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Abstract: We introduce a modeling framework aimed at incorporating symbolic discrete
controller synthesis (DCS) into a virtual robot experimental platform. This framework involves
symbolically representing the behaviors of robotic systems along with their control objectives
using synchronous programming techniques. We employed DCS algorithms through the reactive
synchronous environment ReaX to generate controllers that fulfill specified objectives. These resulting
controllers were subsequently deployed on the virtual robot experimental platform Simscape.
To demonstrate and validate our approach, we provide an implementation example involving
collaborative UAV robots.

Keywords: UAV; symbolic discrete controller synthesis; virtual robot experimental platform;
collaborative robots; reactive systems; synchronous programming

1. Introduction

Robotic systems have been growing rapidly in recent years, and the behavioral features
that need to be controlled are becoming more complex. The behaviors must be controlled
by ensuring that the desired system features are provided despite environmental factors
such as gravity and wind. In addition, it is necessary to check the mutual constraints of the
collaborative robots. In this regard, it is very important to use simulation environments
before physical implementation.

Many studies have been conducted using simulation environments as a tool before
physical implementation. As an example, Ref. [1] presents a groundbreaking technology for
future distance education called U-Plat, providing access to a virtual robotics laboratory via
the internet. Users can control simulated robots, analyze experiments, and learn the Robot
Operating System (ROS) across different skill levels. Ref. [2] introduces V-REP, a versatile
and scalable robot simulation framework, enabling direct integration of control techniques
and simplifying simulation deployment. V-REP offers a multitude of applications,
including rapid algorithm development, system verification, and factory automation
simulation. Ref. [3] develops a high-level controller and navigation algorithm for ATEKS,
an intelligent wheelchair, using Finite State Machine (FSM) and Kinect technology.
ATEKS integrates advanced controls, affordable sensors, and open-source software
(ROS, GAZEBO, and ANDROID) to meet the rising demand for wheelchairs among elderly
and disabled individuals, enhancing their mobility and independence. Ref. [4] proposed
a new software architecture, SIGVerse, for simulating human–robot interaction in virtual
reality environments. It utilizes cloud-based VR platforms and Unity and ROS frameworks
to enable synchronized interaction between avatars, showing promising feasibility for
multimodal interaction applications. Ref. [5] introduced an interface between ROS and
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the Unity3D platform for easy simulation. Ref. [6] implemented a robust controller
for quadrotor missions like automatic landing, trajectory tracking, take-off, controlling
position, orientation, and motor operations within the Gazebo platform [6]. To address
challenges in training for the inspection of power transmission lines on steel transmission
towers, a training simulator employing virtual reality technology was developed [7].
This simulator incorporates various physical factors, including wind direction and speed,
to provide a realistic training environment. The design and simulation of a four-legged
robot were undertaken, incorporating PID controllers and fuzzy-logic-based controllers
for motion control, implemented using the multibody dynamics approach of Simscape in
MATLAB [8]. In the modeling of a 6-DOF robot, quasi-physical modeling was achieved
using MATLAB/Simscape Multibody, with controllers applied to the Simscape model
rather than a mathematical model or an actual robot [9]. Another method proposed the
design of hardware systems for a two-wheeled self-balancing robot using software tools.
The CAD model of the robot was created with SolidWorks software and imported into
MATLAB, and a Simscape Multibody model of the robot was obtained for simulations.
The simulations aimed to determine the angular velocity and torque requirements of the
robot joints and to establish a PID controller parameters [10].

Numerous endeavors have also been undertaken to apply diverse control
methodologies within simulation environments. For instance, Ref. [11] conducted research
on real-time cooperative kinematic control for multiple robots operating in distributed
scenarios. They introduced a dynamic-neural-network-assisted solver to manage the
control scheme. In this context, the simulation environment V-REP was employed primarily
to showcase the achievement of control objectives. Moreover, there exists a body of
work, such as PID controller applications in the Simscape environment of MATLAB [12].
In contrast, our current research uniquely focuses on the application of the DCS technique
within a virtual, experimental simulation environment. The principal strength of the DCS
technique lies in its capability to generate synthesizable controllers that adhere to formal
correctness standards. Unlike other control approaches that emphasize varied techniques,
our research centers on seamlessly integrating the DCS technique into a virtual simulation
environment, thereby ensuring the development of controllers that meet stringent formal
correctness criteria.

The control theory of discrete event systems (i.e., DCS) was initially introduced as a
language theory by [13]. This theory primarily focuses on synthesizing controllers for
specific systems and control objectives. Subsequently, numerous modeling methodologies
emerged, including automata [14], finite-state machines [13], and Petri nets [15], following
the DCS paradigm. In related research, an input–output perspective was explored in [16],
where systems are defined as finite-state machines or automata. Another direction was
taken by [17], who proposed an automata-based synchronous language approach. However,
these approaches encountered challenges stemming from the state explosion problem.
To address these issues, a symbolic approach using labeled transition systems was
introduced in [18]. Furthermore, the field of symbolic discrete control methods evolved,
initially dealing solely with Boolean variables. Works such as [19–21] presented solutions
based on the synthesis algorithm proposed in [22]. Subsequently, a symbolic approach
catering to infinite systems was introduced in [23].

