
Citation: Sankaran, A.; Plocoste, T.;

Geetha Raveendran Nair, A.N.;

Mohan, M.G. Unravelling the Fractal

Complexity of Temperature Datasets

across Indian Mainland. Fractal Fract.

2024, 8, 241. https://doi.org/

10.3390/fractalfract8040241

Academic Editors: Mei Yin, Mengxi

Zhang and Yi Rui

Received: 16 February 2024

Revised: 15 March 2024

Accepted: 10 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Unravelling the Fractal Complexity of Temperature Datasets
across Indian Mainland
Adarsh Sankaran 1,2 , Thomas Plocoste 3,* , Arathy Nair Geetha Raveendran Nair 1,2 and Meera Geetha Mohan 1,2

1 Thangal Kunju Musaliar College of Engineering, Kollam 691005, Kerala, India; adarsh1982@tkmce.ac.in (A.S.);
212027@tkmce.ac.in (A.N.G.R.N.); meeragm@tkmce.ac.in (M.G.M.)

2 Department of Civil Engineeing, Thangal Kunju Musaliar College of Engineering, APJ Abdul Kalam
Technology, Thiruvanathapuram Campus, Thiruvanathapuram 695016, India

3 KaruSphère Laboratory, Department of Research in Geoscience, 97139 Abymes, Guadeloupe, France
* Correspondence: thomas.plocoste@karusphere.com

Abstract: Studying atmospheric temperature characteristics is crucial under climate change, as it
helps us to understand the changing patterns in temperature that have significant implications
for the environment, ecosystems, and human well-being. This study presents the comprehensive
analysis of the spatiotemporal variability of scaling behavior of daily temperature series across the
whole Indian mainland, using a Multifractal Detrended Fluctuation Analysis (MFDFA). The analysis
considered 1◦ × 1◦ datasets of maximum temperature (Tmax), minimum temperature (Tmin), mean
temperature (Tmean), and diurnal temperature range (DTR) (TDTR = Tmax − Tmin) from 1951 to 2016
to compare their scaling behavior for the first time. Our results indicate that the Tmin series exhibits
the highest persistence (with the Hurst exponent ranging from 0.849 to unity, and a mean of 0.971),
and all four-temperature series display long-term persistence and multifractal characteristics. The
variability of the multifractal characteristics is less significant in North–Central India, while it is
highest along the western coast of India. Moreover, the assessment of multifractal characteristics of
different temperature series during the pre- and post-1976–1977 period of the Pacific climate shift
reveals a notable decrease in multifractal strength and persistence in the post-1976–1977 series across
all regions. Moreover, for the detection of climate change and its dominant driver, we propose a new
rolling window multifractal (RWM) framework by evaluating the temporal evolution of the spectral
exponents and the Hurst exponent. This study successfully captured the regime shifts during the
periods of 1976–1977 and 1997–1998. Interestingly, the earlier climatic shift primarily mitigated the
persistence of the Tmax series, whereas the latter shift significantly influenced the persistence of the
Tmean series in the majority of temperature-homogeneous regions in India.

Keywords: temperature; multifractal; correlation; climate shift; persistence

1. Introduction

The characterization of hydro-meteorological variables is an essential prerequisite
for their accurate modeling. Hydro-meteorological time series often exhibit self-similar
or self-affine properties over a specific range of timescales and, therefore, may be charac-
terized as fractals [1]. The multifractality detection and scaling characterization of time
series are a ‘fingerprint’ of field observations and serve as a test bed for assessing the
performance of advanced prediction models for hydro-meteorological variables, as it is
believed that the underlying physical processes are reflected in the time series [2]. Harold
Edwin Hurst [3] is one of the earlier researchers who contributed to the field of scaling
characterization, and, later on, Mandelbrot [4] made substantial theoretical contributions to
the fractal analysis of time series. Over the years, several methods have been developed
for estimating the structural dependence and fractal nature of time series, including the
rescaled range analysis [3], box-counting algorithm [4], double trace moments [5], Fourier
spectral analysis [6], extended self-similarity approach [7], and wavelet transform modulus
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maxima [8]. Peng et al. [9] put forward the Detrended Fluctuation Analysis (DFA) to detect
the fractality based on a detrending operation. Kantelhardt et al. [10] propounded its
multifractal (MF) extension, so-called MFDFA, for capturing the characteristics of the time
series by the complete description of the scaling behavior of the series through a multitude
of scaling exponents. DFA or its multifractal variant has been used for describing the multi-
fractality of hydro-meteorological variables such as global temperature database [11,12],
relative humidity [13,14], rainfall [15–17], streamflow [18–21], evapotranspiration [22–24],
and drought index [25–28]. In the past decade, MFDFA and similar techniques have been
widely used for the scaling characterization of temperature datasets from diverse parts
of the Globe, like China [29,30], Turkey [31], Greece [32], Spain [33–35], and Brazil [36].
Despite the complexity of the Indian monsoon system and the abundance of studies investi-
gating its variability [37], an in-depth analysis of multifractal characteristics for temperature
datasets of India has never been attempted by researchers. In addition to analyzing the
characteristics of mean temperature (Tmean), it is important to examine the characteristics
of maximum temperature (Tmax), minimum temperature (Tmin), and diurnal temperature
range (DTR) or TDTR, to fully understand the dynamics of the Indian climatic system. The
global climate shifts of the past century have influenced the hydro-climatological settings
of many parts of the word, including India [38,39]. Hence, assessing both the spatial and
temporal variations in all four variables simultaneously can offer vital insights into the
evolving climate of India. Furthermore, examining the temporal evolution of multifractal
characteristics and persistence properties is feasible through conducting MFDFA within a
dynamic framework, thereby aiding in capturing the evolving climatic conditions.

