that both the aggregation and the defuzzification processes require only one tuning
voltage parameter Vr for each consequent membership function, this implementation aligns
with the implemented FIS. This simplicity arises from the OTAs’ biasing currents, which
are generated by the FI subsystem.

Hence, the necessity for voltage to current and current to voltage converters, as well as
extensive area multiplier/divider circuits, is circumvented. This avoidance streamlines the
system’s architecture significantly. For accuracy assurance within the block, a wide-range
high open loop gain OTA has been specifically designed [83]. Figure 11 depicts this OTA,
ensuring the fidelity and precision crucial for the system’s performance.
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Ibias
+

Mn7
Mn8

Mn5

Mp4 Mp1

Mn1 Mn2 Mn3 Mn4

Mn9

Mn6

Mp3Mp2

7 : 1 1 : 7

✁ ✁✁ ✁

Vo

VDD

VDD

VSS

VSS

Figure 11. Wide Range Cross Coupled Operational Transcoductance Amplifier.

The cross-coupled differential pair composed of transistors Mn1–Mn4, designed with
a ratio of 7, operates alongside current mirrors Mp2, Mp4, Mp1, Mp3, Mn5, and Mn6, effec-
tively addressing the inherent Vmin issue in conventional OTAs as described in [87]. This
configuration substantially expands the linear operating region of the OTA, enhancing
its performance. The elongated transistors Mp3 and Mn6 intentionally induce low drain
conductance, thereby endowing the circuit with heightened open-loop voltage gain and
output impedance characteristics. These deliberate design choices optimize the OTA’s
functionality and stability. For detailed specifications, the dimensions of all transistors
utilized in this design are outlined in Table 3.

Table 3. Dimensions of transistors (Figure 11).

Differential Pair W/L (µm/µm) Current Mirrors W/L (µm/µm)

Mn1, Mn4 1.4/16.0 Mp1, Mp3 1.8/16.0
Mn2, Mn3 0.2/16.0 Mp2, Mp4 0.8/16.0

Mn7 0.2/16.0 Mn5, Mn6 0.2/16.0
Mn8, Mn9 0.2/16.0 - -

The rule base contains a set of fuzzy rules defining the relationships between input
and output linguistic variables. Through the process of fuzzy inference, input values are
evaluated against these rules to determine the appropriate output values, thereby shaping
the control surface that governs the system’s behavior. The control surface of a fuzzy
inference controller graphically interprets the mapping between input linguistic variables
and output linguistic variables. For the designed controller the fuzzy system’s surface is
depicted in Figure 12.
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Figure 12. The control surface of the implemented fuzzy inference controller.

5. Application Example and Simulation Results

In this study, the efficacy of the proposed FO-FPID controller is thoroughly evaluated
through extensive Matlab simulations on a carefully selected plant model. We opted for
a first-order nonlinear system with dead time due to its significance and relevance in
real-world processes, making it a representative testbench for control strategies:

ẏ(t) = y(t) + sin2
(√
|y(t)|

)
+ u(t− L) (11)

where u(t), y(t) are the system’s input and output respectively and the parameter L repre-
sents dead time. The reference input r(t) that the system should follow is a step function.
Moreover an external perturbation is added to the system at t = 10 s to test the controller’s
ability to compensate this disturbance keeping the system at the required state.

The advantages of our chosen plant lie in its ability to emulate complex and realistic
behaviors encountered in processes such as chemical reactors, mechanical systems, and
biological systems [88]. The presence of nonlinearity and dead time introduces challenges
that controllers must overcome, reflecting the robustness and adaptability required for
practical control applications. By employing this particular plant, our simulations aim
to showcase the controller’s performance under conditions that mirror the intricacies of
dynamic systems found in diverse fields, thereby enhancing the generalized ability and
applicability of the proposed FO-FPID control strategy. A comprehensive comparison
is undertaken by benchmarking the analog integrated FO-FPID controller against the
software-based one.

In [11,89] the chosen controllers are likely to represent a diverse range of control
strategies, each with its unique strengths and limitations. This selection may include clas-
sic controllers such as PID, as well as more advanced controllers like Model Predictive
Control (MPC), Sliding Mode Control (SMC), or Adaptive Control algorithms. The inclu-
sion of these diverse control strategies allows for a thorough assessment of the FO-FPID
controller’s performance under various operating conditions and system dynamics. The
comparison involves evaluating the response of each controller concerning Key Perfor-
mance Indicators (KPIs). Metrics such as rise time, overshoot, settling time, steady-state
error, and robustness to disturbances are considered. These metrics provide quantitative
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insights into the controllers’ abilities to achieve desired setpoints, respond to changes in
the system, and maintain stability in the presence of uncertainties. Furthermore, simula-
tions are conducted to analyze the controllers’ transient and steady-state behaviors. The
responses to step changes, input disturbances, and external perturbations are observed to
assess the controllers’ robustness and adaptability to different operating scenarios.