The DCS technique has been applied in various systems in the existing literature.
For instance, Ref. [24] employed a safety-oriented DCS algorithm for power grids.
An automata-based DCS approach was explored in [25] to address reconfigurable systems.
Ref. [26] introduces the adaptation of symbolic DCS for energy-efficient multi-pocket milling
in CNC machining. Additionally, the pursuit of power efficiency in hardware circuits
through symbolic DCS was investigated in works such as [27,28]. Ref. [29] introduced
altitude control of a quadcopter with symbolic, limited, optimal, discrete control.

Similar to its application in other domains, the utilization of DCS has extended to
robotic systems, with the aim of integrating and enhancing their functionality. Ref. [30]
explored the synthesis of safety controllers for collaborative robots. This study delved
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into modeling the manufacturing process using Markov decision processes, particularly
within the context of human–robot collaboration. Pioneering contributions to the field of
robotic systems control through DCS include the seminal works of [31,32]. These studies
proposed a task-based model, integrated with DCS, within the robotic platform ORCCAD, an
environment rooted in straightforward synchronous programming. Importantly, a symbolic
approach, handling only Boolean variables, was applied to address safety properties
within an excavator system. Additionally, Ref. [19] introduced the synchronous modular
DCS environment BZR. This environment has the capacity to encode both automata and
data-flow-based models. An illustrative example within this work demonstrates the control
of robotic systems, incorporating abstracted behaviors and mutual exclusions. This body
of research collectively underscores the versatility and utility of DCS in addressing diverse
challenges within the domain of robotic systems, encompassing safety, task-based control,
and modular approaches.

In our comprehensive literature review presented above addressing the escalating
complexity of robotic systems and the concurrent development of simulation environments
to mitigate installation costs, we highlight the unique challenges faced by autonomous
and collaborative robots. The core of our research idea lies in focusing on the integration
of the Discrete Control Systems (DCS) technique into a virtual simulation environment,
specifically Simscape, emphasizing DCS’s capacity to generate synthesizable controllers
adhering to formal correctness standards. The primary challenge in integrating DCS with
a robotic simulation environment (e.g., Simscape) stems from DCS being an independent
framework and model-checking tool. The model of a given plant is encoded within the
DCS platform through pre-existing software-completed synthesis algorithms to produce a
controller exhibiting desired system behaviors. Subsequently, it is compiled to generate the
relevant controller. To overcome this challenge, we propose a semi-automated approach.
Initially, we manually encode the desired system behaviors within the DCS platform.
Subsequently, during the compilation phase, we automatically convert the obtained
controller in the form of a predicate entity into codes such as C and HDL. Then, we
integrate these codes (i.e., controller) into simulation environments (e.g., Simscape) and
physically into microcontrollers. Autonomous systems, contending with external factors
like gravity and wind, necessitate effective control mechanisms, while collaborative robots
encounter intricate coordination challenges. While existing research explores various
control methodologies in simulation environments, our primary goal is to seamlessly
incorporate symbolic DCS into Simscape, enabling the implementation of collaborative robots
to address safety and optimization challenges. The research contributions, encompassing
modeling, tooling, and implementation within the proposed DCS framework, aim to fill a
critical gap in the literature.

We aim to leverage the distinct advantages of DCS to integrate and enhance robotic
platforms. Importantly, unlike prior endeavors, we address the novel challenge of
incorporating symbolic approaches for infinite systems into robotic platforms. This
endeavor fills an existing gap in the literature by introducing a novel approach that
circumvents the state explosion problem while ensuring the formal correctness associated
with DCS. In our research, we delve into the symbolic definitions established for governing
infinite-state systems, as outlined in [23]. Our focus lies in integrating symbolic DCS into
one of the extensively utilized robotic simulation environments, Simscape. Moreover, we
present an implementation of collaborative robots within this framework, aiming to address
their safety and optimization control challenges.

Contributions: We propose a framework for incorporating symbolic DCS into Simscape,
and our contributions within this framework are as follows:

• Modeling: includes the specifications that abstract behaviors of robotic systems
and their control objectives are symbolically encoded as the parallel composition of
data-flow equations by the reactive synchronous language the DCS tool ReaX supports;

• Tooling: includes the incorporation and code-generation and is a semi-automated
manager that comprises the encoding of abstracted behaviors of robotic systems
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obtained from the simulation environment and desired system specifications;
ReaX-DCS compiling of constructed synchronous models and adding the synthesized
controllers to the simulation platform;

• Implementation: experimentally validates our approach and guarantees the
specifications of a given robotic system.