Thus, the main purpose of the study was, firstly, to find the multifractal characteristics
of the four daily temperature series (Tmax, Tmin, Tmean, and TDTR) for different grid points
in the Indian region, using the MFDFA method. The study aimed to explore how these
multifractal characteristics vary within different temperature-homogeneous regions of
India. Secondly, we aimed to examine the changes in the multifractal characteristics of
the four variables (Tmax, Tmin, Tmean, and TDTR) before and after the global climate shift
(GCS) of 1976-77. Additionally, we sought to investigate whether we could detect climatic
shifts over the past century by performing MFDFA within a rolling window framework,
analyzing the evolution of significant multifractal characteristics over time.

This study provides the initial comprehensive examination of the multifractal charac-
teristics of the four categories (Tmax, Tmin, Tmean, and TDTR) of extended-term daily tempera-
ture records in India, along with a comparative analysis. Additionally, our research explores
both the spatial and temporal fluctuations in the multifractal characteristics of temperature
datasets across the Indian mainland. We introduce a new approach, the rolling window
multifractal (RWM) framework, designed to identify alterations and climate transitions
in hydro-meteorological time series, and demonstrate its effectiveness with atmospheric
temperature datasets from India.

The remaining parts of this paper are organized as follows: Section 2 describes the
study area and data details; Section 3 offers a theoretical overview of MFDFA and its rolling
window extension; and Section 4 presents the results and discussion, with the final section
providing concluding remarks.

2. Study Area and Data

The data used in this study comprise fine-resolution ( 1◦ × 1◦) daily gridded datasets,
each containing one time series per cell, capturing the maximum, minimum, and mean
temperatures (Tmax, Tmin, and Tmean), spanning the period from 1951 to 2016. These datasets
were sourced from the India Meteorological Department (IMD) [40]. The dataset was
prepared based on the daily temperature records of 359 stations after a proper quality
check. The Shepard’s angular distance weighing algorithm [41] was used to transform
the point data into grid data. From the database, a total of 279 grid points were chosen
for analysis, meeting the criteria of having complete observations for all three time series
without any missing data. During database processing, the accuracy of the grid dataset
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was assessed through cross-validation, aiming for a Root Mean Square Error (RMSE)
below 0.5 ◦C. Additionally, a comparison was made with the mean monthly temperature
data compiled by the University of Delaware, with most grids showing a correlation
coefficient exceeding 0.8 [42–44]. The all-India average of maximum, minimum, and
mean temperature varies from 20.48 ◦C to 34.18 ◦C, 7.7 ◦C to 24.40 ◦C, and 14.10 ◦C to
28.90 ◦C, respectively. The DTR data, which are defined as the difference between daily
maximum and minimum temperature datasets (TDTR = Tmax − Tmin), were computed from
the collected temperature datasets.

The Indian Institute of Tropical Meteorology (IITM Pune) has delineated seven
temperature-homogeneous regions across India, labeled as the Western Himalayas (WH),
Northwest (NW), North–Central (NC), Northeast (NE), West Coast (WC), East Coast (EC),
and Interior Peninsula (IP). These seven homogeneous temperature zones are depicted in
Figure 1, and the study area encompasses these regions across the Indian mainland.
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3. Methodology
3.1. The Multifractal Detrended Fluctuation Analysis (MFDFA)

The MFDFA is a popular tool for the detection of the scaling behaviors and multifractal
characteristics of non-linear and non-stationary time series. The procedure of MFDFA
involves the following steps [2,21,22]:

1. Compute the ‘profile’ (X) of the series (which is the series of deviation from its mean,
finally accumulated):

X(i) =
i

∑
j=1

[x(j)− ⟨x⟩], i = 1, . . . , N (1)

where ⟨.⟩ represents the statistical average of the underlying series with length, N.
2. Divide the profile into a certain number of non-overlapping segments of length s

(scale or segment sample size). For each s, the number of non-overlapping windows
is Ns = int[N/s]. To avoid the loss of data for the size of non-multiple of given scale
size, we repeat such segmentation from the end of the data. Therefore, we finally
consider 2Ns non-overlapping segments for further analysis.
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3. Perform least square fit for each of the non-overlapping segments using a polynomial
of the most appropriate order, m, to remove the local trends.

