
Citation: Gao, J.; Liu, Q.; Chen, H.;

Deng, H.; Zhang, L.; Sun, L.; Huang, J.

Digital Battle: A Three-Layer

Distributed Simulation Architecture

for Heterogeneous Robot System

Collaboration. Drones 2024, 8, 156.

https://doi.org/10.3390/

drones8040156

Academic Editors: Tomasz

Nowakowski, Artur Kierzkowski,

Agnieszka A. Tubis, Franciszek Restel,

Tomasz Kisiel, Anna

Jodejko-Pietruczuk and

Mateusz Zaja̧c

Received: 19 February 2024

Revised: 11 April 2024

Accepted: 16 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Digital Battle: A Three-Layer Distributed Simulation
Architecture for Heterogeneous Robot System Collaboration
Jialong Gao , Quan Liu , Hao Chen, Hanqiang Deng , Lun Zhang , Lei Sun and Jian Huang *

College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China; gaojialong@nudt.edu.cn (J.G.); liuquan@nudt.edu.cn (Q.L.);
chenhao@nudt.edu.cn (H.C.); denghanqiang16@nudt.edu.cn (H.D.); zhanglun@nudt.edu.cn (L.Z.);
sunlei17a@nudt.edu.cn (L.S.)
* Correspondence: huang_jian@nudt.edu.cn

Abstract: In this paper, we propose a three-layer distributed simulation network architecture, which
consists of a distributed virtual simulation network, a perception and control subnetwork, and a
cooperative communication service network. The simulation architecture runs on a distributed
platform, which can provide unique virtual scenarios and multiple simulation services for the
verification of basic perception, control, and planning algorithms of a single-robot system and
can verify the distributed collaboration algorithms of heterogeneous multirobot systems. Further,
we design simulation experimental scenarios for classic heterogeneous robotic systems such as
unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). Through the analysis
of experimental measurement data, we draw several important conclusions: firstly, the replication
time characteristics and update frequency characteristics of entity synchronization in our system
indicate that the replication time of entity synchronization in our system is relatively short, and
the update frequency can meet the needs of multirobot collaboration and ensure the real-time use
and accuracy of the system; secondly, we analyze the bandwidth usage of data frames in the whole
session and observe that the server side occupies almost half of the data throughput during the whole
session, which indicates that the allocation and utilization of data transmission in our system is
reasonable; and finally, we construct a bandwidth estimation surface model to estimate the bandwidth
requirements of the current model when scaling the server-side scale and synchronization-state scale,
which provides an important reference for better planning and optimizing of the resource allocation
and performance of the system. Based on this distributed simulation framework, future research
will improve the key technical details, including further refining the coupling object dynamic model
update method to support the simulation theory of the coupling relationship between system objects,
studying the impact of spatiotemporal consistency of distributed systems on multirobot control and
decision making, and in-depth research on the impact of collaborative frameworks combined with
multirobot systems for specific tasks.

Keywords: heterogeneous robot systems; distributed simulation; communications middleware;
collaborative mechanism

1. Introduction

Unmanned and autonomous systems play an essential role in various fields—whether
industrial, civil, or military—and experts of unmanned and autonomous systems have be-
come integral members across diverse sectors, encompassing industrial, civil, and military
applications, prompting experts from these domains to explore the multifaceted poten-
tialities of task collaboration within heterogeneous robot systems. Heterogeneous robot
systems refer to an assembly of robots that are diverse in terms of their functionalities,
structures, and capabilities and are designed to work collaboratively towards achieving
complex objectives [1]. This consortium of assorted robotic platforms often includes a mix

Drones 2024, 8, 156. https://doi.org/10.3390/drones8040156 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8040156
https://doi.org/10.3390/drones8040156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-7559-1835
https://orcid.org/0000-0001-9377-2816
https://orcid.org/0000-0001-5976-517X
https://orcid.org/0000-0003-2823-1153
https://orcid.org/0000-0002-7371-6830
https://orcid.org/0009-0002-8418-7652
https://doi.org/10.3390/drones8040156
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8040156?type=check_update&version=1

Drones 2024, 8, 156 2 of 22

of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), among others,
enabling a richer interaction and broader operational scope compared to homogeneous
systems. The synergy within these heterogeneous systems strives to harness the distinct
strengths and capabilities of each robot type, enhancing the overall efficiency, adaptability,
and resilience of the collective in executing coordinated tasks or missions across varying
environments. These fields continue to consider how to research the various possibilities of
task collaboration within heterogeneous robot systems.

However, before the effective deployment of multirobot systems to perform complex
tasks can be achieved, the research community still faces numerous fundamental technical
challenges. These challenges, as listed in [2], encompass areas such as big data, the Internet
of Things, task complexity, autonomous machine learning, scalability and heterogeneity
trade-offs, coalition formation and task allocation, human in the loop, transfer learning,
unified frameworks, communication constraints, and connectivity uncertainty. In addition,
there are complex application challenges outlined in [3], including adaptive heterogeneous
architecture and modeling methods for robot swarm systems; distributed perception and
cognition of high-dimensional situations [4]; intelligent decision making and planning of
robot swarm systems that can be guided, trusted, and evolved; and autonomous collabora-
tive control of robot swarm systems.

In recent years, significant advancements have been made in the fields of robot operat-
ing systems, unmanned system task planning, formation control, ad hoc network commu-
nication, and intelligent algorithms. The collaborative sensing of robot clusters primarily
encompasses collaborative positioning technology [5,6], collaborative target recognition,
multisource sensor collaborative optimization, and collaborative target tracking [7]. Intelli-
gent decision making and planning in cluster systems involve traditional methods such as
the Hungarian algorithm, auction algorithm, particle swarm algorithm, and corridor-based
methods [8], as well as collaborative task networks constructed using machine learning
models [9]. The cooperative control of robot clusters has also seen extensive theoreti-
cal research on fundamental modes like consistency control, formation control [10], and
formation tracking control [11].

When robots perform complex tasks, whether operating independently or collaborat-
ing in clusters, they require a simulation architecture for integrated testing and validation.
Distributed simulation technology, owing to its characteristics, holds the potential to serve
as the simulation verification scheme that most closely resembles the actual working envi-
ronment of heterogeneous multirobot systems engaged in collaborative task algorithms.
Past developments in distributed system technology have encompassed research on syn-
chronization techniques based on message dialogue [12], the implementation of flexible
access technologies founded on active services [13], and the provision of reliable opera-
tional support guarantees [14]. These advancements have positioned distributed simulation
as a viable approach to accurately simulate and verify collaborative task algorithms in
robot clusters [15–17], facilitating effective evaluation and testing in environments closer to
real-world conditions. Through distributed simulation, it becomes possible to validate the
collaborative behavior and performance of robots in complex environments while also as-
sessing the robustness and reliability of robot systems. This contributes significant support
and assurance for the rapid advancement and application of robot technology. In addition,
there are many simulation systems that can also provide UAV operation simulation training
when considering the way people control the loop [18–20].

Based on the theoretical work of predecessors, we propose an open system simulation
architecture. In this paper, we first list some relevant technical achievements that inspired
our work and describe the progress they have made (see Section 2). Next, we focus on
introducing the architecture of the three-layer network simulation verification platform we
propose for implementing collaborative algorithms of heterogeneous robot systems (see
Section 3). In the experimental section (refer to Section 4), we delineate the experimental
procedures and scenario designs. In the discussion Section 5, we analyze network charac-

Drones 2024, 8, 156 3 of 22

teristics and provide reference suggestions for building similar architectures. Finally, in
Section 6, we offer some shallow insights into the study of collaborative networks.

2. Related Work

Over the past 25 years, robot simulation platforms have evolved almost simultane-
ously with robotics (see Table 1). Initially, research and development enterprises of robot
hardware platforms provided simulation modules that could be integrated into Simulink,
enabling users to facilitate secondary development. Meanwhile, the complexity of robot
structures increased, leading to a wider range of tasks. As robot diversity expanded, the
modeling complexity also grew higher. Consequently, a single module could no longer meet
user demands, and independent simulation software began to emerge in collaborations
between enterprises and universities [21–24].