The following sections of this paper are organized as follows. Section 2 offers an
outline of the robot simulation platform, Simscape. In Section 3, we furnish the requisite
background on symbolic DCS. The incorporation of DCS into the virtual robotic experimental
environment is detailed in Section 4. Section 4 showcases an example implementation of
our collaborative robot modeling approach. Subsequently, the experimental evaluation of
our approach’s effectiveness is presented in Section 5. Finally, Section 6 concludes the paper.

2. Virtual Robot Experimental Platform

Simscape enables researchers to develop models of the physical systems using the
Simulink environment in MATLAB. Multibody systems can be modeled in the Simscape
environment using blocks representing bodies, joints, and sensors. CAD files can be
saved as XML files and can be imported, including masses, inertias, joints, constraints,
and 3D geometry, into the Simscape environment. System dynamics of the model can
be visualized, and control systems can be developed and tested in Simscape Multibody.
Hardware-in-the-loop (HIL) applications can be carried out using the controllers developed
for the model. For example, a 3D model of a robot manipulator can be created in CAD
software such as Solidworks. The assembly file of the design is exported as XML files.
The files are imported into the Simulink environment of MATLAB. The design is created
as blocks that represent joints, links, and all assembly relations of these components.
Desired motion is implemented using joints of the design that was converted to the
Simscape Multibody model. Output variables of the manipulator such as position, velocity,
acceleration of the links or torque, and force on the joints are obtained and visualized.

3. Background of Symbolic Discrete Controller Synthesis

We constructed a symbolic system with a set of symbols S , where each symbol s in the
system is denoted as s ∈ S . Each symbol belongs to a domain D ∈ D, and this mapping
is denoted as Dom : S → D. The domain set D includes boolean (B), numerical (Dnum),
integer (Z), and rational (Q) domains. Furthermore, all constants in D are expressed as a
symbol s. All formulae ψD that can consist of D-valued symbolic expressions are presented
with the following notation:

ψD ::= s | if ψB then ψD else ψD (D ∈ D, Dom(s) = D)
ψB ::= ¬ψB | ψB ∨ ψB | ψB ∧ ψB | ψB ⇒ ψB | ψD = ψD

| ψN ▷◁ ψN (D ∈ D,N ∈ Dnum, ▷◁∈ {<,⩽})
ψN ::= cψN | ψN ▷◁ ψN (N ∈ Dnum, c ∈ N , ▷◁ ∈ {+,−})

The symbolic system we considered consists of a disjoint set of states X and inputs I.
The valuation of discrete events is expressed with an assignment x := ex, where x ∈ X and
ex is a Dom(x)-valued symbolic expression. The variable x memorizes the value ex based on
the current state and input variables at each tick. On the other hand, s is a placeholder for
the expression e in the given assignment s ∆

= e.
Addressing symbolic control problems within these structures resembles maneuvering

through a scenario akin to a game. Cases entail a successive interaction between participants:
environment and supervisor. The environment allocates valuation to some input
flows, whereas the supervisor tactically allocates valuation to the other variables. This
interaction drives game advancement, shaping the state of the system. Central are control
objectives and logical expressions including state and input variables. The core of the
problem is devising a strategy for the controller to fulfill flows. Thus, the environment
assigns uncontrollable flows (U), while the supervisor handles controllable flows (C).
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Deadlock-free structures enable consistent choices for the environment. Algorithms solving
control problems should uphold this for dynamic progress and objective achievement.

Control algorithms utilized in our context are computed as fix-point calculations using
binary decision diagrams. The model being controlled is constrained based on the restriction
of controllable variables (C) against uncontrollable variables (U), and subsequently,
the values of controllable variables are determined by the instantaneous states of
uncontrollable input variables and the states (denoted by [T]). Below are the equations for
the optimization algorithm represented as recursive functions:

η1
def
= if σ then ζ else ∞

ηi+1
def
= if σ then

(
MaxU ◦ MinC(ηi)

)[
T
]
+ ζ else ∞,

where the optimal control objective involves minimizing the given objective function,
denoted by (ζ), based on the ticks (i) specified in the sequence of events. Consequently,
MinU focuses on minimizing the impact of uncontrollable variables, whereas MaxC aims
to optimize controllable variables to the greatest extent possible. The safety objective (σ) is
always achieved when optimizing the objective function.

4. Incorporating Symbolic DCS to a Virtual Robot Experimental Platform

In this section, we will systematically describe how a symbolic DCS can be incorporated
into a virtual robot experimentation platform using a case study.

To begin with, we will consider a case study titled “A Case for Collaborative
UAV Robots”. Initially, we identify initially uncontrolled robots within the simulation
platform Simscape. We model these robots using the DCS environment called ReaX along
with defining control objectives that mirror desired system behaviors. Typically, these
control objectives can be categorized into two groups: safety objectives like enforcing
stringent rules or mutual exclusions and optimizing objectives like enhancing parameters
such as range or energy efficiency.