4. For each segment, find the variance of the series (F2(n, s)) by considering X and its
polynomial fit.

F2(n, s) =


1
s

s
∑

j=1

[
X([n − 1]s + i)− X f it(i)

]2
f or n = 1, 2, . . . , Ns

1
s

s
∑

j=1

[
X(N − [n − 1]s + i)− X f it(i)

]2
f or n = Ns + 1, . . . , 2Ns

(2)

5. The variance is raised for different moment orders ‘q’, and the averaging over all
segments is performed to obtain the fluctuation function, Fq(s):

Fq(s) =


(

1
2Ns

2Ns
∑

n=1

[
F2(n, s)

]q
)

f or q ̸= 0

exp
(

1
4Ns

2Ns
∑

n=1
ln F2(n, s)

)
f or q = 0

(3)

6. FF is related to the scale (s) in the following form:

Fq(s) ∼ sh(q) (4)

This implies the long-range power-law correlation (scaling behavior) of the series.
Several important multifractal properties can be deduced from subsequent mathemat-

ical computations performed in a sequential manner as described below:
(i) Generalized Hurst exponent (GHE): The slope of Fq(s) versus s plot at logarithmic

scale gives the GHE normally denoted as h(q). If h(q) is independent of q, the series is
mono-fractal, and if a relationship prevails between GHE and q, the series is multifractal.
The value of h(2) can be judged to be similar to the Hurst exponent (H), referring to the
long/short-memory persistence of the series. H can also be related with fractal dimension as
D = 2 − H. The spread (∆h(q)) of GHE plot (h(q) vs. q plot) helps to assess the multifractality
of the series. If the spread is more, it indicates the higher multifractality of the series.

(ii) Renyi exponent (mass exponent): From GHE values, the mass exponent, τ(q),
values can be deduced as τ(q) = qh(q)− 1. This is a useful parameter in the multifractality
detection and modeling. The slopes of the Renyi exponent plot (τ(q) vs. q plot) before and
after τ(0) give useful insights into the regime changes of geophysical series [19–21].

(iii) Singularity exponent (α): From the mass exponent, the singularity exponent (α)
can be estimated as f (α) = qα − τ(q). The plot between f (α) vs. α is called the singularity
spectrum (SS), which is a useful measure to comment on the strength of multifractality
and complexity of the series. For a multifractal series, SS will be inverted to be parabolic
in shape. The higher the base width of the spectrum, the greater the multifractality will
be. SS describes the singularity of the time series, and its shape indicates the distribution
characteristics. The value of α for zero-moment order (known as the Holder exponent, α0)
is an indication of the complexity of the time series.

(iv) Asymmetry Index (R): It is defined by
(

R ≡ ∆αL−∆αR
∆αL+∆αR

)
, where ∆αL and ∆αR refer

to the width of the left and right wing of the singularity spectrum [45]. The negative R
value indicates a left-skewed spectrum and infers small fractal exponents with low weights,
implying that extreme events are dominant and frequent. On the contrary, a positive R
value (right-skewed spectrum) implies fine structured series.

3.2. Rolling Window Multifractal (RWM) Extension Framework for Change Detection

This analysis involves the application of the MFDFA algorithm in a dynamic environ-
ment to obtain multiple multifractal properties along the time domain. In other words,
this will help to capture the evolution of the multifractal properties along the time domain.
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MFDFA is implemented on the time series with designated time intervals. Here, we con-
ducted the MFDFA analysis using a 10-year rolling-window approach. The progression of
values for the exponents, including αmax, αmin, α0, and H, is examined. This study focuses
on identifying abrupt shifts and convergence in the scaling exponents to capture regime
changes within the respective time series.

4. Results and Discussion

In this study, the MFDFA method was applied for all four daily temperature series
(Tmin, Tmax, Tmean, and TDTR) from 1951 to 2016 of different grid points across the entire
Indian mainland to obtain the multifractal properties. Then, the analysis explored the
spatial variability of multifractal properties across different temperature-homogeneous
regions of India, aiming to provide valuable insights into the changing climatic conditions.
The findings are detailed in Section 4.2. Additionally, Section 4.3 examines the impact of
the global climatic shift of 1976–1977 on the multifractality of the temperature series by
dividing the series into two segments based on the year 1977. The results are presented in
Section 4.4, which focuses on the dynamic RWM analysis, aimed at capturing the evolution
of multifractal properties across various regions over time to identify notable climatic
changes observed in Mainland India.

4.1. MFDFA Application of Indian Temperature Datasets

Firstly, the multifractal characteristics of all the four-temperature series for the entire
India are estimated using MFDFA method. The prominent multifractal parameters like
Hurst exponent (H), spectral width (W), Asymmetry Index (R), and Holder exponent (α0)
are computed for all the four-time series corresponding to all the 279 grid points. The
statistical properties of these parameters are provided in Table 1.