Subsequently, as feature engineering and other multisensor fusion technologies ad-
vanced, simulation platforms not only had to provide basic dynamic simulation but also
had to simulate digital signals from multiple sensors, such as visual cameras (even in-
frared), LiDAR (light detection and ranging) in [23,25,26], and SONAR (sound navigation
and ranging) in [27], allowing for a comprehensive and realistic representation of the robot’s
perception capabilities in the virtual environment. Fast-forward to the past five years, and
with the progress of artificial intelligence technology, simulation platforms have found
greater utility in providing training samples. This utilization leverages efficient training
mechanisms offered by emerging learning algorithms, thus enabling robots to perform
better on many nonlinear problems [28,29].

Table 1. A representative series of simulation platforms for robot systems.

First Published Year Institution Software * Tool Render Dynamics Sensors Vehicles

1998 Swiss Federal Institute
of Technology in Lausanne [21] webots OpenGL ODE IMU, RGBD Robots

2001 Simon Fraser University [30] Stage FLTK OpenGL – IMU, RGBD Robots

2007 University of California
and University of Pittsburgh [31] USARSim Unreal Engine 2.0 ODE IMU, RGB Robots

2008 Coppelia Robotics V-REP OpenGL
ODE, Bullet Physics,
Newton Dynamics,

Vortex Physics Engine

IMU, RGB, LiDAR,
sonar, GPS

Wheeled robots, tracked robots,
four-wheel drive vehicles,

aircraft

2010 Carnegie Mellon University [32] OpenRave OSG IKFast IMU, RGB Robotic arm

2011 Free University of Brussels [33] ARGoS Qt-OpenGL ODE
Chipmunk IMU, RGB Robots

2012 Universitat Jaume I [27,34] UWSim OSG osgOcean Bullet IMU, RGB, sonar Underwater robots

2013 Technical University of Darmstadt Hector Gazebo(ROS) OpenGL ODE IMU, RGB Drones

2016 University of Zurich
(ETH Zurich) [35] RotorS Gazebo(ROS) OpenGL ODE IMU, RGBD Drones

2016 OpenAI [22] OpenAI-Gym Gym Mujoco [36] IMU Multijoint robot

2017 Inter, Toyota, etc. [37] CARLA Unreal Engine PhysX IMU, RGBD Ground vehicles

2017 MicroSoft [23] Airsim Unreal Engine PhysX
fastsim

IMU, RGBD,
Segment, LiDAR

Drones,
ground vehicles

2019 MIT [38,39] FlightGoggle Unity - IMU, RGBD, Segment Drones, ground vehicles

2020 University of Texas and Stanford University [40] robosuite mujoco-py OpenGL Mujoco IMU, RGBD Robots

2020
National University of

Defense Science and Technology,
Beihang University, etc. [41,42]

XTDrone Gazebo(ROS) OpenGL ODE IMU, RGBD Drones, robots

2021 University of Zurich and ETH Zurich [43] Flightmare Unity - IMU, RGBD, Segment Drones

2021 Stanford University [44] IGibson Unity - IMU, RGBD,
Segment Drones

2021 Beihang University and
Central South University [45] Rflysim Unreal Engine CopterSim IMU, RGBD UAV

2021 Nvidia [24] Issac Gym Issac Gym PhysX IMU Bipedal robot,
robotic arm, etc.

2022 University of Hong Kong [25] MARSIM ROS OpenGL - IMU, LiDAR (HD) Quadrotor

2023 Institute of Automation,
Chinese Academy of Sciences [26] NeuronsGym Unity3D - IMU, LiDAR Mecanum wheeled robot

2023 Cosys-Lab (FTI) of
University of Antwerp, Chinese Academy [46] COSYS-Airsim Unreal Engine - IMU, LiDAR, RGB Drones, ground vehicles

Software *: All software versions are publicly available as of December 2023.

These systems provide platform support for research, learning, testing, and validation
of control, perception, navigation, and adversarial tasks. Driven by application require-

Drones 2024, 8, 156 4 of 22

ments, the development of robot simulation technology has been continuously progressing.
It has evolved from simulating single objects to multiple heterogeneous objects, from sim-
ple static environments to complex environments, and from cooperative collaboration to
adversarial games. In addition, the scale of software has been growing increasingly large.

The previous approach of simulating and accessing multiple controllers on a single
computing terminal is no longer sufficient to meet the demands. A distributed simulation
architecture is needed to address the challenges of scalability. Therefore, our task is to
propose a scalable distributed multirobot collaborative simulation architecture to meet the
growing demands for functionality and complexity.

Furthermore, the distributed nature of the simulation architecture possesses an in-
herent advantage: it more accurately reflects the communication characteristics present
in real-world working conditions, regardless of whether the multirobot system employs
centralized or distributed collaborative algorithms. This advantage underscores the signifi-
cance of utilizing a distributed network structure for deploying multirobot systems.

3. Architecture for Digital Battle

Drawing on the design experience of control and perception modules from related
works, and taking into account the coordination of multirobot systems at the information
level as well as the coupling relationships in kinematics, dynamics, and other aspects, we
formally propose a three-tiered distributed simulation architecture tailored for heteroge-
neous multirobot collaboration.

Taking into consideration the potential complexity associated with the collaborative
operation of heterogeneous robot systems, we adopted three fundamental principles in our
design approach:

i The simulation process and outcomes must adhere to the laws of physics, ensuring
their consistency across distributed simulation nodes;

ii The capabilities of each robot’s motion platform are determined by the structural
design, accessory selection, and control implementation;

iii The collaborative algorithms employed in heterogeneous robot systems should be
validated through authentic distributed verification methods.

According to these three designing principles, we propose an architecture to organize
models and algorithms by three key layers (Figure 1):

(1). Distributed virtual simulation network layer.

It is mainly aimed at maintaining a unified virtual world for every distributed partici-
pant. As most massively online role-playing games have employed, a popular technical
solution is a client–server(C/S) network, where the clients keep a local copy of the virtual
world, and the server keeps the authority of the simulation with the responsibility for four
services, viz. physical interaction, scenario management, synchronization service, and
session management.

(2). Perception and control subnetwork layer.

We retained many of the advantages of Airsim’s solution [23]. This subnetwork
connects the virtual avatar with its bonded “brain” (i.e., the one that possesses the control).
The virtual avatar could be a motion platform with actuator and sensor units, while the
“brain” could be a mature hardware with an RTOS (real-time operating system), a set
of algorithms, or even a person, i.e., the subnetwork could work either in the artificial
intelligence mode or the human-in-the loop mode.

(3). Collaborative communication service network layer.

As has been proven to be a success in real-time distributed embedded systems, the idea
of a data distributed service (DDS) [47] is also adopted here to provide a basic information
transmission mechanism. It is believed to support most of the possible collaborations
between the upper compute node of heterogeneous robot systems.

Drones 2024, 8, 156 5 of 22

As a distributed system, the startup process of simulation is a bit cumbersome. There
are two primary constraints on the startup order: (1) The distributed virtual simulation
network server should launch before other clients participate. (2) The perception and
control subnetwork can only establish the connection between the avatar and the “brain”
after the virtual character (i.e., the avatar) has been created in the virtual world. In addition,
the collaborative communication service network can work whenever a “brain” is online.
Next, more details about these three key layers’ services are described.

1.Distributed virtual simulation network

Manual

AR/VR

AI on Chip

SITL/HITLCommunication
AI Agent

Human-in-the-loop Mode

3.Collaborative comm tion

service netwo

Perception and control sub-network 2.Perception and contro k

Communication

Network ClientNetwork Client
Artificial Intelligence Mode

Figure 1. The architecture of the distributed simulation platform with three key layers of the network.