In this phase, we transform the model of desired system behaviors based on the
outcomes of safety and optimization algorithms into a synthesized controller represented
as a Boolean equation. Subsequently, we integrate this synthesized controller into the
robotic platform, effectively incorporating the DCS into the environment. A summary of
the provided modeling framework is detailed below.

This approach systematically outlines how a symbolic DCS, represented by ReaX, can
be integrated into a virtual robot experimentation platform. Through the implementation
of safety and optimization algorithms, control and enhancement of robot behaviors are
achieved. This, in turn, results in an augmented functionality and capabilities of the virtual
experimentation platform.

4.1. Overview of Implementation: A Case for Collaborative UAV Robots

Our case study focuses on the application of the symbolic DCS approach to collaborative
UAV robots. In this scenario, we begin with an initial configuration where a certain number
of robots are positioned at specific waypoints. The objective is to transport loads, each
with a unique color, scattered randomly across different locations of the desired arena,
to corresponding targets of the same color. Throughout these operations, we aim to
achieve optimization with the least range usage and highest energy efficiency, which will
be facilitated by our optimization algorithm. Furthermore, to meet safety objectives within
the robotic platforms, we enforce mutual exclusions among the robots. This guarantees
that no robots occupy the same target simultaneously, whether they are picking up or
depositing loads. The subsequent section will comprehensively outline how this scenario
can be represented.

We create an artificial scenario for collaborative robots to transport loads to specified
targets in the most efficient way. Each robot is initially positioned at a waypoint within the
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field. Then, we try to ensure that loads with different colors are transported to target points
of the same color.

Our first priority is to achieve the safety objective. This includes mutual exclusion
constraints in the scenario we present. In our case, mutual constraint occurs when two
robots cannot be at the same target at the same time. So, our safety objective is to prevent
collision situations.

Our second control objective is the optimization objective. The aim of the optimization
objective is to minimize the distance traveled by robots. Meanwhile, the optimization target
does not violate the collision protection provided by the safety objective. This situation
is presented in Section 3. The algorithms we present not only save energy consumption
and time by calculating the shortest path for robots but also meet safety objectives such as
avoiding basic collisions.

The assumptions made include the consideration that all artificial implementations
conducted were under ideal conditions. In other words, the experimental process was
realized without accounting for environmental factors such as disturbances and noise
that could occur. Within the framework, the aim is to provide principles on how to
systematically model the yet uncontrolled robotic system and integrate the synthesized
controller into the simulation environment. Accounting for environmental factors such as
disturbances and noise is necessary for more precise measurements.

In conclusion, our case study effectively integrates symbolic DCS into a framework
for collaborative robots. Through the use of our optimization algorithm, the system
effectively coordinates the movement of loads and robots to achieve the lowest possible
energy consumption. The integration of mutual exclusion guarantees safe operations by
preventing simultaneous access to the same target location. This comprehensive approach
not only enhances the efficiency of load transportation but also ensures the safety and
seamless coordination of collaborative robots within the defined arena.

4.2. Models and Objectives

Achieving the desired level of dynamic response is crucial for a cluster of robots
to execute a planned path successfully. This can be achieved through two fundamental
methods: multibody models and differential equations, both of which can be employed to
simulate the dynamic response of robots. Regardless of the preferred modeling strategy,
the DCS method can be used to improve the dynamic responses of robots. In our research,
we focus on collaborative robots in the form of quadcopters, a deliberate choice that lays
the groundwork for more comprehensive future studies encompassing both attitude and
altitude control. Our work serves as a foundational guide for more complex investigations
by addressing these important aspects. Specifically, we have chosen quadcopters as our
collaborative robots and intend to facilitate detailed modeling for all components, including
links and joints, within a robotic system. In the following sections, we present a thorough
modeling approach for the attitude and altitude control of quadcopters.

Uncontrolled System Behavior: Let us assume that the uncontrolled system behavior,
or the plant, for a quadcopter is given as follows below:

ẍ = g ∗ θ (1)

ÿ = − g ∗ φ (2)

z̈ = − g +
u1

m
(3)

φ̈ =
u2

Ix
(4)

θ̈ =
u3

Iy
(5)

ψ̈ =
u4

Iz
(6)

where the descriptions of the symbols are shown in Table 1.
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Table 1. Descriptions of symbols in Equations (1)–(6).