Software-based refers to the implementation of the closed-loop system (both plant
and controller) in the environment of Matlab/Simulink using Fuzzy Logic Toolbox [90] for
the fuzzy controller and FOMCON Toolbox [91] for the design of the fractional order part
of the FO-FPID controller. Especially to ensure for the software vs. hardware comparison
accuracy, a 5th-order approximation for the fractional blocks is used for the software-based
results too. Hardware implementation refers to the results from extracted/post-layout
simulations of the FO-FPID controller circuit, conducted on the same plant (implemented
with Verilog) within Cadence IC Virtuoso Suite.

The functional simulation of the proposed circuit topology has been performed
through Cadence Virtuoso. All simulations are conducted on the implemented layout
as shown in Figure 13. An analysis of the controller’s time-domain performance was
conducted by subjecting it to a step voltage with a magnitude of 150 mV. Then the extracted
closed-loop system’s response is scaled in order to compare it with the software-based
equivalent. The resulting output waveform, juxtaposed with the corresponding theoret-
ical response for the closed-loop controller-plant system, is depicted in Figure 14. The
performance of both the software and hardware controllers are summarized in Table 4.
Notably, the settling time of the controller was measured at 4.12 s, accompanied by an
overshoot of 17.5%. The step response of the controller’s output at unit-step reference is
shown in Figure 15. It is imperative to acknowledge that the observed steady-state error
in the comparison of the two responses in Figure 14 is attributable to imperfections in the
OTAs and RC-network. These imperfections encompass non-linearities and finite output
impedance, factors that contribute to the discernible disparities between the expected and
actual outcomes. Regarding sensitivity analysis, a Monte-Carlo simulation was conducted
comprising N = 100 runs and the results are displayed in Figure 16. We observe that the
circuit exhibits a robust behavior with respect to process and mismatch random variations.

Table 4. Software-Hardware Fuzzy controller related metrics.

KPI Software Hardware

Rise time (10–90%) 0.54 s 0.67 s
Overshot 19.78% 17.45%

Settling time 3.97 s 4.12 s
Steady-state error 3.22% 3.74%

430 μm

39
0 
μm

Figure 13. The layout implementation of the proposed analog FO-FPID controller on the TSMC 90 nm
process node.
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Figure 14. Step response of the closed-loop controller-plant system. It contains both software and
hardware implementations.

Figure 15. Step response of the controller’s output at unit-step reference. It contains both software
and hardware implementations.

As further proof of concept for the proper operation of the proposed analog implemen-
tation of the control system, the circuit is tested on a 2nd order non-linear plant, modelling
the dynamics of the motion of a train on a track [92]. The differential equation representing
the plant system is as follows

ÿ(t) = −kẏ(t)− rẏ(t)|ẏ(t)|+ u(t) (12)

Likewise the 1st plant, in this case both a software (Matlab/Simulink) and the hardware-
equivalent (post-layout simulation) controller have been tested to account for the analog
implementation’s efficiency and accuracy. The results for the closed-loop system’s time
step-response waveforms of the two implementations are illustrated in Figure 17 and the
KPI values are summarized in Table 5. As in the 1st testcase small expected differences
in the performance between software and hardware are explained within the contect of
the intrinsic approximations and mismatches that the transistor-level implementation of
mathematical models introduces.
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Figure 16. The hardware-implementation step response of the closed-loop system for a Monte Carlo
Analysis with N = 100 points to test the robustness of the circuit.

Figure 17. Step response of the closed-loop controller-plant system. It contains both software and
hardware implementations.

Table 5. Software-Hardware Fuzzy controller related metrics.

KPI Software Hardware

Rise time (10–90%) 19.62 s 20.07 s
Overshot 0% 0%

Settling time 48.71 s 52.15 s
Steady-state error 0.11% 2.32%

6. Conclusions

This work introduces an integrated analog, low-power, tunable fuzzy PID controller
with fractional-order design and explores its practical application. The suggested IC serves
as a fundamental building block for developing advanced and intricate control systems. The
design incorporates amplifiers/attenuators for the tunable control gains, CPEs for fractional
operations, Bump circuits to generate Gaussian MFs, current-mode MIN/MAX circuits
for fuzzy reasoning, and OTAs for defuzzification with COG approach. The proposed
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controller’s design was implemented with the Cadence IC Suite using a 90 nm TSMC
process node and validated through post-layout simulations, showcasing a low power
consumption of 861.8 nW. To ensure the correct performance of the system, a comparison
with an equivalent software FO-FPID controller on the same plant was conducted.
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