3.1. Distributed Virtual Simulation Network

To assure all the participants feel like staying in the same virtual world, the distributed
virtual simulation network provides a series of easy-to-use C/S services. Among these
services, session management only deals with the long-term connection mechanism for
virtual clients and servers (Figure 2), while scenario management, physical interaction, and
the synchronization service work together to coordinate processing related to simulation
content on distributed platforms.

Network Client

Client Node

�PlayerController�
API-Server

Simulation Instance

(GameInstance)

Network Server

ViewPort

Virtual

Camera

Virtual Objects

�Actors�

Virtual Objects

�Actors�

Agent Node

�PlayerController�

Replicate

Request

Replicate

Simulation Mode

�GameMode�

Manage

Round Statistics

�PlayerState�

Scenario

Management

Simulation Instance

(GameInstance)
Pre-define

Define

Avatar

�Actor�
Physical Interaction

Synchronization

Service

Session

Management
Join Session

�Updated State

�Emergent Frame

�frame sync

�state sync

Bind Posses

state

Scenario

�Level�

Physical Interaction

�

Scenario

�Level�

Render

Figure 2. Architecture of the distributed virtual simulation network.

Drones 2024, 8, 156 6 of 22

3.1.1. Session Management

From the perspective of distributed simulation, session management is the functional
basis for the server–client architecture connection [48]. The essential functions provided
mainly include providing an available port when creating simulation services on the server
side. The client discovers and joins the server side in the network, providing role selection
and publicity of virtual robot system objects for specific simulation tasks.

The entire distributed simulation session is divided into three stages (Figure 3): (1) At
the beginning After creating and joining a simulation session, the server controls all par-
ticipating clients’ entry into the their local simulation map synchronously, generates cor-
responding virtual objects at the starting position set in the scenario management, and
obtains control permissions over them. (2) During the process. During the simulation,
session management provides continuous connection support for data synchronization
between the server and the client. This synchronized data contain individual dynamic
objects in the scene, as well as robot system entities controlled by the client. (3) At the
end. After the distributed simulation task ends, the clients exit the server-managed session
and end all data services. All these features are customizations of and upgrades on the
mechanics of the game engine’s multiplayer sessions.

Delete

Session

Opt-Exit

notifications

Scenario Init

Scenario Synchronization

Avatar Synchronization

Physical Interaction

Create

Session

Opt-out

notifications

Scenario Init

Scenario Synchronization

Avatar Synchronization

Physical Interaction

Join

Session

Opt-out

notifications

At Beginning At EndDuring Process

Scenario Init

Scenario Synchronization

Avatar Synchronization

Physical Interaction

Join

Session

.

.

.

Server

IP:Port

Client 0

IP:Port

Client N-1

IP:Port

Add

In

Opt-Avatar

Opt-Avatar

To Server

To Clients

To Clients

To Server

To Server

Figure 3. The entire distributed simulation session. The session mainly organizes the server and
clients in long-term connections and automatically delivers data for scenario synchronization, avatar
synchronization, and physical interaction.

3.1.2. Scenario Management

Like most simulation systems and virtual games, the scenario usually defines a global
coordinate system in virtual space (either in a local three-dimensional Cartesian coordinate
system or using spherical coordinates of the Earth), initializes various entity objects in that
coordinate system, and manages every simulation-involved object, e.g., landscape, build-
ings, roads, nonplayer characters (NPCs), robotics under control, and even the wind field.

As shown in Figure 4, scenario management is mainly a matter of storage and calcula-
tion.

Large Storage

Memory

cache

Global:

Local:

Self:Frequency

Storage Entire Scenario

Scenario-Objects {object}

Avatar Objects Is RelevantYes

No

Is Active?Yes

No

Figure 4. Scenario management plans storage based on local dependencies and activity.

Drones 2024, 8, 156 7 of 22

The difference is that the server updates a global scenario, while clients only act on
local space.

(1). On the server.

Based on the fundamental understanding that the server possesses superior parallel
computing and memory read/write capabilities, it is responsible for maintaining global
scene information. When receiving a request from a client to update object properties in
the scene, the server first checks for potential conflicts, then determines the multicast node
list based on the activity level of each client involved in the update, and finally distributes
the update results to the respective clients.

(2). On the client.

The client-side scene management loads local object data according to the specific
requirements of each client. There are three main categories for handling object data:
(1) objects closely related to the controlled objects are stored in a cache for efficient access
and support dynamic calculations at higher frequencies; (2) objects that are not directly
affected by the client, but require awareness, are kept in memory and synchronized with
the server’s replication commands; (3) unrelated objects are set to an inactive state and
remain stored on the hard disk as a resource.

3.1.3. Physical Interaction

Inspired by Mujoco’s state-of-the-art performance in contact dynamics [36], we be-
lieved it is worthwhile to provide an interaction mechanism to support similar calculation
on our distributed platform. Commonly, interaction calculation has three key steps:

Step 1.

Since a certain interaction must be triggered by some specific condition, we might as
well define the conditional function C as in Equation (1). For arbitrarily selected objects
obji and objj with generalized state parameters Xi and Xj, the positiveness of function C
can indicate whether the interaction conditions are met. Mathematically, function C is a
binary relationship.

ci,j = C(Xi, Xj) (1)

A graph G = (V, E) can describe the interaction relations within objects [49]. The
vertex set V ≜ {obji} and the edge set E = {ei,j} construct an adjacency matrix, with each
element ei,j,

ei,j =

{
1, ci,j >= 0
0, else

(2)

(For those discrete event-driven interactions that can be linearly separated into pairs,
skip directly to step 3.)

Step 2.

For those relatively complicated cases, instead of listing various kinds of interaction
models in detail, we use standard Hamiltonian systems as a theoretic representative of
multi-rigid-body dynamics [50]. Suppose there exists a connected subgraph Gl = (Vl , El)
(i.e., Vl ⊆ V, El ⊆ E, and the derived distance matrix Dl of Gl , s.t., ∀di,j ∈ Dl , there is
0 < di,j ≤ l). This subgraph Gl illustrates the object set Vl as isolated from other objects by
distance l. The edges in El and the corresponding constraints determine a tangent bundle
(i.e., configuration space) spanned by the objects in Vl , e.g., along with the constraint, [51]

ψ(p, q, t) = 0 (3)

The constrained forces, subject to the D’Alembert–Lagrange principle, define the
virtual displacements ω and constrained forces QC where there would be ωTQC = 0,

Drones 2024, 8, 156 8 of 22

and also with the assumption that multi-rigid-body problem is subject to the Hamilton’s
principle of least action.

δS(p, q, t) ≜ δ
∫ t+T

t
(p · q − H(p, q, t))dt = 0 (4)

The motion equation is the cotangent bundle in Equation (5), where Fu refers to the
combined force of the input driving force and the possible dissipative force [52–54].

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

+ QC(p, q, t) + Fu (5)

If the expression in Equation (5) is separable, the explicit differential expression could
be constructed easily [55], but for those implicit issues, the construction method depends
on the area of the problem and is beyond the scope of this article.

Step 3.

Suppose we already have an explicit expression pattern Equation (6) for every object
involved in the interaction subgraph Gl = (Vl , El). The evolution of the isolated interacted
system can be figured out and updated for every distributed client.

Xi(t + T) = F(Xi(t), QC, Fu, T) (6)

3.1.4. Synchronization Service

A synchronization service is the key to maintaining limited consistency for each node
in a distributed virtual network. Figure 2 shows two paths for synchronization, namely,
emergent frame and state update.

(1). Emergent frame.

In objects with coupling relationships (e.g., constraints on the state), if there are more
than two related clients, emergent frame is the event-driven way to reconstruct the motion
model on the related clients. This specific method is based on the remote procedure call
(RPC) mechanism, and the server triggers the response of the relevant client to reconstuct
the motion model (i.e., step 2 in the physical interaction).