Symbol Description

g Gravity
m Mass of the quadcopter
u1 Thrust force acting on the quadcopter
u2 Force causing roll movement
u3 Force causing pitch movement
u4 Force causing yaw movement
Ix Body moment of inertia around the x-axis
Iy Body moment of inertia around the y-axis
Iz Body moment of inertia around the z-axis

Altitude Control:
The uncontrolled behaviors of the quadcopter at the z-axis are modeled as parallel

data flow equations, as shown below using a simple differential calculation:

V′
z : ∆

=
U1 − gm

m
t + Vz (7)

Vz := V′
z (8)

∆ : ∆
= (Vz + V′

z)0.5t (9)

Pz := Pz + ∆z (10)

where Vz is the velocity of the quadcopter at the z position, t, represents the time, is the
uncontrollable variable, ∆ is the distance between two instants, Pz indicates the position at
the z-axis, and U, representing the trust force acting, is the controllable variable.

Upon defining an invariant, represented as σalt below, our synthesis algorithm
determines a suitable U valuation:

σalt : ∆
= Vz ≤ VL

z
∧

U1 ≤ UL
1
∧

Pz ≤ PT
z . (11)

where L is the maximum limit for the trust force acting and T is the target for the quadcopter
at the z-axis.

Attitude Control:
The uncontrolled behaviors of the quadcopter at the x-axis and y-axis are modeled as

parallel data flow equations, as shown below using a simple differential calculation:

V′
x : ∆

=
U3 ∗ g
2 ∗ Iy

t2 + Vx (12)

Vx := V′
x (13)

V′
y : ∆

=
−U2 ∗ g

2 ∗ Ix
t2 + Vy (14)

Vy := V′
y (15)

∆x : ∆
= (Vx + V′

x)0.5t (16)

Px := Px + ∆x (17)

∆y : ∆
= (Vy + V′

y)0.5t (18)

Py := Py + ∆y (19)

where Vs are the velocity of the quadcopter at the x and y position, t, represents the
time, is the uncontrollable variable, ∆s are the distance between two instants, Ps indicate
the position at the x-axis and y-axis, and Us, represent the trust force acting, are the
controllable variable.
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Upon defining an invariant, represented as σatt below, our synthesis algorithm
determines suitable Us’ valuation:

σatt : ∆
= Vx ≤ VL

x
∧

Vy ≤ VL
y
∧

U2 ≤ UL
2
∧

U3 ≤ UL
3
∧

Px ≤ PT
x
∧

Py ≤ PT
y (20)

where L is the maximum limit for the trust force acting and T is the target for the quadcopter.
Mutual Exclusion Control:
In this part, the modeling of mutual exclusion constraints from the perspective of safety

objectives is discussed in terms of synchronous equations. In our scenario, the objective is
to ensure that no quadcopters are ever simultaneously present at the same target location.

The set of quadcopters for a given system is represented as Q and the total amount
of quadcopters is denoted by |Q|. Further, we associated each quadcopter qi ∈ Q with a
controllable variable ci, where the controllable variables determine which target we will
steer towards. Each target point is denoted by Pi, which is the vector of Px, Py, Pz, and the
total amount of target points is denoted by |T |. Thus, the equation for a quadcopter to be
able to navigate to any target point through a controllable variable is given as follows:

P : ∆
=

∧
i∈|Q|

∨
j∈|T |

cij ⇒ Pij (21)

A symbol of mutual exclusion constraints M for Q is expressed as the EXNOR
(exclusive not or) operation of positions in P excluding the AND operation of them
and encoded as:

M : ∆
= ¬

⊕
Pi\

∧
Pi (22)

where i ∈ |Q|, and
⊕

denotes the operator EXOR.
Upon defining an invariant, represented as σM below, our synthesis algorithm

determines a suitable c valuation:

σM : ∆
= P

∧
M (23)

Global Safety Objective:
All of the objectives we established above fall within the scope of safety objectives,

and we compile them into an invariant represented by the logic expression that is always
equal to 1, denoted as σ.

σ : ∆
= σalt

∧
σatt

∧
σM (24)

Optimal Control:
In accordance with our optimization objectives O, we formulate a cost function.

Subsequently, using the optimization algorithm outlined in Section 3, we determine new
valuations for controllable variables that minimize the cost function while still satisfying the
safety objectives. In this context, our cost function is composed of conditional expressions
that quantify the numerical distances between the positions of targets and the quadcopter.
This formulation is illustrated below:

O : ∆
= ∑

i∈|Q|
j ⇒ δj (25)

where j ∈ |T|, and δ denotes the distance between the quadcopter and the target.

4.3. Symbolic Control

As specified, our control objectives are categorized into two groups. Our safety
objective is represented by a sigma invariant, meaning it holds true at all times
(always equals 1). To achieve this, we evaluate controlled variables through the at least fix
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point method, ensuring that the evaluations of these variables satisfy the safety requirement.
These evaluations are, in fact, outputs of the actual system. Subsequently, we construct
our controller using these evaluations, ensuring that the safety objectives are consistently
met. Our safety goals in our system encompass mutual exclusions, preventing robots from
occupying the same position simultaneously.

