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Abstract: We study the critical behaviors of systems undergoing fractal time processes above the
upper critical dimension. We derive a set of novel critical exponents, irrespective of the order of
the fractional time derivative or the particular form of interaction in the Hamiltonian. For fractal
time processes, we not only discover new universality classes with a dimensional constant but also
decompose the dangerous irrelevant variables to obtain corrections for critical dynamic behavior
and static critical properties. This contrasts with the traditional theory of critical phenomena, which
posits that static critical exponents are unrelated to the dynamical processes. Simulations of the
Landau–Ginzburg model for fractal time processes and the Ising model with temporal long-range
interactions both show good agreement with our set of critical exponents, verifying its universality.
The discovery of this new universality class provides a method for examining whether a system is
undergoing a fractal time process near the critical point.

Keywords: critical phenomena; fractal time process; upper critical dimension; critical exponents;
Landau–Ginzburg model

1. Introduction

Time effects play a crucial role in phase transitions, and have attracted widespread
attention in recent years [1–3]. The Markov stochastic thermodynamics has been well
established and proven [4,5], which is meaningful for phase transition in open systems
only when the timescale for a system to reach equilibrium from a non-equilibrium state
is much smaller than the timescale for the environment to reach a new equilibrium after
the system’s state changes [6]. However, strong coupling between the system and the
environment, initial-state correlations, and entanglement, as well as the coupling between
quantum systems and an environment possessing a nanoscale structure, can lead to memory
effects [7]. The quantum open system coupled to a sub-Ohmic Bosonic environment exhibits
non-Markovian behavior during the integration of environmental degrees of freedom,
leading to the reversed flow of past-time information back to the open system [8], and
these critical phenomena have been extensively studied [9–11]. Although the quantum-
classical correspondence of critical phenomena has been validated under the Markov
approximation [12], the critical behavior of non-Markovian systems in classical systems
remains an open question.

The study of critical phenomena inevitably involves an upper critical dimension that
depends on the form of spatial interaction [13]. When the spatial dimension is below
this upper critical dimension, the critical exponents depend on the form of spatial inter-
action [14]. However, when the spatial dimension is above this upper critical dimension,
due to the presence of dangerous irrelevant variables (DIVs), the critical exponents exhibit
a high degree of universality independent of the spatial interaction form [15]. Although
additional corrections are required for size effects, mean-field exponents are effective in
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describing critical behavior for Markov processes [16]. In recent years, an effective way
to describe non-Markovian behavior is by introducing fractional-order time derivatives
into the evolution equation [17–19]. Although it has been found that the upper critical
dimension also depends on the specific order of the fractional derivative [20], the influence
of fractal time processes on critical phenomena is an open question. On one hand, in the
past, critical properties were entirely dependent on spatial interactions and irrelevant to
dynamics [21]; this phenomenon has also been proven in Markov processes [4]. On the
other hand, fractal time processes lack practical proof and effective observational methods.
Therefore, how fractal time processes affect critical properties remains a significant research
question. Furthermore, it is essential to investigate how the critical behavior of fractal time
processes manifests a highly universal behavior above the upper critical dimension and
how to quantitatively verify these results.

This study aims to extend the research on critical properties above the upper critical
dimension to the more general investigation of critical properties with fractal time processes.
First, since the introduction of fractal time processes disrupts fundamental thermodynamic
relations, we restore the disrupted thermodynamic relations by introducing a dimensional
constant instead of a new environmental variable and found novel critical exponents.
Then, based on mean-field theory and dangerous irrelevant variable theory, we propose
decomposing the dangerous irrelevant variable into a temporal DIV. Consequently, we
discover another set of highly universal critical exponents, independent of the fractional
order, distinct from the standard mean-field exponents. Finally, we simulate the Landau–
Ginzburg model for fractal time processes and the Ising model with temporal long-range
interactions for describing ferromagnetic phase transitions to verify the relevant critical
exponents. Additionally, due to the universality of critical phenomena [22], this study
applies not only to ferromagnetic phase transitions for fractal time processes but also
to continuous phase transitions such as gas–liquid transitions, mixture transitions, and
super-conducting transitions.