Table 1. Statistical properties (mean, standard deviation (SD), and coefficient of variation (CV)) of
multifractal properties for temperature series for the whole Indian region.

Temperature
Series

Hurst Exponent Spectral Width Asymmetry Index Holder Exponent

Mean SD CV (%) Mean SD CV (%) Mean SD CV (%) Mean SD CV (%)

Tmin 0.772 0.026 3.414 0.657 0.043 6.619 0.226 0.058 25.497 0.836 0.025 3.050
Tmax 0.722 0.033 4.631 0.585 0.044 7.566 0.174 0.080 46.022 0.770 0.031 3.981
Tmean 0.740 0.021 2.828 0.604 0.040 6.560 0.209 0.052 24.993 0.792 0.022 2.759
TDTR 0.747 0.029 3.911 0.542 0.050 9.194 0.117 0.044 37.582 0.793 0.029 3.598

Subsequently, the non-parametric Kernel density estimator (KDE) was used to capture
the variability of different multifractal properties of the time series. The probability density
functions (PDFs) and cumulative distribution functions (CDFs) were computed to estimate
the four multifractal parameters of all four temperature series (Tmax, Tmin, Tmean, and TDTR)
for all the 279 grids. The obtained results are presented in Figure 2.

The extreme right position of the CDF plots of the Hurst exponent of the Tmin series
presented in Figure 2 shows that the values of H for the Tmin series are greater than those of
the other series for all grid points. Additionally, it is observed that the CDF of the spectral
width for the Tmin series indicates a higher spectral width compared to the Tmax and other
two series. This suggests that the Tmin series has a higher multifractal degree compared to
the Tmax series. From these plots, it is also noticed that the spectral width and Asymmetry
Index are found to be the lowest for the DTR series. The Tmax is directly influenced by
physical factors such as sunspot series, outgoing longwave radiation (OLR), and potential
evapotranspiration, consequently limiting the range of maximum temperature values.
While the Tmin could be controlled by many local meteorological and geographical factors,
the range of Tmin values could be large when a generic year is considered. The maximum
temperature of seasons, Tmax, may be extended for 3–4 months in a year, while the minimum
of Tmin could be present during 8–9 months in a year. The lowest multifractal degree is for
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the DTR series, and its properties are due to the interplay between the Tmax and Tmin series,
as the DTR series is derived from the difference between the Tmax and Tmin series. The R
values are found to be positive for the different temperature series.
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Figure 2. PDFs (left panels) and CDFs (right panels) of multifractal characteristics (Hurst exponent,
spectral width, Asymmetry Index, and Holder exponent) for the four temperature time series: Tmax,
Tmin, Tmean, and TDTR.

Identifying the underlying cause of multifractality is a crucial step in the multifractal
analysis of hydro-meteorological series. The two major attributes of multifractal features
are [46] the long range correlations and (ii) the broadness of the PDF. In this research
work, the shuffling and surrogate were adopted to track the source of multifractality.
The former operation eliminates the correlations in the time series, but by maintaining
the same distributions. To estimate the role of the broadness of the PDF, a surrogacy
operation was performed via phase randomization. The h(q) of the value for shuffled data
was brought down to 0.5, which implies the role of correlation properties. If multifractal
behavior is because of the broadness of the PDF, the h(q) of surrogate series will show
q-independency [47]. If both causes are leading to multifractal behavior, the shuffled (SH)
and surrogated (SU) series will show a lower multifractal property than the original (OR)
series. The detailing on shuffling and phase randomization is available in the literature [48].
The GHE plots of the four temperature time series of all grid points are prepared for the
OR, SH, and SU series. The Hurst exponent (H = h(2)) and ∆h(q) are estimated. The spatial
variability of these parameters for original, shuffled, and surrogate series was quantified
by developing the PDF and CDF of the estimates of different grid points. The plots are
presented in Figure 3. From this figure, it is clear that the PDFs of the Hurst exponent of
shuffled series are centered on 0.5. Also, from the CDFs, the variation in H is very small for
shuffled series, and the variability of ∆h(q) is small (less than 0.1). Also, it is noticed that, for
all the series, i.e., Tmax, Tmin, Tmean, and TDTR, the CDFs of the ∆h(q) of the surrogate series
are clearly to the left of those of the original series. Hence, it can be concluded that there is
a clear dominance of the role of correlations in the multifractal behavior of the different
temperature series over India, even though both the broadness of PDF and correlation
properties are responsible.
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Figure 3. PDFs and CDFs of Hurst exponent and spectral width for original, surrogate, and shuffled
series of four temperature records.

4.2. Spatial Variability of Multifractal Characteristics of Temperature Datasets

To evaluate the spatial variability of the multifractal characteristics over the Indian
mainland, firstly, the spatial distribution of the Hurst exponent and spectral width are
presented in Figure 4, and similar plots of the Holder exponent and Asymmetry Index are
presented in Figure 5.
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Figure 4. The spatial distribution of Hurst exponent (upper panel) and spectral width (lower panel)
for the four temperature series.