Moving on to our second control objective, optimization, we treat the range as a cost
function. This function is minimized while adhering to safety objectives and is evaluated
over controlled variables. This approach ensures that mutual exclusions are satisfied while
minimizing the range to achieve optimal efficiency. Although solving this problem can
be complex, our optimization algorithm, as outlined in Section 3, provides a solution that
is guaranteed to be optimal due to its use of a model-checking tool. While this process
might be time-consuming in terms of execution time, it is a one-time operation performed
after the modeling phase. Subsequently, the generated controller operates at runtime upon
integration into the relevant environment.

Our approach is pessimistic, resembling a game where controlled variables respond
optimally to the worst-case behaviors of uncontrolled variables. This analogy helps mitigate
uncontrolled behaviors while maximizing controlled variable responses.

In summary, our methodology effectively addresses both safety and optimization
objectives. By systematically evaluating controlled variables and constructing a controller,
safety goals are perpetually met. Likewise, our optimization algorithm ensures optimal
efficiency while accounting for mutual exclusions. This approach, though computationally
intensive during modeling, results in a runtime controller that deals with complex scenarios
through a game-like interaction between controlled and uncontrolled variables.

4.4. Incorporation

In our systematic framework for incorporation process, we present the block diagram
of the system’s architecture, as depicted in Figure 1. The diagram comprises four distinct
steps. The first involves a designer creating an uncontrolled design (i.e., plant). The design
is both modeled in a robotic environment and the ReaX environment, the DCS tool.
Additionally, the specification (i.e., desired objectives) is expressed as data flow equations
within the ReaX environment, encoded in the “design.ctrln” file, as outlined in the provided
model. Subsequently, employing symbolic control synthesis algorithms by means of ReaX,
we generate a controller file with the “.ctrld” extension. Further, our tool, ctrl2c, converts
the “.ctrld” file to C code, seamlessly integrating it with the initial design. Notably, ctrl2hdl,
another proprietary tool, extends this capability to generate hardware description language
(HDL) code suitable for devices like FPGAs or ASICs. Following this, the controlled design
undergoes three potential processes: (i) direct deployment of the C or HDL code onto
the physical system; (ii) transfer to the Simscape environment, generating desired code
(e.g., MATLAB C code) for subsequent integration into the physical system; or (iii) a focus
on simulation results, subjecting them to a detailed optimization process before deploying
them onto the physical system, emphasizing our current emphasis on simulation refinement
prior to physical implementation.

g
Designer

design

design.ctrln

Modeling

ReaX controller.ctrld

Symbolic Control

ctrl2c controller.c

+
Integration Simscape

Multibody
MATLAB
C Code

Code Generation

Physical System


Execution

Evaluation

Figure 1. Block diagram of system architecture.

In our proposed platform, the 3D models of the robots are generated using CAD
software, such as Solidworks. The assembly file of a robot design is exported in XML format
and subsequently imported into the Simulink environment of MATLAB. This design is
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automatically translated into blocks that represent the joints, links, and interconnections
among these components, resulting in what is referred to as a Simscape Multibody model.
To achieve desired movements, joint blocks are utilized, allowing for the simulation of
the robot’s motion. Output variables, including the position, velocity, and acceleration of
links, as well as torque and force on joints, can be extracted and visually presented from
this Simscape Multibody model. Controllers, derived through the symbolic DCS method,
are imported into the Simulink environment as C code. The integration of the symbolic DCS
method to Simscape models is depicted in the block diagram presented in Figure 1.

The process of incorporation here consists of two main stages. Firstly, as depicted
in the figure, the simulation platform Simscape hosts the plant, representing the initial
behavior of the yet-to-be-controlled system. As explained in Section 3, this behavior is
then modeled within the tool, Reax. Subsequently, the intended system reactions, that is,
the control objectives, are associated with the model.

Next, employing our developed synthesis algorithms, the controller generates a
Boolean predicate output. This controller is converted to C code and integrated into the
robot within the Simscape environment. This integration enables the system behaviors to
operate in a manner that guarantees both optimization and safety objectives. We presented
the necessary steps for achieving this incorporation in previous sections within a systematic
framework, supported by a case study. Consequently, the symbolic DCS has been effectively
transferred into the Simscape environment.

In this process, the incorporation unfolds in a structured manner, allowing the seamless
integration of the symbolic DCS approach. The simulation platform’s plant behavior is
effectively linked with the Reax environment, and through a series of well-defined steps,
the synthesized controller’s logic is translated into executable C code. This ensures that
the system adheres to our defined optimization and safety criteria. The comprehensive
approach we have delineated in previous sections offers a clear roadmap for achieving this
incorporation, ultimately leading to the successful implementation of the symbolic DCS
within the Simscape environment.