This paper presents the following structure: Section 2 discusses a series of transfor-
mations resulting from the violation of thermodynamic relation caused by fractal time
processes, and quantitatively calculates the static and dynamic critical exponents above the
upper critical dimension. Section 3 introduces a method for obtaining critical exponents
and gives the dynamic scaling forms. Section 4 simulates the Landau–Ginzburg model
with temporal fractional-order derivatives and the Ising model with temporal long-range
interactions to verify the related exponents. Finally, we summarize the research findings of
the entire project and discuss potential areas for future investigation in Section 4.

2. Theory of Critical Behavior above the Upper Critical Dimension

In this paper, we study the critical exponents for systems undergoing a fractal time
process above the upper critical dimension. We start by considering a generalized form of
the time fractional Langevin equation.

C
t0

Dθ
t ϕ(x, t) = −λ

δH
δϕ(x, t)

+ ζ (1)

Equation (1) is an expansion of the standard Langevin equation, where the Hamiltonian H
is described by the Landau–Ginzburg model [23]:

H =
∫

ddx[
1
2

τϕ(x, t)2 +
1
2
(∇ϕ(x, t))2 − hϕ(x, t) +

1
4

uϕ(x, t)4]. (2)

In Equation (1), λ is the kinetic coefficient and θ is the fractional order, and in Equa-
tion (2), u is the coupling constant, h is the external field, τ = T − Tc is the deviation
from the critical temperature Tc, and ζ is a random external force. For ζ, one assumes
the Gaussian distribution with zero mean < ζ(x, t) >= 0 and the correlation function
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< ζ(x1, t1)ζ(x2, t2) >= 2λδ(x1 − x2)δ(t1 − t2), C
t0

Dθ
t is the Caputo derivative operation and

can be expressed as follows [24]:

C
t0

Dθ
t ϕ(t) =

1
Γ(1 − θ)

∫ t

t0

dt̃
ϕ̇(t̃)

(t − t̃)θ
, (3)

where ϕ̇ represents ∂ϕ(t̃)/∂t̃, and t0 is the initial time. For θ = 1, it recovers to the standard
Langevin equation. We present a field-theoretic action L for Equation (1) with the main
field ϕ and the auxiliary field ϕ̃ [25,26]:

L =
∫

ddxdtϕ̃(x, t)[Ct0
Dθ

t ϕ(t) + λ
δH(ϕ)

δϕ
− λϕ̃(x, t)]. (4)

We employ dimensional analysis to calculate critical exponents [21]. For instance, the
renormalized τR can be expressed as τR = τb[τ] = τb1/ν, dominated by a Gaussian fixed
point, where b is a renormalized factor, [τ] is the dimension of τ, and ν is a critical exponent.
According to the relation between dimensions and critical exponents, we can determine
the critical exponents by setting the dimension of the coordinate dimension as [x] = −1
and assuming that L are dimensionless. According to the dimensional analysis, the upper
critical dimension dc = 6 − 2/θ corresponds to the dimensionlessness of u; the mean-field
exponents α = 0, β = 1/2, γ = 1, ν = 1/2, η = 0, and δ = 3 can also be obtained from
L at d = dc, where α, β, γ, ν, η, and δ are critical exponents. However, the hyperscaling
law dν = 2 − α is only valid for dc = 4 at θ = 1. For θ < 1, due to dc < 4, the hyperscaling
law is not effective anymore at d = dc. In order to recover the hyperscaling law for the
fractal time process at d = dc, it should be introduced to transform the original Hamiltonian
Equation (2) into H′ = aH, where a is a dimensional constant. To avoid introducing a
new scale field a in scaling functions, a series of transformations should be applied; the
transformations are as follows:

ϕ′ = a1/4ϕ, ϕ̃′ = a−1/4ϕ̃. (5)

After the transformations, the introduced dimensional constant a will not appear in the
renormalization group equations [27]. Furthermore, due to the form a1/2

∫
ddx in H′, the

effective spatial dimension changes to d − [a]/2 in order to hold the accordance of spatial
integrals between H′ and L; it can be formed as a−1/2

∫
dt. In other words, we assign a1/2

to the spatial integral and a−1/2 to the time such that the former plays a role in generating
an effective dimension de f f = d + [a]/2 = d + 1 − 1/θ, whereas the latter serves to further
transform the time t′ = ta−1/2 and dynamic exponent z = [a]/2 − [t] = 1 + 1/θ for d = dc.

Above the upper critical dimension, due to the influence of DIV, the hyperscaling
law is broken, and the Gaussian exponents are no longer suitable to describe the system’s
critical behavior [28]. Thus, a simple dimensional analysis is insufficient, and we need to
introduce a series of transformations to eliminate the influence of DIV for a fractal time
process, such as the following:

ϕ′ = u
1
2 a

1
4 ϕ, ϕ̃′ = a−

1
4 u

1
2 ϕ̃, h∗ = u

1
2 a

1
4 h. (6)

Indeed, in the past, the upper critical dimension was only dependent on the gradient term
or the form of spatial long-range interactions and irrelevant to the dimension of t in the
time-independent Hamiltonian [14,21]. However, the upper critical dimension depends
on the form of spatial interaction and the temporal fractional order after considering the
fractal time process. To express this more precisely, we decompose u into two components
u = utus, where us represents spatial DIV obtained entirely from the time-independent
Hamiltonian as Equation (2), corresponding to the spatial upper critical dimension dcs = 4.
According to effective-dimension theory, us will be corrected to the spatial dimension
demonstrating the mean-field exponents and changes the scaling form of lattice size L for
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d > dcs [16]. On the other hand, ut represents a DIV caused by dynamics and is called
temporal DIV. For dcs > d > dc, due to the real spatial dimension being below the spatial
upper critical dimension dcs, [us] = 0 and [ut] = [u], and the critical behavior of the system
will be affected by the temporal DIV ut rather than the spatial DIV us. On the other hand,
for d > dcs > dc, the critical behavior of the system is affected by both the spatial DIV and
the temporal DIV due to d > dcs [us] = dcs − d, [ut] = dc − dcs. To this end, for d > dc, the
dimensions of us and ut are expressed as follows:

[us] =

{
0, dcs > d > dc,

dcs − d, d > dcs,

[ut] =

{
d − dc, dcs > d > dc,

d − dcs, d > dcs.

(7)

After transforming as Equation (6), due to the fact that λ can be regarded as a dimensionless
constant, one fixes it at 1 for convenience; L becomes as follows:

L = u−1
s u−1

t

∫
ddxdtϕ̃′(x, t)[Ct0

Dθ
t ϕ′(t) + usa−

1
2

δH(ϕ′)

δϕ′ − a
1
2 ϕ̃′(x, t)ϕ̃′(x, t)], (8)

where

H = u−1
s a

1
2

∫
ddx[

1
2

τϕ′(x, t)2 + (
1
2
▽ ϕ′(x, t))2 − h∗ϕ′(x, t) +

1
4

a−
1
2 ϕ′(x, t)4]. (9)

Then, we divide the integrals of space and time into two parts as follows:

(usut)
−1

∫
(ddxdt) =

∫
u−1

s a
1
2 ddx

∫
a−

1
2 u−1

t dt. (10)

Obviously, us and a1/2 correct the spatial dimension d and obtain the effective dimension
de f f , whereas ut will change the temporal dimension as follows:

t′ = u−1
t a−

1
2 t. (11)

Since ut is derived from dynamics rather than spatial interactions, the dimensional analysis
should regard L and H as dimensionless. This makes the dimensions of the variables in
Equation (8) change to the following:

[ϕ′] =
d
4

, [ϕ̃′] = 2 +
d
4

, [h′] = 2 +
d
4

,

[τ] = 2, [a] = d − 4, [t′] =
d
2
− 4.