Overall, in Figure 4, it is noticed that relatively lower persistence (H < 0.75) is dominant
in the Tmax, Tmean, and TDTR series for approximately 82%, 65%, and 55% of the grid
points. The Hurst exponent of the Tmin series is higher than that of the other temperature
series. The highest persistence (0.8–0.85) for Tmin is noticed in the northern portion (like
Utharakhand, Western Himalaya, and Lesser Himalaya–Sikkim) and southern tip of India.
The Hurst exponent value of <0.75 is dominant in the regions of NC and NW, as well
as the northern part of IP. In Tmax − Tmean also, lower persistence is noticed in the NW
region. On the contrary, in the TDTR series, a higher H value is noted in a major portion of
the NW region, meaning that the temperature-difference series is highly persistent in the
desert-dominated NW region. In general, in the interior part of India (away from coastal
areas), the fluctuations in temperature are more heterogeneous, while in the mountainous
regions of Northern India, the behavior of the temperature is relatively homogeneous.
Figure 4 demonstrates that, despite the presence of prevailing multifractal behavior, the
predictability of such behavior is reasonably high in the NC, NW, and IP regions, where a
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high value of temperature tends to be followed by another high value. In the coastal zones,
the predictability is more difficult, as such it is influenced by monsoon characteristics and
ocean–land-surface interactions, and such processes have a great impact on the temperature.
By examining Figure 4, it is further noticed that, consistently in all the four time series, high
multifractal behavior is noticed in the northeastern coastal zone (comprising parts of EC,
IP, NE, and NC) region. In the upper Himalaya region, the multifractal degree of all four
temperature series is found to be the lowest.
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By examining Figure 5, one can observe that the spectrum is near-symmetric (R is less
and <0.2) for 89% of the grids for the TDTR series and 68% for the Tmax series. The behavior
of the TDTR series is quite different from the other three time series, and it resulted in a
more symmetric spectrum (lower Asymmetry Index value) for most of the grid points.
A strong asymmetry of the spectrum is noticed in the Tmax − Tmin − Tmean time series in
the southern tip of India, comprising the coastal region and Peninsular India, whereas a
near-symmetric spectrum resulted for the time series at the NW and NC. This indicates
that the fluctuations in temperature extremes are more in the coastal belts and IP region,
while extreme temperature episodes are practically repeated in a similar pattern in every
year for Central India. All four temperature time series are found to be highly complex
in the NE and the lesser Himalaya regions of India. High complexity is noticed in the
Tmax − Tmin − Tmean of the WH, NW, and coastal regions, whereas a contrasting behavior
in complexity is noted in the TDTR series.

To understand the spatial variability in a more comprehensive way, the grid points
in different regions and their multifractal properties were clustered. The EC, IP, WC, NE,
NC, NW, and WH comprise 21, 84, 25, 25, 65, 54, and 5 grids, respectively. Then, the
PDFs for the four multifractal parameters of the different time series were estimated, and
the results are presented in Figure 6. In the WH region, only a few points are available.
Consequently, the behavior of these PDFs will be less representative, and the results may
not be reliable to make conclusions. Therefore, any further conclusions are based on the
remaining six homogeneous regions (NC, NE, NW, WC, EC, and IP). In Figure 6, it can
be observed that the lowest range of Hurst exponents belongs to the NC region for all the
series, and the density is highest for the Tmin and TDTR series. Furthermore, the perusal of
the plot reveals that the spread of the Hurst exponent is the highest for the WC area, where
the predictability of temperature is quite difficult. However, to a lesser degree, this is also
noticeable in the eastern coast for some of the series. For example, the spread of PDFs for H
in the EC region is more significant, so the predictability of the Tmin series is quite difficult
in this area. Figure 6 illustrates that the PDF of the spectral width in the NC region is quite
similar to that of the NW region for all series except Tmax, whereas it exhibits a remarkable
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resemblance to the IP area for the Tmax series. The range of all the multifractal parameters is
the highest in the WC region. This behavior could be linked to the oceanic proximity and
the changes in the temperature due to climatic characteristics like monsoon. To sum up, the
variability in multifractal properties is the lowest in the NC region, followed by the NW region,
while it is highest in the WC area. To obtain more insight into the properties for the different
regions, the statistical characteristics, like the mean, standard deviation (SD), and coefficient
of variation (CV), of the multifractal parameters were computed and are presented in Table 2.
For better clarity, a visual examination is also made by plotting the CDFs (see Figure 7) of the
estimates for the four multifractal parameters based on the grids falling within the different
homogeneous regions.
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Figure 6. PDFs of multifractal parameters for the different temperature series according to the
homogeneous regions in India.
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Figure 7. CDFs of multifractal parameters for the different temperature series in different homoge-
neous regions in India.
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Table 2. Statistical summary (mean, standard deviation (SD), and coefficient of variation (CV)) of
multifractal properties for temperature series of different temperature-homogeneous regions of India.
In the regional-scale analysis, the highest variability is marked in italics, and the lowest variability is
marked in bold.