5. Experimental Evaluation

The role of the DCS in robotics path planning is highly significant. In Figure 2,
we showcase an application of the DCS approach within the MATLAB Simscape environment.
Here, a quadcopter-type UAV takes off from point H and is tasked with delivering colored
boxes to matching colored circles and returning to point H, all while aiming to minimize
energy consumption. This optimization is achieved by reducing the UAV’s path length.
In Table 2, we compare the path lengths for randomly selected box orders, left-to-right box
selection, and the DCS-optimized path.

Figure 2. UAV package delivery in Simscape.

Figure 3 shows the package delivery process carried out by the UAV. Packages were
transported and delivered according to predefined paths such as the path that is randomly
generated, the path that is based on starting with the leftmost package, and the path
generated with DCS. Figure 3a shows the intermediate step of the package delivery mission.
The shortest path for the package delivery mission is provided by the DCS method. Figure 3b
shows the trajectory of the UAV generated by the DCS method. The arrows in the figure
indicate the path along which the boxes of the same color were moved.
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(a) (b)
Figure 3. Package delivery process. (a) Intermediate step for package carrying. (b) UAV trajectory.

Table 2. Path lengths calculated with different approaches.

Path Delivery Order Total Length (m)

Random blue-black-white-red-yellow 50.4

Left to Right red-blue-yellow-white-black 51.2

DCS red-black-white-yellow-blue 47.5

As evident in Table 2, DCS demonstrates its efficacy by providing the shortest path
at 47.5 m, underscoring its vital role in robotic path planning applications. DCS has
garnered attention in various robotics studies [33], and the literature is replete with path
planning research, often featuring meta-heuristic (MH) algorithms for problem-solving.
MH algorithms, characterized by their stochastic nature and reliance on randomness to
optimize objective functions [34], may not guarantee optimal solutions but offer faster
computation than exact solution methods [35]. Notably, as the dataset size increases in path
planning, MH algorithms may struggle to converge to a solution, influenced by factors
like population size and maximum iteration count [36]. On the other hand, DCS shows a
much superior performance, especially in path planning scenarios with a large number of
waypoints (WPs).

The Vehicle Routing Problem (VRP) considers an optimization problem that aims
to determine the most efficient route set starting from the same depot and ending at
the same depot. In the realm of the literature, the VRP has often been tackled using
Meta-Heuristic (MH) algorithms. In Table 3, we observe the application of two well-known
MH algorithms, the Genetic Algorithm (GA) and Ant Colony Optimization (ACO),
to find optimal routes for the VRP, considering a scenario with a single depot and ten
waypoints (WPs). As depicted in Table 3, variations in population sizes and maximum
iteration numbers can lead to different total path lengths. Notably, the optimal path
length for this particular set of WPs stands at 197.40 m, a result achieved through the
application of DCS. Smaller total path lengths translate to reduced energy consumption for
robots following these generated routes, underscoring the valuable contribution of the DCS
method in collaborative path-planning applications.

Table 3 presents the computation times required to obtain results for each
MH algorithm. It is evident from Table 3 that ACO demands less computation time
compared to the GA. However, these algorithms do not demonstrate a significant
advantage over each other in terms of path length calculation, which is the primary
focus of this study. Comparing DCS with MH algorithms is inappropriate because the
DCS method does not provide a pre-calculated path. During the generation of controller
path planning via DCS, dynamic selections occur in real-time. Nonetheless, the computation
times, which vary depending on the state count (i.e., WP) during controller generation
(solely during one compilation), are provided in Table 4.
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Table 3. Total path lengths and computational time calculated with different approaches for VRP.

Population
Number

Maximum
Iteration GA (m) ACO (m) GA (s) ACO (s)

10 50 198.80 198.17 20.253 19.667

10 100 197.40 201.25 39.336 38.902

20 50 207.33 198.17 40.469 39.490

20 100 205.20 199.85 76.984 75.864

Table 4. Performance of the computation approach for the path planning of DCS.

State (WP) Time (s) Max Memory (MB)

1 0.19 434,452

2 0.54 582,476

3 2.65 1,641,820

4 7.93 2,822,484

5 11.46 3,113,736

The performance comparison table for the existing work and our proposed method is
presented in Table 5. The test environment utilized to gather the data presented in Table 5 is
Simulink/MATLAB. The test scenarios were chosen to align with those outlined in previous
studies listed in Table 5. In this study, the 3D models of the robots were created using
Solidworks software. The assembly files of the robot designs were exported in XML format
and subsequently imported into Simulink/MATLAB. To execute path planning scenarios
using DCS, waypoints were defined, and the robots navigated the path, yielding the results
outlined in Table 5. To evaluate the effectiveness of the algorithms, 10 tests were conducted
for each scenario listed in Table 5. The data provided for each scenario represent the
optimal results obtained from these 10 tests. The Wilcoxon rank sum test was performed
as the statistical test, and the obtained p-values were presented in Table 6. As a result of
the Wilcoxon rank sum test, all the p-values in Table 6 were found to be less than 0.05.
This outcome indicates that the MH algorithms used in this study led to significant
differences, as the results of the algorithms are statistically different in all cases presented
in Table 6. Therefore, the H1 hypothesis, which suggests there is a statistically significant
difference between the tested MH algorithms, is accepted. As the DCS technique is a formal
verification (i.e., model-checking) tool, it always guarantees the desired system properties.