(2). State update.

It is a cycle-adaptive multicast method. The client will detect whether the properties
of the local object change for every time interval and send a synchronization request to the
server if they change. The server accepts the request and confirms that it is valid and then
packages the object of the application attribute change in the next state synchronization
frame and synchronizes it to the relevant client according to the multicast list. The selection
of time intervals is positively correlated with the number of occurrences in other client
local zones and does not exceed the upper limit allowed by the network. Assuming that
all properties with amount D are recognized as needing to be synchronized to other n − 1
clients within the synchronization allowable time Ts, the supremum of the state update
network traffic as stream Sv can be inferred as

sup Sv =
(n − 1)D(n)

Ts
(7)

3.2. Perception and Control Subnetwork

The perception and control network is a one-to-one network abstracted from Airsim [23].
Sensor data, actuator signals, perception data, and the desired state can either use the Mavlink
protocol to connect the algorithm hardware and the virtual client (Figure 5) through the
serial port or use remote procedure call (RPC) locally to realize the interoperability between
the algorithm software and the virtual client or access the user through the peripheral of
human–computer interaction.

Drones 2024, 8, 156 9 of 22

The Server of perception and control sub-network

AvatarAPI-Server

Client Node

�PlayerController�
API

Simulation Instance

(GameInstance)
ViewPort

Virtual

Camera

Virtual Objects

�Actors�

Round Statistics

�PlayerState�

Avatar

�Actor�

CallReturn
Posses

Physical Interaction

Scenario

�Level�

Render

B i n d

Control Server
Camera

(Component)

RigidBody

(Component)
Mavlink Server

Call

Client as Hardware (RTOS)

InputPort

RPC

Client as Software (Python)

Human in the Loop Mode

RPC Client

Mavlink client

Monitor Device

Remote Controller Device

Mission and Planning

DDS Node

Control

Autopilot in HIL Upper Computer

DDS Node

Mission

Figure 5. Architecture of the perception and control subnetwork.

Unlike the other two-layer networks, the perception and control subnetwork is an
independent connection mechanism, which only requires the baud rate of the local hard-
ware interface or the read/write rate of interprocess communication to meet the bandwidth
requirements of state data and control instructions.

3.2.1. Artificial Intelligence Mode

The simulation verification subject for this platform’s design is the robot system’s
planning and control algorithm. For clients in artificial intelligence mode, algorithm access
methods are mainly divided into hardware in the loop and software in the loop.

Since the update frequency of sensor data and control data is fixed, it may as well be
set up where mi is the size of the ith datum and fi is the corresponding update frequency.
Thus, the average traffic on the perception and control subnetwork is

Sc =
n

∑
i=1

fi · mi (8)

(1). Hardware in the loop.

Thanks to the contribution of the open-source community, we can directly integrate
Mavlink support into the hardware in the loop and enable autonomous driving hardware
to drive the corresponding robot system in the virtual environment. The hardware in the
loop is usually transmitted through the serial communication interface at a negotiated baud
rate and the actual effective bandwidth appropriate to Equation (8).

(2). Software in the loop.

The simulation of software in the loop, based on the interprocess communication mode,
connects the input and output of the artificial intelligence algorithm with the request and
service form of remote process call, and the artificial intelligence algorithm is responsible
for environmental perception, task decision making, action planning, and specific control
node function implementation and the organizational framework and is not limited by the
three-layer distributed simulation system architecture of this paper, as long as it meets the
process communication rate constraints of the local perception-control loop.

3.2.2. Human-in-the-Loop Mode

The human-loop mode provides two possibilities for use. One is to directly send the
input of the remote control handle of the human as a command signal to the API end of the
robot system, which is a form of human–computer interaction with direct control; second,

Drones 2024, 8, 156 10 of 22

the client operator exists in the digital space as an avatar, which is aimed at verifying the
collaborative mode of human–machine symbiosis.

The direct control mode is mainly connected to the operation control in the serial port
mode of the controller simulator, and the human–computer symbiosis mode is realized
through OpenXR access to VR or AR human–computer interaction devices.

3.3. Collaborative Communication Service Network

Different from the distributed virtual simulation network’s primary–secondary struc-
ture and perception and the control subnetwork’s one-to-one structure, the collaborative
communication service network is a decentralized and completely flat distributed struc-
ture. For this design purpose, we use FastDDS (version >= 2.14) as the communication
middleware for this layer of the network.

However, from the perspective of simulation construction, it is worth noting that
the collaborative communication service network and the distributed virtual simulation
network share the physical bandwidth of the network, but generally speaking, the applica-
tion’s use of bandwidth is closely integrated with the collaborative problem itself, and we
can only give an estimate of the bandwidth usage margin.

Assuming that the actual maximum bandwidth available to the network is W and
the distributed virtual simulation network utilizes Sv bandwidth in Equation (7), thus,
we have,

Margin = W − Sv (9)

3.3.1. Basic Communication Mechanism

As in Figure 6, DDS enables all intelligent algorithms of robot systems in a virtual
scene to connect to the same publish/subscribe network. In the collaborative data space
of the network, each topic can be regarded as a communication channel, and the nodes
related to the topic in the network will subscribe to the topic corresponding to the channel
and publish collaborative information to it as needed. The specific publishing process is as
follows: first, encode the collaborative information according to the standardized JSON
format, then serialize it into a string, and finally, publish it to the topic. It is possible to
transform a data-centric DDS network into a task-centered collaborative network through
the above mechanism.

Figure 6. Architecture of the collaborative communication service network.

Drones 2024, 8, 156 11 of 22

3.3.2. Distributed Collaboration Process

This article provides an interop protocol process based on the above communication
mechanism. Think of a collaborative task simply as a diagram of activity (Figure 7) between
two entities that request and respond together (see another work in [56]). The public topic
refers to the channel that all intelligent systems will subscribe to, mainly for requests and
responses for collaborative tasks. When the requester and responder of a task match, create
a dedicated task channel for continuous collaborative communication requirements.

Figure 7. A diagram of activity for the distributed collaboration process.

In some special cases, it may not be necessary to form a dedicated topic channel, and
when the coordination requirements are matched and confirmed, the task parameters will
be sufficient to guide the jth cooperative system to complete the corresponding operation.

4. Example and Experiments

Based on the three-layer distributed simulation architecture, the performance test
process is roughly divided into four steps:

1. Design a virtual scene, define the coordinate system in the scene, place buildings and
roads, and set the initial generation position of the robot system;

2. Connect the computing platforms to the network, and specify a server and multiple
clients among them, as well as setting the corresponding avatars (UGV or UAV) with
their collaborative tasks.

3. Start the simulation service and record the network stream frames at the same time
with an improved network profiler;

4. Analyze the distributed data service and compare the theoretical estimation.

Note: Any entity or logical object will be instantiated as a subclass of the actor when
the experiment is implemented. Therefore, actors will be used as a general term when
analyzing and describing results.

Drones 2024, 8, 156 12 of 22

4.1. Scenario Description

The scene map covers an area of about 1 square kilometer, and the mission area is a
village located in the desert hills, surrounded by mountains on three sides, with residential
buildings scattered and arranged, with an average floor height of 20 m, and a two-lane road
running through it. According to preliminary reconnaissance, the command post of a group
of terrorist organizations is roughly located in the area enclosed by the black-and-blue wire
frame in Figure 8.

Figure 8. Scenario: The mission is to eliminate the enemy forces in the blue square area.

The enemy is in a rough position surrounded by a quadrilateral, and troops are
deployed in the area as follows: a small building (commander on the second floor), 2 guard
towers (snipers), and small groups of enemy troops (machine gunners and riflemen)
patrolling the ground. The objective of the mission is to eliminate the enemy forces in the
area as quickly as possible.