(12)

Hence, the effective spatial dimension becomes de f f = d − [a]/2 + [us] derived from the
spatial integral form in Equation (10). According to Equations (7) and (12), the relation
between de f f and d is as follows:

de f f =
d
2
+ 2. (13)

Due to the relation between critical exponents and the dimension of variables, the critical
exponents for different spatial dimensions are reported in Table 1. It should be empha-
sized that although Equation (6) is different from the DIV theory, the critical exponents
describing macroscopic properties, including β related to magnetization, γ and δ related
to magnetization susceptibility, and α related to specific heat, are entirely identical. More-
over, they also have the same finite-size scaling and dynamics scaling (See Supplemental
Material for details of dynamics scaling form above the upper critical dimension, 2023).
The differences lie in considering the critical exponent η, which accounts for the decay
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of correlations with distance, and the exponent ν, which defines the correlation length.
Various definitions of correlation length just modify our observational approach to the
system, without exerting any influence on the macroscopic properties of the system and
the accompanying critical exponents.

Table 1. Critical exponents for the fractal time process above the critical upper dimension.

d de f f β ν γ δ z

2 3 1
4

1
2 1 5 3

3 7
2

3
8

1
2 1 11

3
5
2

4 4 1
2

1
2 1 3 2

3. Finite-Time Scaling

According to the analysis presented above, the scaling function of free energy density
can be written as follows:

f (τ, h∗, t′) = b−
d
2 −2 f (τb2, h∗b2+ d

4 , t′b
d
2 −4), (14)

Equation (14) demonstrates that the critical exponents depend solely on the spatial dimen-
sion and are not influenced by the fractional order θ. This implies that the critical behavior,
when considering the influence of the fractional derivative above the upper critical di-
mension, no longer relies on the specific form in the time direction. This is because the
effects of fluctuations are constrained when enough past states are taken into account, and
then a time-induced special critical behavior will be found. It displays properties similar
to mean-field behavior, in which the critical exponents are independent on the details
of spatial long-range interactions [29]. Additionally, the scaling forms of magnetization
M = ∂ f /∂h∗ and susceptibility χ = ∂2 f /(∂h∗)2 can also be obtained from Equation (14)
and expressed as follows:

M = b−
d
4 fM(τb2, h∗b2+ d

4 , t′b
d
2 −4),

χ = b2 fχ(τb2, h∗b2+ d
4 , t′b

d
2 −4),

(15)

where fM and fχ are scaling functions corresponding to magnetization and susceptibility,
respectively.

To verify the exponents, we utilize finite-time scaling (FTS) [30], which is an effective
method for observing critical dynamics and measuring the dynamic exponent z. FTS
observes critical dynamics by linearly changing a parameter in the Hamiltonian. The linear
rate R imposes a controllable external finite timescale on the system and replaces with the
divergence of the timescale at a critical point. We change the reduced temperature τ = Rt′

and choose the rate R instead of t′ as a scale field in the scaling function. Accordingly,
Equation (14) becomes as follows:

f (τ, h∗, R) = b
d
2 −2 f (τb2, h∗b2+ d

4 , Rbr), (16)

where r is the driven exponent. Due to τ ∼ τb2 and t′ ∼ t′b4−d/2, one finds r = z + 1/ν =
6 − d/2, which can verify the dynamic exponent z. Setting b = R−1/r, FTS is expressed
as follows:

f (τ, h∗) = R
4−d
12−d f (τR

−4
12−d , h∗R− 8+d

24−2d ), (17)

The others have FTS forms as follows:

M = R
d

24−2d fM(τR
−4

12−d , h∗R− 8+d
24−2d ),

χ = R− 4
12−d fχ(τR

−4
12−d , h∗R− 8+d

24−2d ).
(18)
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In Equation (18), the peak of χ corresponds to temperature Tp, Tp − Tc = c1R1/rν. This
yields a critical exponent 1/rν and a critical temperature Tc, where χp is the peak of χ,
and Mc and χc are values of magnetization and susceptibility at Tc. These parameters are
satisfied with Mc = c2Rβ/rν, χp = c3R−γ/rν, and χc = c4R−γ/rν; therefore, β and γ can be
obtained. c1, c2, c3, and c4 are non-universal constants.

4. Numerical Results

First, we simulate Equation (1) with θ = 0.2 and cut-off T0 = t − t0 = 40. For fractal
time processes with fixed memory, a system will inevitably reach a stable distribution in the
long-time limit. As time progresses and more memories accumulate, earlier memories have
diminishing effects on the system. Therefore, the system will approach an asymptotic stable
distribution, which can be approximated as the result of having a sufficiently large fixed
T0 = 40. We use periodic boundary conditions and initial states far from the critical point
throughout the heating process. Based on the previous discussion for Tp, Mc, and χp, the es-
timated critical temperature Tc = −0.895 leads to Figure 1a–c. Figure 1a displays the fitting
curve of Tp and the linear heating rate R. The fitting result shows that 1/rν = 0.377(47).
Figure 1b displays the fitting curve of magnetization Mc obtained by linear interpolation
at Tc. The fitting curve of Mc and the heating rate R show β/rν = 0.1056(26). Figure 1c
displays that the fitting curve of χp derived from the peak of χ, the fitting curve of χp,
and the heating rate R show γ/rν = 0.415(14). These fitting results are very close to the
theoretical results. The critical exponent β = 0.28(4) is derived from 1/rν = 0.377(47) and
β/rν = 0.1056(26); another exponentγ = 1.10(20) can be obtained by 1/rν = 0.377(47)
and γ/rν = 0.415(14). Figure 2 depicts the curves before and after scaling using the
theoretical critical exponents. The magnetization and susceptibility curves at different
rates R collapse after rescaling. This implies that the critical exponents are effective for the
Landau–Ginzburg model for the fractal time process. Furthermore, these exponents are
also completely different from the standard 2D Landau–Ginzburg model and mean-field
exponents. A slightly smaller T0 = 20 has also been investigated, and we found that it did
not impact on the measurement of the critical exponents.

0.2

0.3

-0.50

-0.45

100 200 300
1.1

1.6

(b)

(c)

 Tp-Tc
 fit

(a)

c
p

M
c

T
p
-
T
c

R

 cp
 fit

 Mc
 fit

Figure 1. Fitting curve between (a) Tp and driving rate R, (b) Mc and driving rate R, and (c) χp and
driving rate R in the Landau–Ginzburg model for the fractal time process (average of 2000 samples).