Temperature
Series

Region
Hurst Exponent Spectral Width Asymmetry Index Holder Exponent

Mean SD CV (%) Mean SD CV (%) Mean SD CV (%) Mean SD CV (%)

Tmin

EC 0.756 0.022 2.861 0.652 0.054 8.326 0.158 0.040 25.673 0.819 0.028 3.371
IP 0.747 0.016 2.120 0.692 0.035 5.113 0.202 0.055 27.061 0.815 0.018 2.178

NC 0.793 0.009 1.176 0.655 0.027 4.082 0.273 0.034 12.479 0.844 0.013 1.598
NE 0.804 0.025 3.072 0.663 0.032 4.809 0.231 0.031 13.248 0.875 0.020 2.332
NW 0.782 0.015 1.857 0.627 0.028 4.514 0.259 0.043 16.436 0.851 0.007 0.798
WC 0.758 0.016 2.135 0.656 0.039 5.905 0.183 0.038 20.575 0.820 0.019 2.339

Tmax

EC 0.732 0.026 3.579 0.586 0.037 6.338 0.125 0.030 23.635 0.777 0.022 2.863
IP 0.721 0.025 3.490 0.591 0.046 7.739 0.116 0.032 27.515 0.773 0.021 2.712

NC 0.713 0.024 3.383 0.591 0.044 7.507 0.224 0.079 35.222 0.762 0.021 2.700
NE 0.719 0.023 3.148 0.591 0.057 9.669 0.210 0.066 31.697 0.771 0.017 2.164
NW 0.725 0.026 3.580 0.576 0.039 6.849 0.228 0.075 32.835 0.769 0.024 3.178
WC 0.711 0.050 7.073 0.564 0.030 5.345 0.129 0.062 48.181 0.758 0.052 6.871

Tmean

EC 0.743 0.013 1.713 0.578 0.047 8.101 0.180 0.038 21.337 0.788 0.012 1.582
IP 0.726 0.013 1.764 0.594 0.040 6.660 0.178 0.030 16.749 0.776 0.012 1.535

NC 0.743 0.013 1.765 0.622 0.025 3.949 0.252 0.035 13.763 0.795 0.014 1.725
NE 0.755 0.016 2.182 0.626 0.030 4.858 0.231 0.022 9.551 0.813 0.016 1.940
NW 0.758 0.013 1.753 0.611 0.019 3.092 0.235 0.039 16.376 0.810 0.012 1.504
WC 0.713 0.021 2.909 0.570 0.054 9.496 0.164 0.063 38.494 0.763 0.022 2.900

TDTR

EC 0.746 0.024 3.163 0.492 0.037 7.428 0.131 0.031 23.676 0.784 0.026 3.360
IP 0.742 0.019 2.534 0.547 0.045 8.266 0.105 0.049 46.355 0.788 0.019 2.355

NC 0.745 0.010 1.356 0.570 0.028 4.835 0.122 0.040 32.837 0.794 0.009 1.158
NE 0.787 0.028 3.599 0.578 0.038 6.512 0.125 0.034 27.527 0.835 0.024 2.851
NW 0.732 0.027 3.629 0.550 0.020 3.693 0.102 0.035 34.241 0.779 0.026 3.346
WC 0.769 0.022 2.924 0.512 0.057 11.082 0.146 0.036 24.807 0.809 0.019 2.309

For the Tmin series (see Table 2), the variability of all the multifractal properties is
the lowest in NC region. For the TDTR series, the variability of all multifractal properties,
except asymmetry, is also the lowest in NC region. Considering the Tmean series, all the
multifractal properties show the highest variability in the WC region, contrary to the other
series. It is to be recollected that, for all the grid points, i.e., All India (AI), the highest
variability in persistence (3.91), and the multifractal degree (9.19) is noted for DTR series,
while the highest variability in complexity and asymmetry is noticed for the Tmax series
(Table 1). Also, the variability in all four properties is the lowest in the Tmean series. From
the CDF plots, it is evident that the persistence is highest in NE for all temperature series
except Tmax, which shows a fairly homogeneous pattern of this temperature in the NE area.
Even though a relatively larger H value is noted in the NW region for the DTR series, the
persistence is lowest in this area. This highlights the rich dynamics between Tmax and Tmin
in the desert located in the NW region. In the spectral width, there is no consistent pattern,
but for Tmin and TDTR, the multifractal degree is relatively higher in the NE and NC regions.
High complexity is also noticed in the time series of the NE region for all four temperature
series. Lower complexity and asymmetry are observed in the time series for the WC region
in all the time series except DTR. Overall, there is a no unique pattern, and there exists
spatial diversity in the multifractal characteristics of the four different temperature series.