The trajectory optimization of a CNC machine tool during the hole drilling process
was addressed within the framework of the Traveling Salesman Problem (TSP). Genetic
Algorithms (GAs), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO)
methods were employed to tackle the TSP. The determination of the shortest tool path was
achieved by varying the population size parameter in GA, PSO, and GWO methods [37].
Notably, PSO exhibited superior performance compared to the GA, with success rates of
15%, 4%, 10%, 15%, and 0%, respectively. Surpassing even PSO, our proposed method
demonstrated success rates of 27%, 33%, 23%, 15%, and 0% across all stages of the
implementation process. In fact, our approach yielded results that were 16% better than
the average outcomes achieved with PSO. In the realm of calculating optimal trajectories
for Unmanned Aerial Vehicles (UAVs), the Vehicle Routing Problem (VRP) was addressed
using the GA method. The solution to the VRP was obtained by manipulating the
parameters of crossing rate and population size in the GA method, as outlined in the
work by [38]. Remarkably, our approach demonstrated an 8% improvement over the mean
results obtained with the GA. Furthermore, meta-heuristic methods were applied to address
the path planning of a mobile robot, as reported in the work by [39]. The performance of
the tested methods was compared across two distinct environments. When our proposed
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method was tested in these environments, it outperformed AFSA-GA, a combination of the
artificial fish swarm algorithm (AFSA) and GA, by 4% and 4%, respectively.

Table 5. Path lengths provided by the tested methods.

Scenario (Path Planning) DCS Method (m) Meta-Heuristic Method (m)

CNC Tool 862.3 × 10−3 1028.9 × 10−3 (PSO)

UAV 4210.7 4550.1 (GA)

Mobile-robot 31.2 32.4 (AFSA-GA)

Mobile-robot 32.4 33.7 (AFSA-GA)

Table 6. p-values obtained via Wilcoxon rank sum test.

Population Number Maximum Iteration ACO-GA

10 50 1.235 × 10−5

10 100 2.456 × 10−5

20 50 1.929 × 10−5

20 100 2.532 × 10−5

This study primarily utilizes Simulink as the simulation environment due to its
widespread usage. However, our flexible framework allows seamless integration with
popular robotic simulation environments like V-REP, enhancing adaptability for future
studies. The key contribution lies in leveraging the formal correctness feature of DCS,
enabling the deterministic and accurate integration of safety and optimization algorithms.
While there is a potential time increase during controller synthesis for a large number
of states compared to metaheuristic approaches, it is essential to emphasize that the
synthesized controller operates in real time post-generation.

In a range of scenarios involving collaborative robots, including mutual exclusion
constraints and optimization processes, we validated the effectiveness of our technique.
The results for various applications are presented in Table 5. Our verification processes
rely on the foundational principle of our presented symbolic system behaving as a
model-checking mechanism. Model checking, a crucial verification technique in computer
science and software engineering, guarantees that a system or software model conforms
to predefined properties. It proves invaluable for discovering design errors and verifying
system intricacies. Model-checking involves confirming whether a system meets defined
specifications, utilizing symbolic representations such as binary decision diagrams (BDDs)
for efficient validation. BDDs, known for their favorable time and memory performance,
maintain a unique diagram for functionally equivalent predicates. Standard temporal
logic approaches for model-checking include Linear-Time Temporal Logic (LTL) and
Computation Tree Logic (CTL). Ref. [40] extensively presents how CTL can be defined
with symbolic approaches.

6. Conclusions & Future Works

We have introduced a systematic framework, supported by tools, to control robotic
systems effectively. Utilizing the symbolic DCS approach via ReaX, we abstracted robotic
behaviors and aligned them with desired control goals. Our approach automatically
computes a controller and translates it into Simscape, using the language it accepts, to ensure
system specifications through our tool SDCS4VREP. We have exemplified this using
collaborative UAV robots, providing an illustrative case study. Our approach systematically
constructs symbolic models for given robotic systems and their associated control objectives,
enhancing practical applicability.
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Our roadmap includes the formulation of guidelines for applying our approach to
industrial manufacturing automation systems, encompassing various combinations of
robotic systems and production lines. Additionally, we aim to devise a strategy that
implements a task scheduling algorithm tailored for queuing systems within manufacturing
contexts. Furthermore, the development of a dedicated robotic synchronous programming
environment featuring symbolic control algorithms is within our plans. We also envision
the application of an optimal control algorithm to different kinds of objectives. Lastly,
we view the integration of DCS with stochastic models as a promising avenue to enhance
human–robot collaborations.
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