4.2. Collaborative Tasks

The cyclic execution process of two typical types of collaborative tasks (Figure 9) is as
follows:

(1). Target-Detection–Bomb-Strike Loop:

Within this loop, the reconnaissance quadcopter is responsible for detecting potential
targets, and once a target is confirmed, the attack quadcopter executes the bomb-strike
action. The reconnaissance quadcopter employs its sensor system to identify and locate the
target and subsequently communicates the relevant information to the attack quadcopter.
Upon receiving the information, the attack quadcopter promptly responds, launching a
strike on the target and carrying out the bomb attack.

(2). Bomb-Attack–Ammunition-Supply Loop:

In this loop, after executing a bomb strike, the attack quadcopter requires replenish-
ment of ammunition in order to continue its mission. The armored unmanned vehicle
serves as the provider of ammunition, transporting the required ammunition to a desig-
nated location based on the needs of the attack quadcopter. Once the ammunition resupply
is completed, the attack quadcopter can proceed with the next round of bomb strikes.

Through the implementation of such cyclic execution processes, effective coordination
between the reconnaissance quadcopter and the attack quadcopter, as well as between the
attack quadcopter and the armored unmanned vehicle, is achieved, facilitating efficient
and synchronized combat operations.

Drones 2024, 8, 156 13 of 22

Figure 9. The cyclic execution process of two typical types of collaborative tasks. Loop 1⃝: The cycle of “target detection–bomb strike” between the reconnaissance
quadcopter and the attack quadcopter. Loop 2⃝: The cycle of “bomb attack–ammunition supply” between attack quadcopter and armored unmanned vehicles.

Drones 2024, 8, 156 14 of 22

4.3. Sampling Software

In this subsection, we explore a valuable addition to the software (Figure 10): a new
feature module that enables users to output network traffic and performance informa-
tion in batches to JSON files. Although this enhancement does not change the usage
method, it greatly simplifies subsequent data processing, making analysis and optimization
more efficient.

Figure 10. The Network Profiler interface for data analysis and transforming the file format.

(1). Introduction to relevant functions:

Network Profiler is an independent tool designed to display network traffic and per-
formance information captured by the engine during game runtime. This tool is highly
effective in identifying areas of high bandwidth consumption in multiplayer games, al-
lowing users to view the percentage of bandwidth occupied by various actors, PRCs, and
attributes, thereby assisting in optimizing network performance.

(2). Recording and analyzing sessions:

Before using Network Profiler, users need to record the relevant data for analysis.
Recording can be achieved by enabling the engine’s process-tracking feature, typically
by compiling the engine into a debug build or using an editor build for nondebug con-
figurations. Additionally, users can control the recording of network data by adding the
command line parameter “networkprofiler=true” at engine startup or using other command
line instructions.

The recorded data will be saved to the specified path, allowing users to open the file
in the standalone tool for further analysis. It is important to note that temporary files will
be renamed according to a specific scheme when the analysis session ends, facilitating
accurate tracking and data processing.

5. Discussion

From the previous Introduction, our framework provides virtual simulation session
management in C/S architecture, a basic perception and control logic framework, and
a flexible configuration collaboration mechanism. We compare these three features with
existing software in Table 2. We compared simulation software for multirobot collaboration
and found that the highlight of our work was the ability to manage state synchronization
and coupling calculations for multiple clients using a session mechanism. Therefore, we
discuss the characteristics of entity synchronization, bandwidth characteristics in the time

Drones 2024, 8, 156 15 of 22

domain, and the relationship between bandwidth and the number of clients in combination
with experimental measurement data.

Table 2. Comparative analysis of the key characteristics of popular multiheterogeneous robot
simulation software programs.

Software Last Update

Feature

C/S
Architecture

Session
Management

Perception and
Control Logic

Coordination
Mechanism

ARGoS 2022 ✓ ✓ ✓

Stage 2020 ✓ ✓ ✓

Webots 2021 ✓ ✓ ✓

USARSim 2013 ✓

CoppeliaSim (V-REP) 2022 ✓ ✓ ✓

Digital Battle 2024 ✓ ✓ ✓ ✓

5.1. Actor–Synchronous Feature

This part of the experiment mainly examines different actors’ actual replication fre-
quencies and replication times during synchronization. One UAV and two UGVs were set
up for each of the three clients, and nonplayer characters that could track moving actors
were also set up in the scene. The drone just received the hovering instruction while the
UGVs are driven along the road by joystick.

The results of the data visualization are shown in Figure 11. The plot records the
distribution box plot of the replication frequency of each actor that triggered the overall
data change of the simulation at the beginning, during the process, and at the end of the
simulation. Since the drone was only controlled to hover, the state change was moderated,
and the update frequency was slow (merely 10 Hz). The UGVs were constantly moving,
so the update frequency was high (always more than 75 Hz). Nonplayer characters were
stationary or patrolling for a period because they could not see moving vehicles, so the
median was very close to the upper quartile (about 50 Hz). In addition, object name sorting
was performed from the smallest to the largest amount of data synchronized throughout
the simulation.

For the resulting data of the same experiment, we also analyzed the replication time
distribution when different actor states were synchronously managed to replicate to remote
clients, and the visualization results are shown in the ridge-line plot (Figure 12). Actors
representing motion entities had a shorter replication time overhead because their state
descriptions were relatively single and were usually state vectors of rigid bodies. They
could usually complete the replication of states within 0.03 milliseconds, which could meet
the time interval allowed for frame synchronization. The peaks in distribution roughly
indicated several independently updated states or events for that actor.

Drones 2024, 8, 156 16 of 22

0

50

100

At Begining(Fisrt 0.5s) During Process At End(Last 0.5s)

Stage

F
re

q
u

e
n

c
y
(H

z
)

ObjectName

IpConnection

ClientState

NPC

UAV

WorldSettings

Map

GameStateBase

UGV

ClientAvatar

Debug

Distribution of update frequency for each Objects at the beginning, process, and end

Figure 11. The replication (update) frequency for each actor varies at the beginning, during the
process, and at the end. Among all synchronized actors, their update frequencies are within the range
of 0 to 150 Hz.

IpConnection

ClientState

NPC

UAV

WorldSettings

Map

GameStateBase

UGV

ClientAvatar

Debug

0.00 0.02 0.04 0.06 0.08
Average Time Per Replication(millisecond)

O
b
je

c
t
n
a
m

e
s

0.00

0.02

0.04

0.06

0.08

x

Sample distribution of replication times for each object

Figure 12. Replication time ridge plot of different actor states synchronized. The replication time
varies from 0 to 0.08 milliseconds.

5.2. Time Domain Analysis

In this part of the experiment, the goal was to test the data bandwidth and total
throughput of as many clients as possible based on existing lab resources and to exam-
ine the correlation between data frames and state data. We built a server (Intel i9 with
32 GB memory) and invited 12 students to participate. They provided their laptops as
clients (computer models and configurations were diverse) and their wisdom to design

Drones 2024, 8, 156 17 of 22

collaborative tasks, and we finally formed 15 distributed client nodes (some students were
single-machine multiopen clients) to complete the distributed simulation experimental
process. The duration of the simulation was less than 240 s.

Figure 13A provides an intuitive picture of the bandwidth occupied by the data frame,
where the packet was initially used to complete the configuration work required for ini-
tialization on the distributed network. The data frame monolith was significant, but the
synchronization frequency was relatively low. In the intermediate process, the data frame
was mainly used to synchronize the dynamic properties of the actor between the various
clients, so its monolith was small, but it was updated relatively frequently. At the end of
the simulation, the number of entities was reduced, and the bandwidth consumption of
synchronized data frame rate was also reduced. The above situation corresponds to the
stage characteristics shown in Figure 3. In addition, the median bandwidth occupied by
data frames was 8 KB/s, and the maximum bandwidth usage was about 25 KB/s. The
results of Figure 13B reveal a positive correlation between the size of the data frame and
the amount of the attribute data in the frame. Therefore, we can use a rough estimate of the
amount of data that need to be synchronized. Furthermore, the results of Figure 13B can be
verified bidirectionally by Figure 13C, and the bandwidth occupied by attribute synchro-
nization fluctuated below 50% but occasionally exceeded 87.5% throughout the simulation
time, which confirms the coefficient of 2.13 obtained by linear fitting y = 0.0096 + 2.13x in
Figure 13B.