4.3. Temporal Change in Multifractal Properties

The temporal changes in the multifractal properties are crucial because they give
information about the changing characteristics of the time series. These drastic changes in
properties can be signatures of climate change [49], and in such a context, it will be useful to
follow appropriate modeling practices to improve the accuracy of predictions. A possible
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reason for these changes in multifractal properties could be the urbanization, as it might be
leading to a more irregular profile and, thus, the smoothening and subsequent reduction of
multifractality [50]. Urban areas with a more irregular surface profile and heat emission can
lead to complex temperature profiles possessing a high degree of multifractality. It is further
assumed that the change could also be related to climate factors as well. Researchers have
identified a well-debated climate change in the Pacific during the period 1976–1977 and the
subsequent change in global temperature [51,52]. To investigate the role of climatic shift, all
four temperature time series were split into the pre- and post-1977 period, and an MFDFA
was performed. The CDFs of prominent multifractal characteristics were computed and
are presented in Figure 8.
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post-1977 global climatic shift for (a) Hurst exponent, (b) spectral width, (c) Asymmetry Index, and
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Figure 8 shows that there is an evident reduction in the multifractality, persistence, and
complexity for the series of post-1977 global climate shift (GCS). It can be noticed that there
is no definite pattern in the shape of the multifractal spectra for the different series of the
pre- and post-1976–1977 period, except for TDTR and Tmi: the left or right truncation (which
indicates the frequency of existence of extremes) was displayed randomly in different
grid points. Furthermore, the reduction of R in the TDTR series for the post-1976–1977
series is rather marginal. This highlights the more homogeneous nature of the diurnal
temperature series in the post-1976–1977 GCS period. The α0 values of all the four types
of daily temperature series displayed a systematic reduction for the post-1976–1977 GCS
period. This is contrary to the observations made by Krzyszczak et al. [49] on the property
of the time series of different meteorological parameters in Europe, which was mainly
controlled by the local changes in climate dynamics. Thus, it can be inferred that the
non-linearity and multifractality of Indian temperature is controlled to a large extend by the
global climate dynamics and the Indian monsoon system. Many studies have highlighted
an increasing trend in the Tmin series in India during the second half of the last century,
and some researchers have reported that the variability in the Tmin is quite different from
that of the Tmax based on detection and attribution studies [53]. Overall, it is evident that
there is a notable destruction in persistence properties and multifractal behavior for the
series from the period after 1977, and these changes in multifractal properties of different
temperature series over India may be attributed to climate change and urbanization.
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4.4. Multifractal Analysis in 10-Year Rolling Window

In this section, we conduct an analysis using a 10-year rolling window to capture the
evolution of multifractal properties across the time domain. The values of the exponents
αmax, αmin, and α0, which are the projection of the multifractal spectrum onto the x-axis,
are presented in Figures 9–12. One could clearly observe that they are dynamic in the
time domain. Instances where the spectrum becomes narrower are highlighted with
dotted circles. A narrowed spectrum is associated with weak multifractal correlations in
the examined time series and could signify a potential shift in regime [54,55]. This was
observed for Tmax, Tmin, and Tmean in 10-year rolling windows from 1985 until 1995 and for
Tmax even in 2001 and 2010. Especially in the case of the Tmean for the NC and NE regions
during the period 1985–1995, the spectra are close to a point, indicating the mono-fractal
nature of the series. For the Tmin in the NC and NE regions, one can notice that the left
side of the spectrum is reduced to a point during the same period. For the Tmax, we could
also observe a very narrow spectrum from 1965 to 1974. This may indicate some potential
regime changes, especially for Tmax. For TDTR, one can observe that the spectra were wider
during the period 1985–1995. This distinct behavior, unlike other temperature measures,
may result from the interplay between maximal and minimal temperature changes. The
spectrum takes on a different shape, particularly in the WH region, where only a few points
are located, potentially causing disturbances in the results.
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Figure 9. Temporal variability of exponents of multifractal spectra for Tmax series averaged over
grid points belonging to seven homogeneous regions. The circled regions show the years of evident
climate change while the vertical dashed lines exhibited the identified prominent global climate shift.