We also simulate the Ising model with temporal long-range interactions of power-law
decay (See Supplemental Material for details of Ising model with temporal long-range
interactions, 2023). We use linear heating to move the system from the ordered to the
disordered phase through the critical point. Period boundary conditions have been applied
throughout, and the initial ordered state is also far away from the critical point not to
affect the results. The estimated Tc = 1.935 leads to a fitting curve with β/rν = 0.107(7)
and 1/rν = 0.436(40) in Figure 3a,b. In order to decrease the range of corrections, χc is
obtained through linear interpolation, where Tc replaces Tp, leading to the fitting curve
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with γ/rν = 0.36(7) in Figure 3c. Accordingly, the critical exponents β = 0.245(35) and
γ = 0.83(20). The curves are also close to the theoretical values, and these fitting exponents
result in the rather good curve collapses around Tc in Figure 4 after rescaling.
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b
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Figure 2. The original curves of M and χ are on the left, and the rescaled curves of M and χ are on
the right.
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Figure 3. Fitting curve between (a) Tp and driving rate R, (b) Mc and driving rate R, and (c) χc and
driving rate R in 2D Ising model with temporal long-range interactions for θ = 0.2, T0 = 20 (average
of 40,000 samples).
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Figure 4. Original curves of M and χ on the left and rescaled curves of M and χ on the right.
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To verify the universality of exponents above the upper critical dimension, we also sim-
ulate the Ising model with an exponentially decaying temporal long-range interaction (See
Supplemental Material for details of Ising model with temporal long-range interactions,
2023). Figures 5 and 6 display the results of this model. The estimated Tc = 42.6 leads to a
fitting curve with β/rν = 0.0915(34), 1/rν = 0.398(30), and γ/rν = 0.42(1) (Figure 5a–c),
which are also close to the theoretical values β/rν = 0.1, 1/rν = 0.4, and γ/rν = 0.4.
Correspondingly, the critical exponents β and γ are 0.230(25) and 1.05(39), respectively.
These fitting exponents also result in the rather good curve collapsing around Tc (Figure 6).
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Figure 5. Fitting curve between (a) Tp and driving rate R, (b) Mc and driving rate R and (c) χc and
driving rate R in 2D Ising model with temporal long-range interactions for T0 = 18, T0 = 18 (average
of 40,000).
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Figure 6. Original curves of M and χ on the left and rescaled curves of M and χ on the right.

Consequently, we notice significant errors and cumulative errors in the computed
results. One reason is the insufficient samples and the limited size of the simulated system.
Since real phase transitions only occur in systems with an infinite volume, this leads to
deviations between our numerical results and theoretical expectations. Additionally, errors
unavoidably arise in the interpolation of magnetization and susceptibility at the critical
temperature due to fluctuations. Finally, the finite memory size of computers imposes a
truncation time for both the Landau–Ginzburg model for fractal time processes and the
Ising model with temporal long-range interactions, contributing to the occurrence of errors.
Nevertheless, the results of simulations under various interactions in the temporal direction
reveal that all models exhibit similar critical exponents when the interaction decreases,
being sufficiently slow in the time direction. In addition, we also observed that, after
applying theoretical exponential scaling, curves with different rates collapse sufficiently
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well near the critical point. Therefore, these exponents are effective in describing the critical
behavior of systems with fractal time processes. Finally, as mentioned in our theoretical
framework, these exponents can be highly universal and completely different from the
critical exponents of the standard Landau–Ginzburg model, regardless of the specific form
of attenuation, representing a new time-induced universal class.

5. Conclusions

In conclusion, we have quantitatively determined the critical exponents for fractal time
processes above the upper critical dimension, which also serve as an upper limit for critical
exponents when considering temporal effects. These critical exponents, which are different
with standard mean-field exponents, no longer depend on specific fractional orders or the
details of temporal interactions, exhibiting a high degree of universality. Moreover, we also
find a temporal DIV due to the influence of a temporal DIV. The dynamic exponent remains
a fixed value and does not increase as θ decreases. These results not only demonstrate that
fractal time processes can change the critical properties of a system but also imply that
the macroscopic properties near the critical point can be modulated through the system’s
dynamical behavior. Furthermore, measuring the non-Markovianity of classical systems
requires considering the correlations of microscopic states at different times; it is a complex
task. However, based on these results, it is a reasonable approach to experimentally
measure the macroscopic properties of the system near the critical point to assess non-
Markovianity. In fact, we have found similar results to the theory in some experimental
results of low-dimensional materials [31–33]. Finally, these results have been numerically
validated using both the Landau–Ginzburg model for fractal time processes and the Ising
model with temporal long-range interactions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/fractalfract8050294/s1, Supplemental Material for: Relation between
DIV theory and effective-dimension theory and details of Ising model with temporal long-range
interactions.
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