0

10

20

0 50 100 150 200
Time(second)

B
a

n
d

w
id

th
 (

K
B

/s
)

A

y = 0.0096 + 2.13 x R
2
 = 0.74

0.0

0.3

0.6

0.9

0.0 0.1 0.2 0.3 0.4 0.5

Properties Size(KB)

F
ra

m
e
 S

iz
e
 (

K
B

)

B

0

25

50

75

0 50 100 150 200
Time(sec)

u
ti
liz

a
ti
o

n
(1

0
0

%
)

C

Figure 13. (A) Bandwidth distribution over the time domain. (B) The size correlation between the
frame and the properties data. (C) Time distribution of attribute data on bandwidth usage.

At the same time, we also made a chord graph of the total data throughput of the server
and 15 clients in Figure 14. Through comparison, it can be found that the data throughput
on the server side reaches almost half of the total throughput, and the throughput of each
client is different. By observing the total amount of data input and output of each end, it
can also be found that the input amount of the client is slightly greater than the output,
while the output of the server side is slightly larger than the input.

Drones 2024, 8, 156 18 of 22

S
erver

C 0
C 1C 2

C 3

C 4

C
 5

C
 6

C
 7

C
 8

C
 9

C
 1

0
C

 1
1

C 12

C 13
C 14 0 70

140

210

280

350

420

490
560

63
0

70
0

77
0

84
0

91
0

980

0

0
0700

70

140

0

70

0

0

0
0

0
0

0

70

0

70
0

0
70

Figure 14. A chord diagram for throughput within the server and 15 clients.

5.3. Scale and Bandwidth

Based on several experiments, we analyze the relationship between the physical
object scale of the robot system (equivalent to the client node scale of the distributed
virtual simulation network within this framework) and the communication bandwidth in
the network.

In the process of data analysis, because the theoretical value of maximum bandwidth
is almost impossible due to the existence of synchronization strategy, but assuming that
the distribution of bandwidth has specific mean point characteristics, we select the mean
bandwidth as the fitted sample point to obtain the distribution relationship of bandwidth
with the scale of clients and the total number of attribute values, as shown in Figure 15.

[Clients]

0

5

10

15

20

25

30

[P
ro

p
e
rt

ie
sN

u
m

]

0

50

100

150

200

[K
B

/s
]

0

5

10

Bandwidth with Scale of Clients and Properties

Figure 15. The bandwidth fits with scale of clients and properties. The gray points refer to the
bandwidth from experiment data grouped by the scale of clients and properties, while the red points
are the mean value in the summaries of each group. Furthermore, the light-blue surface fit the red
points as in Equation (10).

Smean = a · n · Dn − b · n + c · Dn + d (10)

Drones 2024, 8, 156 19 of 22

Among the parameters, a stands for average size of each property, b represents the average
output of each client, c is a relative ratio of the volume of properties maintained by the server,
and d could be some necessary command and debug data. As a numeric result, we obtained
a = 0.002083 KB/s, b = 0.1818 KB/s, c = 0.013199 KB/s, d = 2.257655 KB/s. Compared with
the form of Equation (7), we can derive a similar form based on Equation (10).

S = 0.002083 · n · (Dn − 87) + 0.013199Dn + 2.257655 (11)

Thus, its parameters can be symbolized as

S = pu · n(Dn − D̄) + cDn + d (12)

where the pu represents property replication traffic related to client scale, and D̄ is the part
of the property that is independent of the number of clients.

6. Conclusions and Future Work

In this study, we compared simulation software for multirobot collaboration and
identified unique highlights of our work. Our work is to successfully leverage the session
mechanism to manage state synchronization and coupling computation across multiple
clients. Through the analysis of experimental measurement data, we drew the following
important conclusions:

1. We discussed the replication time characteristics and update frequency characteristics
when the entities are synchronized. We found that in our system, the replication time
of entity synchronization is relatively low, and the update frequency can meet the
needs of multirobot collaboration, ensuring the real-time use and accuracy of the
system;

2. We analyzed the bandwidth usage of data frames throughout the session. We observed
that the server side took up almost half of the data throughput during the entire
session, which indicates the rational allocation and utilization of data transfer in our
system;

3. We built a bandwidth estimation surface model to estimate the bandwidth require-
ments of the current model when scaling the server-side scale and synchronization-
state scale. This model provides us with an important reference to better plan and
optimize the resource allocation and performance of the system.

In future research, we will improve the following key technical details based on this
distributed simulation framework:

1. Although the dynamic model update method of coupled objects was given in this
architecture, efforts are still needed to further refine the method to support the simu-
lation theory of the system coupling relationship between objects;

2. The synchronous management adopted in this architecture has already partially
improved the communication delay problem, but it is still necessary to study the
influence of the spatiotemporal consistency problem of the distributed system on
multirobot control and decision making;

3. Because the default collaborative network in this study is a simple event-based com-
munication mechanism, it only integrates data services and designs and implements
the basic collaboration framework, and it does not consider its impact on the overall
distributed network communication bandwidth; therefore, the in-depth study of the
collaborative framework will be further promoted in the future in combination with
the specific tasks of multirobot system collaborative work.

7. Patents

This section outlines a novel distributed simulation method and system devised
specifically for multi-UAV (unmanned aerial vehicle) systems. The methodology bifurcates
the distributed simulation tasks inherent in multi-UAV systems into three fundamental

Drones 2024, 8, 156 20 of 22

concepts: virtual simulation, control perception, and task coordination. These concepts
are underpinned by the establishment of three key networks: the distributed virtual
simulation network, the perception control subnetwork, and the DDS-based collaborative
communication service network.

The distributed virtual simulation network serves as the backbone for deploying
virtual simulation tasks across distributed nodes. Its comprehensive server plays a pivotal
role by providing a spectrum of essential services, including rule arbitration, map scene
management, real-time state synchronization, multipoint session management, intelligent
simulation, and real-time situational awareness. Conversely, the client segment within the
distributed virtual simulation network furnishes local computing capabilities encompassing
dynamics, collision interaction, damage simulation, and graphic rendering.

The system architecture is meticulously crafted to operationalize the aforementioned
method, leveraging its inherent advantages such as simplicity, wide applicability, and high
integration.

Furthermore, it is pertinent to note the patent details:
Classification: H04L41/042; H04L47/783; H04L9/40; H04L67/08; H04L67/59.
Application Number: 202310416953.5.

Author Contributions: Conceptualization, J.G. and J.H.; methodology and writing—original draft,
J.G.; writing—review and editing, Q.L., H.C., H.D., L.Z., L.S. and J.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: While developing this architecture and the corresponding platform, the open-
source community provided the model objects, and all enthusiasts contributed to robot systems that
lay a good foundation for the design and implementation of our architecture. We also thank Huang
for allowing us to conduct system performance testing in the multirobot system simulation course, as
well as the 12 students who provided the hardware equipment and took the time to complete the test.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tselegkaridis, S.; Sapounidis, T. Simulators in Educational Robotics: A Review. Educ. Sci. 2021, 11, 11. [CrossRef]
2. Rizk, Y.; Awad, M.; Tunstel, E.W. Cooperative Heterogeneous Multi-Robot Systems: A Survey. ACM Comput. Surv. 2019, 52, 29.

[CrossRef]
3. Xiang, J.; Dong, X.; Ding, W.; Suo, J.; Shen, L.; Xia, H. Key technologies for autonomous cooperation of unmanned swarm systems

in complex environments. Acta Aeronaut. Astronaut. Sin. 2022, 43, 527570.
4. Tubis, A.A.; Poturaj, H.; Dereń, K.; Żurek, A. Risks of Drone Use in Light of Literature Studies. Sensors 2024, 24, 1205. [CrossRef]

[PubMed]
5. Ding, Y.; Xiong, Z.; Xiong, J.; Cui, Y.; Cao, Z. OGI-SLAM2: A hybrid map SLAM framework grounded in inertial-based SLAM.