Based on the MFDFA analysis, we can also distinguish the changes in the Hurst
exponent over time. Its temporal evolution for all the seven regions is presented in Figure 13
(Tmax, Tmin) and Figure 14 (TDTR, Tmean). By comparing these two Figures, it is clearly visible
that the H values are higher for TDTR and Tmean (Figure 14) than Tmax and Tmin (Figure 13).
The lowest H values can be observed for Tmax, and they are also the most volatile during
the considered time period. The declining trend and the Hurst exponent approaching
a value of 0.6 are particularly noticeable for Tmax in all regions within rolling windows
ending from 1971 to 1977. There is also a less pronounced but still present intensity in
certain regions from 1990 to 2000 and from 2010 to 2016. This provides valuable insights
into regions potentially more susceptible to climatic change, exhibiting a faster pace of
transformation. It is well understood that both the Tmax and Tmin rise because of global
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changes in climate, despite the changes in the rates of increase with respect to climate
zones [44]. In the drylands, semi-arid and warm grasslands of India, the rate of rise in the
Tmin is more than that of the Tmax. Sub-tropical forests, equatorial grasslands down south,
and the WC show an opposing behavior. In general, the coastal and peninsular regions
show the highest change in Tmax and TDTR series, while the northwest region shows the
highest change in Tmin.
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climate change.
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In this research, we applied the MFDFA analysis to study the complex fluctuations
and scaling of daily temperature data in various regions of India from 1951 to 2016. It
is noteworthy that our study is the most comprehensive, encompassing all four types of
temperature series (Tmax, Tmin, Tmean, and TDTR) and spanning the entire spatial domain
of the Indian mainland. The multifractal spectra for the whole considered period have
right-sided asymmetry. The time series are well persistent also, with H values well above
0.6 in all cases. The multifractal characteristics of temperature can be attributed to the
physical mechanisms that lead to it. In addition to global parameters such as the sunspot
number, earth rotation, solar and terrestrial radiations, local factors such as latitude, atmo-
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spheric and oceanic oscillations, and topographic features may contribute to the emergence
of multifractality in the series. The proximity to oceans significantly influences the pre-
cipitation in India, as the country is surrounded by the Arabian Sea, Indian Ocean, and
Bay of Bengal in its western, southern, and eastern regions. However, it will be difficult to
find a universal pattern in the changes in the scaling exponent and multifractal properties
with distance from the coast and the latitude and altitude. Moreover, attributing multi-
fractality to a single indicator is challenging due to the complexity of the Indian monsoon
system and the influence of local processes and factors, such as terrain type, moisture, and
vegetation, on regional precipitation variations. It has been well established that global
and regional temperatures are influenced by the El Niño Southern Oscillation (ENSO). In
addition, the large-scale atmospheric circulations of diverse periodicities play a main role
on the southwest monsoon rainfall of India in the summer season [56]. A more insightful
depiction of multifractal dynamics can be obtained through the study by conducting the
analysis from a rolling-window perspective. Our results clearly show that the multifractal
characteristics and H values are dynamic over the time domain. Observations based on
multifractal spectrum width changes may indicate some regime shifts, especially for Tmax
and Tmean during the 1980s and 2000s. These results are supported by the behavior of Hurst
exponent, whose values have declined during this period. Drawing conclusions from the
presented results, one could infer potential climate changes and global regime shifts in the
mentioned decades.
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While the multifractal characteristics of hydrological and meteorological time series
are widely discussed in the literature, the practical application and dissemination of these
parameters for simulation or prediction purposes are still relatively limited. Some studies
have demonstrated the link between persistence and predictability and the autocorrela-
tion values of the time series [57,58]. Understanding the multifractal properties can be
effectively used in the multifractal modeling, simulation, and synthetic generation of hydro-
meteorological fields and de-noising of hydro-meteorological signals [59,60]. Multifractal
properties can be considered promising tools for homogeneity detection and frequency
analysis [35,61]. Analyzing the spatial and temporal variability of multifractal proper-
ties has a lot of practical significance, as it may help in detecting the mechanisms and
the inter arrival times of hydrologic extremes and heat waves. Moreover, the escalating
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global temperature is a significant concern, and its pattern is becoming more intricate,
introducing non-stationary features. This emphasizes the need to construct temperature–
duration–frequency (TDF) curves using robust methods to address heatwave and drought
disasters [62]. Any significant change in persistence could affect the accuracy of predictions,
similar to relying on a stationarity assumption in a non-stationary setting resulting from
climatic changes. This innovative approach will empower hydrologists to delve deeper
into multifractal and non-stationary modeling methods, fostering additional research in
the field.

5. Conclusions

In this study, we employed the Multifractal Detrended Fluctuation Analysis (MFDFA)
method to investigate the scaling behavior of daily temperature series across India, along
with the analysis on their spatial and temporal variability. High-resolution datasets for
maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean),
and diurnal temperature range (Tmax–Tmin) spanning the period 1951–2016 at daily temporal
scales were utilized. The key findings are summarized as follows:

• All four types of temperature series (Tmax, Tmin, Tmean, and TDTR) in India exhibited
strong long-term persistence;

• Among the four temperature series, Tmin displayed the highest persistence and degree
of multifractality;

• The variability of multifractal characteristics was lowest in North–Central India and
highest in the West Coast region;

• A noticeable decrease in persistence and multifractal properties was observed in
India’s temperature series following the Pacific climatic shift of 1976–1977;

• The multifractal properties observed in the temperature series across India can be
attributed more to the dominant influence of correlation properties rather than the
shape of the probability density function;

• The temporal evolution analysis of multifractality successfully captured the climatic
shifts of 1976–1977 and 1998–1999;

• The climatic shift in the 1980s predominantly alleviated the persistence of the Tmax
series, while the shift in 1998 had a dominant effect on influencing the persistence of
the Tmean series in the majority of temperature-homogeneous regions in India.

All of these results provide valuable insights into the improved understanding of the
impact of climate change across the Indian mainland.
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