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Abstract: Speech intelligibility is a concern for public health, especially in non-ideal listening con-
ditions where listeners often listen to the target speech in the presence of background noise. With
advances in technology, synthetic speech has been increasingly used in lieu of actual human voices
in human–machine interfaces, such as public announcement systems, answering machines, virtual
personal assistants, and GPS, to interact with users. However, previous studies showed that speech
generated by computer speech synthesizers was often intrinsically less natural and intelligible than
natural speech produced by human speakers. In terms of noise, listening to synthetic speech is chal-
lenging for listeners with normal hearing (NH), not to mention for hearing-impaired (HI) listeners.
Recent developments in speech synthesis have significantly improved the naturalness of synthetic
speech. In this study, the intelligibility of speech generated by commercial synthesizers from Google,
Amazon, and Microsoft was evaluated by both NH and HI listeners in different noise conditions.
Compared to a natural female voice as the baseline, listeners’ listening performance suggested that
some of the synthetic speech was significantly more intelligible even at rather adverse listening
conditions for the NH cohort. Further acoustical analyses revealed that elongated vowel sounds and
reduced spectral tilt were primarily responsible for improved intelligibility for NH, but not for HI
due to their impairment at high frequencies and possible cognitive decline associated with aging.

Keywords: intelligibility; synthetic speech; hearing-impaired; noise; intelligibility model; Mandarin
Chinese

1. Introduction

Synthetic speech generated by computers has been increasingly used in lieu of actual
human voices in human–machine interfaces. Nearly all digital assistants, such as Amazon
Alexa and Apple Siri, on contemporary mobile devices, personal computers, and consumer
electronics interact with users using synthetic voices. GPS navigators also use synthetic
voices to guide their users. However, the information exchange between humans and
machines often takes place in non-ideal (e.g., noisy and reverberant) listening conditions.
For example, drivers often hear the instructions given by the GPS mixed with surround-
ing sounds, such as engine, road, and wind noises. Therefore, speech intelligibility in
similar scenarios is crucial, especially in safety-critical environments. Investigating the
acoustic traits that indicate speech intelligibility has continued for decades; measuring
and improving the intelligibility of synthetic speech has been heavily studied since the
emergence of speech synthesizers [1,2]. In the past, it was found that synthetic speech
was less intelligible than natural speech in quiet conditions [2] and was even less so in
non-ideal listening conditions [3,4]. As a public health concern, the intelligibility issue of
synthetic voices in everyday life, especially for the hard-of-hearing population, has drawn
considerable attention.
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Enormous efforts have been devoted to designing novel algorithms for speech syn-
thesis. The earliest speech synthesizers were developed from rule-based models that filter
a source signal to resemble speech-to-data-based models that concatenate segments from
recorded human voices [5,6]. However, speech generated by these synthesizers is highly
unnatural, especially in the prosody domain. Statistical parametric synthesis (SPS) was
proposed to address these problems [7]. SPS and subsequently developed neural models
directly synthesize speech waveforms instead of concatenating units from natural speech.
A typical SPS pipeline includes three components: a text analyzer that extracts linguistic
features from the text, an acoustic model that translates linguistic features to acoustic
features, and a vocoder that outputs a waveform based on the acoustic features. The neural
synthesizers that came later attempted to simplify the above pipeline and strove toward
directly producing waveforms from the text. Synthetic voices generated by state-of-the-
art neural synthesizers have demonstrated significantly better quality and naturalness
compared to traditional SPS speech [7,8].

Concerning speech intelligibility in general, there have been many studies and in-
vestigations into which acoustic features are crucial to it and why. For clear speech, for
instance, the speaking rate and vowel space are negatively and positively correlated with
intelligibility, respectively [9,10]. Moreover, the speaking rate also has an impact on vowel
space. Typically, as the speaking rate increases, speech intelligibility and vowel space
decrease [11]. The harmonics-to-noise ratio, a measure of voice quality, is also a strong
predictor of speech intelligibility [12–14].

Many studies have also been conducted on intelligibility in noise for both natural
speech and synthetic speech. When speaking in noise, humans spontaneously make ar-
ticulatory changes to produce speech adapted to the listening environment, known as
“Lombard speech” [15]. Lombard speech has been extensively studied, and it is often
more intelligible than ordinary speech produced in quiet. Compared to ordinary speech,
Lombard speech typically has increased intensity and fundamental frequency (F0), pro-
longed vowel duration, and an upward shift of energy towards the middle or higher
frequencies [16,17]. These acoustic changes are understood to help speech sounds better
overcome the masking effect of noise. In the early 1980s, the intelligibility of speech gen-
erated by two rule-based synthesizers and that of a natural voice in white noise were
compared. Although the intelligibility of some phonemes was statistically similar for
all three voices, the advantage of natural speech was evident [2]. A more recent study
evaluated the intelligibility of algorithmically-modified natural speech and SPS speech in a
series of noise conditions. Some of the synthesizers were particularly adapted to produce
synthetic speech with the acoustics properties of Lombard speech. Results showed that
natural speeches with spectral modification and reduced dynamic range could outperform
Lombard speech in noise. Synthetic speech was, however, always less intelligible than
natural speech in noise [4]. Further investigation showed that enhancing important regions
(e.g., formants) in the spectral envelope and using Lombard-adapted duration and exci-
tation for synthesis could improve the intelligibility of synthetic speech [18]. However,
it was also noted in [18] that the improvement of intelligibility in noise due to acoustic
modifications came at the cost of naturalness and sound quality of the speaker’s voice
when perceived in quiet. Nevertheless, speech with better intelligibility tends to be rated of
higher quality by listeners in noise [19].