IEEE Trans. Instrum. Meas. 2022, 71, 2519014. [CrossRef]
6. Xun, Z.; Huang, J.; Li, Z.; Xu, C.; Gao, F.; Cao, Y. CREPES: Cooperative RElative Pose EStimation towards Real-World Multi-Robot

Systems. arXiv 2023, arXiv:2302.01036.
7. Wang, J.; Wu, Y.; Chen, Y.; Ju, S. Multi-UAVs collaborative tracking of moving target with maximized visibility in Urban

Environment. J. Frankl. Inst. 2022, 359, 5512–5532. [CrossRef]
8. Wang, Z.; Xu, C.; Gao, F. Robust Trajectory Planning for Spatial-Temporal Multi-Drone Coordination in Large Scenes. In

Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27
October 2021; pp. 12182–12188.

9. Raziei, Z.; Moghaddam, M. Adaptable automation with modular deep reinforcement learning and policy transfer. Eng. Appl.
Artif. Intell. 2021, 103, 104296. [CrossRef]

10. Badrno, H.; Baradarannia, M.; Bagheri, P.; Badamchizadeh, M.A. Distributed Predictive Consensus Control of Uncertain Linear
Multi-agent Systems with Heterogeneous Dynamics. Iran. J. Sci. Technol. Trans. Electrical Eng. 2022, 47, 255–267. [CrossRef]

11. Li, W.; Zhang, H.; Gao, Z.; Wang, Y.; Sun, J. Fully Distributed Event/Self-Triggered Bipartite Output Formation-Containment
Tracking Control for Heterogeneous Multiagent Systems. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7851–7860. [CrossRef]

12. Yang, S.M.; Kim, K. Implementation of the conversation scheme in message-based distributed computer systems. IEEE Trans.
Parallel Distrib. Syst. 1992, 3, 555–572. [CrossRef]

http://doi.org/10.3390/educsci11010011
http://dx.doi.org/10.1145/3303848
http://dx.doi.org/10.3390/s24041205
http://www.ncbi.nlm.nih.gov/pubmed/38400363
http://dx.doi.org/10.1109/TIM.2022.3209726
http://dx.doi.org/10.1016/j.jfranklin.2022.05.004
http://dx.doi.org/10.1016/j.engappai.2021.104296
http://dx.doi.org/10.1007/s40998-022-00544-y
http://dx.doi.org/10.1109/TNNLS.2022.3146814
http://dx.doi.org/10.1109/71.159039

Drones 2024, 8, 156 21 of 22

13. Xu, J.; Romanovsky, A.; Randell, B. Concurrent exception handling and resolution in distributed object systems. IEEE Trans.
Parallel Distrib. Syst. 2000, 11, 1019–1032. [CrossRef]

14. Chen, J.; Huang, L. Supporting Dynamic Service Updates in Pervasive Applications. In Proceedings of the 2011 IEEE 35th
Annual Computer Software and Applications Conference, Munich, Germany, 18–22 July 2011; pp. 273–278. [CrossRef]

15. Calderón-Arce, C.; Brenes-Torres, J.C.; Solis-Ortega, R. Swarm Robotics: Simulators, Platforms and Applications Review.
Computation 2022, 10, 80. [CrossRef]

16. Cho, W.J.; Kim, S.; Kim, Y.; Moon, Y.H. Advanced Co-Simulation Platform for UAV Simulations under Virtual Wireless Network
Environments. IEEE Access 2022, 10, 95498–95508. [CrossRef]

17. Phadke, A.; Medrano, F.A.; Sekharan, C.N.; Chu, T. Designing UAV Swarm Experiments: A Simulator Selection and Experiment
Design Process. Sensors 2023, 23, 7359. [CrossRef] [PubMed]

18. Koç, D.; Seçkin, A.Ç.; Satı, Z.E. Evaluation of Participant Success in Gamified Drone Training Simulator Using Brain Signals and
Key Logs. Brain Sci. 2021, 11, 1024. [CrossRef]

19. Covaciu, F.; Iordan, A.-E. Control of a Drone in Virtual Reality Using MEMS Sensor Technology and Machine Learning.
Micromachines 2022, 13, 521. [CrossRef]

20. Lee, D.; Kim, H.; Yoon, H.; Lee, W. Usability Comparison between 2D and 3D Control Methods for the Operation of Hovering
Objects. Drones 2023, 7, 520. [CrossRef]

21. Michel, O. Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation. Int. J. Adv. Robot. Syst. 2004, 1, 5. [CrossRef]
22. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,

arXiv:1606.01540.
23. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High fidelity visual and physical simulation for autonomous vehicles. In

Proceedings of the Field and Service Robot, Results of the 11th International Conference, Zurich, Switzerland, 12–15 September
2017; pp. 621–635.

24. Makoviychuk, V.; Wawrzyniak, L.; Guo, Y.; Lu, M.; Storey, K.; Macklin, M.; Hoeller, D.; Rudin, N.; Allshire, A.; Handa, A.; et al.
Isaac Gym: High Performance GPU-Based Physics Simulation for Robot Learning. arXiv 2021, arXiv:2108.10470.

25. Kong, F.; Liu, X.; Tang, B.; Lin, J.; Ren, Y.; Cai, Y.; Zhu, F.; Chen, N.; Zhang, F. MARSIM: A Light-Weight Point-Realistic Simulator
for LiDAR-Based UAVs. IEEE Robot. Autom. Lett. 2022, 8, 2954–2961. [CrossRef]

26. Li, H.; Liu, S.; Ma, M.; Hu, G.; Chen, Y.; Zhao, D. NeuronsGym: A Hybrid Framework and Benchmark for Robot Tasks with
Sim2Real Policy Learning. arXiv 2023, arXiv:2302.03385.

27. Gwon, D.H.; Kim, J.; Kim, M.H.; Park, H.G.; Kim, T.Y.; Kim, A. Development of a side scan sonar module for the underwater
simulator. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju,
Republic of Korea, 28 June–1 July 2017; pp. 662–665. [CrossRef]

28. Kumar, A.; Li, Z.; Zeng, J.; Pathak, D.; Sreenath, K.; Malik, J. Adapting Rapid Motor Adaptation for Bipedal Robots. In
Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27
October 2022; pp. 1161–1168. [CrossRef]

29. Jiang, Y.; Zhang, T.; Ho, D.; Bai, Y.; Liu, C.K.; Levine, S.; Tan, J. SimGAN: Hybrid Simulator Identification for Domain Adaptation
via Adversarial Reinforcement Learning. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation
(ICRA), Xi’an, China, 30 May–5 June 2021; pp. 2884–2890. [CrossRef]

30. Vaughan, R.T. Massively multi-robot simulation in stage. Swarm Intell. 2008, 2, 189–208. [CrossRef]
31. Carpin, S.; Lewis, M.; Wang, J.; Balakirsky, S.; Scrapper, C. USARSim: A robot simulator for research and education. In

Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 1400–1405.
[CrossRef]

32. Diankov, R. Automated Construction of Robotic Manipulation Programs. Ph.D. Thesis, Carnegie Mellon University, Robotics
Institute, Pittsburgh, PA, USA, 2010.

33. Pinciroli, C.; Trianni, V.; O’Grady, R.; Pini, G.; Brutschy, A.; Brambilla, M.; Mathews, N.; Ferrante, E.; Di Caro, G.; Ducatelle,
F.; et al. ARGoS: A modular, multi-engine simulator for heterogeneous swarm robotics. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5027–5034.
[CrossRef]

34. Prats, M.; Pérez Soler, J.; Fernandez, J.; Sanz, P. An open source tool for simulation and supervision of underwater intervention
missions. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve,
Portugal, 7–12 October 2012; pp. 2577–2582. [CrossRef]

35. Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. Rotors—A Modular Gazebo Mav Simulator Framework; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 595–625.

36. Todorov, E.; Erez, T.; Tassa, Y. MuJoCo: A physics engine for model-based control. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 5026–5033.
[CrossRef]

37. Dosovitskiy, A. CARLA: An Open Urban Driving Simulator. In Proceedings of the Conference on Robot Learning, Mountain
View, CA, USA, 13–15 November 2017.

http://dx.doi.org/10.1109/71.888642
http://dx.doi.org/10.1109/COMPSAC.2011.43
http://dx.doi.org/10.3390/computation10060080
http://dx.doi.org/10.1109/ACCESS.2022.3201526
http://dx.doi.org/10.3390/s23177359
http://www.ncbi.nlm.nih.gov/pubmed/37687817
http://dx.doi.org/10.3390/brainsci11081024
http://dx.doi.org/10.3390/mi13040521
http://dx.doi.org/10.3390/drones7080520
http://dx.doi.org/10.5772/5618
http://dx.doi.org/10.1109/LRA.2023.3264163
http://dx.doi.org/10.1109/URAI.2017.7992789
http://dx.doi.org/10.1109/IROS47612.2022.9981091
http://dx.doi.org/10.1109/ICRA48506.2021.9561731
http://dx.doi.org/10.1007/s11721-008-0014-4
http://dx.doi.org/10.1109/ROBOT.2007.363180
http://dx.doi.org/10.1109/IROS.2011.6094829
http://dx.doi.org/10.1109/IROS.2012.6385788
http://dx.doi.org/10.1109/IROS.2012.6386109

Drones 2024, 8, 156 22 of 22

38. Guerra, W.; Tal, E.; Murali, V.; Ryou, G.; Karaman, S. FlightGoggles: Photorealistic Sensor Simulation for Perception-driven
Robotics using Photogrammetry and Virtual Reality. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 6941–6948. [CrossRef]

39. Guerra, W.; Tal, E.; Murali, V.; Ryou, G.; Karaman, S. FlightGoggles: A Modular Framework for Photorealistic Camera,
Exteroceptive Sensor, and Dynamics Simulation. arXiv 2021, arXiv:1905.11377v2.

40. Zhu, Y.; Wong, J.; Mandlekar, A.; Mart’in-Mart’in, R. robosuite: A Modular Simulation Framework and Benchmark for Robot
Learning. arXiv 2020, arXiv:2009.12293.

41. Xiao, K.; Tan, S.; Wang, G.; An, X.; Wang, X.; Wang, X. XTDrone: A Customizable Multi-rotor UAVs Simulation Platform. arXiv
2020, arXiv:2003.09700.

42. Xiao, K.; Ma, L.; Tan, S.; Cong, Y.; Wang, X. Implementation of UAV Coordination Based on a Hierarchical Multi-UAV Simulation
Platform. arXiv 2020, arXiv:2005.01125.

43. Song, Y.; Naji, S.; Kaufmann, E.; Loquercio, A.; Scaramuzza, D. Flightmare: A Flexible Quadrotor Simulator. In Proceedings of
the Conference on Robot Learning, Virtual, 16–18 November 2020.

44. Li, C.; Xia, F.; Martin-Martin, R.; Lingelbach, M.; Srivastava, S.; Shen, B.; Vainio, K.; Gokmen, C.; Dharan, G.; Jain, T.; et al. IGibson
2.0: Object-Centric Simulation for Robot Learning of Everyday Household Tasks. arXiv 2021, arXiv:2108.03272.

45. Wang, S.; Dai, X.; Ke, C.; Quan, Q. RflySim: A Rapid Multicopter Development Platform for Education and Research Based on
Pixhawk and MATLAB. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens,
Greece, 15–18 June 2021; pp. 1587–1594. [CrossRef]

46. Jansen, W.; Verreycken, E.; Schenck, A.; Blanquart, J.E.; Verhulst, C.; Huebel, N.; Steckel, J. COSYS-AIRSIM: A Real-Time
Simulation Framework Expanded for Complex Industrial Applications. In Proceedings of the 2023 Annual Modeling and
Simulation Conference (ANNSIM), Hamilton, ON, Canada, 23–26 May 2023; pp. 37–48.

47. Schlesselman, J.; Pardo-Castellote, G.; Farabaugh, B. OMG data-distribution service (DDS): Architectural update. In Proceedings
of the IEEE MILCOM 2004. Military Communications Conference, Monterey, CA, USA, 31 October–3 November 2004; Volume 2,
pp. 961–967. [CrossRef]

48. Statzer, J.M. AdvancedSessionsPlugin. 2017. Available online: https://github.com/mordentral/AdvancedSessionsPlugin
(accessed on 11 February 2021).

49. Wang, K.; Ju, H. An explicit modelling method of joint-space inertia matrix for tree-chain dynamic system. Int. J. Non-Linear
Mech. 2022, 144, 104033. [CrossRef]

50. Müller, M.; Macklin, M.; Chentanez, N.; Jeschke, S.; Kim, T.Y. Detailed Rigid Body Simulation with Extended Position Based
Dynamics. Comput. Graph. Forum 2020, 39, 101–112. [CrossRef]

51. Udwadia, F.E. Constrained Motion of Hamiltonian Systems. Nonlinear Dyn. 2016, 84, 1135–1145. [CrossRef]
52. Celledoni, E.; Leone, A.; Murari, D.; Owren, B. Learning Hamiltonians of constrained mechanical systems. J. Comput. Appl. Math.

2022, 417, 114608. [CrossRef]
53. Huang, Z.; Chen, J.; Zhang, Z.; Tian, Q. Lie group variational integral algorithm for multi-rigid body dynamics simulation. J.

Dyn. Control 2022, 20, 8. (In Chinese) [CrossRef]
54. Borisov, A.V.; Mamaev, I.S. 1 Rigid Body Equations of Motion and Their Integration. In Rigid Body Dynamics Hamiltonian Methods,

Integrability, Chaos; Higher Education Press: Beijing, China, 2018; pp. 19–78.
55. Kang Feng, Q.M. Symplectic Geometric Algorithms for Hamiltonian Systems; Zhejiang Science and Technology Press: Hangzhou,

China, 2003.
56. Deng, H.; Huang, J.; Liu, Q.; Zhou, C.; Gao, J. BGSD: A SBERT and GAT-based Service Discovery Framework for heterogeneous

distributed IoT. Comput. Netw. 2023, 220, 109488. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/IROS40897.2019.8968116
http://dx.doi.org/10.1109/ICUAS51884.2021.9476786
http://dx.doi.org/10.1109/MILCOM.2004.1494965
https://github.com/mordentral/AdvancedSessionsPlugin
http://dx.doi.org/10.1016/j.ijnonlinmec.2022.104033
http://dx.doi.org/10.1111/cgf.14105
http://dx.doi.org/10.1007/s11071-015-2558-3
http://dx.doi.org/10.1016/j.cam.2022.114608
http://dx.doi.org/10.6052/1672-6553-2021-021. (In Chinese)
http://dx.doi.org/10.1016/j.comnet.2022.109488

	Introduction
	Related Work
	Architecture for Digital Battle
	Distributed Virtual Simulation Network
	Session Management
	Scenario Management
	Physical Interaction
	Synchronization Service

	Perception and Control Subnetwork
	Artificial Intelligence Mode
	Human-in-the-Loop Mode

	Collaborative Communication Service Network
	Basic Communication Mechanism
	Distributed Collaboration Process

	Example and Experiments
	Scenario Description
	Collaborative Tasks
	Sampling Software

	Discussion
	Actor–Synchronous Feature
	Time Domain Analysis
	Scale and Bandwidth

	Conclusions and Future Work
	Patents
	References