Until recently, the intelligibility of synthetic voices was mostly assessed on normal hear-
ing (NH) listeners. A handful of studies investigated the intelligibility of synthetic speech
to hearing-impaired (HI) listeners. In the early 1990s, one of the earliest studies of this kind
suggested that the intelligibility of synthetic speech varied, but some synthesizers could
reach similar intelligibility of natural speech for HI listeners in quiet environments [20,21].
A more recent study [22] suggested that the degree of hearing loss at high frequencies
(>8 kHz) for listeners was negatively correlated with synthetic speech’s intelligibility. There
is also evidence that, for listeners with cochlear implants, synthetic speech with a slow
speaking rate was significantly more intelligible than that with a normal rate, which was
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understandably more intelligible than that with a fast rate [23]. After synthesis techniques
rapidly advanced for over a decade, the intelligibility of synthetic speech by the most recent
synthesizers has hardly been reported. It is particularly meaningful to know whether the
improvement in the quality and naturalness of synthetic speech seen in recent years could
lead to intelligibility gain in non-ideal conditions for both NH and HI listeners.

This study aimed to systematically evaluate the intelligibility of synthetic voices
generated by modern commercial speech synthesizers in a series of noise conditions for NH
and HI listeners. Six acoustic properties, including speaking rate, F0, harmonic-to-noise
ratio, vowel-to-consonant duration ratio, spectral tilt, and vowel space, were measured
for the voices and further analyzed to discover and understand how they affected the
intelligibility of synthetic speech for the two cohorts of listeners. The main findings and
implications were further discussed.

2. Speech Stimuli and Conditions
2.1. Speech Synthesizers

Three state-of-the-art commercial neural speech synthesizers were chosen to generate
synthetic voices to be evaluated. The Amazon Polly neural text-to-speech (TTS) system
first converts sequences of phonemes to spectrograms, chooses the spectrograms in which
the energy is distributed more in human-sensitive frequencies, and then translates these
spectrograms to sound signals by a neural vocoder [24]. The Azure neural TTS voices
are synthesized by a modification of the FastSpeech2 model, in which the acoustic model
produces spectrograms based on pitch and duration predictors, and the vocoder con-
verts the spectrograms to signals [25,26]. The Google Cloud TTS system implements the
WaveNet2 model and directly produces speech one signal at a time by a convolutional
neural network [27,28].

Speech was generated in both male and female voices, but the male voices were
chosen for the Google and Microsoft Azure synthesizers because they were predicted by an
intelligibility model (see Section 2.4) to be more intelligible than their female counterparts
in the same noise environments. Amazon Polly only supported a female voice in Mandarin.
For comparison, a female voice was also recorded to balance the sex distribution in the four
voices, as further detailed in Section 2.2. Table 1 lists information about these four voices.

Table 1. Synthesizers and voices used to generate speech for evaluation.

Synthesizer Voice Model Sex Is Synthetic? Referred
to as

Amazon AWS Polly “Zhiyu” Female Yes Amazon
Microsoft Azure “YunxiNeural” Male Yes Microsoft
Google TTS “cmn-CN-Wavenet-B” Male Yes Google
Natural Voice - Female No baseline

2.2. Speech Materials

The corpus used for generating the synthetic speech was the Mandarin Speech Per-
ception (MSP) test materials [29]. This corpus contains a total of 100 sentences, and each
sentence consists of seven monosyllabic characters. The sentences have sensible meanings,
and the words used are common in everyday life. Hence, they have moderate predictability.
The entire corpus is phonemically balanced. The distribution of phonemes and tones in
this corpus is comparable to that of commonly used Mandarin Chinese words [29].

Each of the three commercial speech synthesizers was used to generate the synthetic
version of the 100 MSP sentences, resulting in three sets of MSP sentences. All the speech
signals were synthesized and saved in mono WAV format, with a sample size of 16 bits
and a sampling rate of 16 kHz. To set a baseline using natural human voice, a female
native Chinese speaker recorded the 100 sentences in a sound-treated audio booth using
an AKG C520 condenser microphone. During recording, the microphone was attached
to the speaker’s head, and the head of the microphone was placed 2 cm away from the
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corner of the speaker’s mouth. The audio signals captured by the microphone were further
preamplified by an RME Fireface UCX II audio interface before being saved in WAV format
with a sampling rate of 44.1 kHz. When generating stimuli for evaluation, the recordings
were downsampled to 16 kHz; the intensity in root-mean-square of all WAV files, including
the synthetic sounds, was normalized to 0.01 to avoid clipping during writing the files to
the hard drive.

2.3. Noise Maskers and Stimuli

Two types of noise were chosen to mix with speech utterances: speech-shaped noise
(SSN) and speech-modulated noise (SMN). The SSN was generated by filtering white noise
using the average vocal tract effect of 120 randomly selected utterances from the four sets
of sounds. A 100th-order linear predictive coding was used to estimate the vocal tract effect.
The SSN consequently shared the long-term average spectrum of the combined corpora,
which maximized the masking effect on the target speech in the frequency domain. To
generate SMN, the speech envelope was first extracted and smoothed by convolving a
10-min utterance with a 7.2-ms-long pulse train. Then, the SMN became the SSN scaled by
the speech envelope. In the time domain, while SSN is temporally stationary, the waveform
of SMN resembles that of an actual speech signal with temporal modulations, as illustrated
in the left panel of Figure 1. Despite their identical spectra as shown in the right panel of
Figure 1, SSN and SMN are known to have different masking effects on the target speech
even under the same speech-to-noise ratios (SNRs).
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Figure 1. Examples of SSN (top left) and SMN waveforms (bottom left) and their spectra (right).
The temporal envelopes of the noise maskers are also displayed in red, offset from the waveforms for
better illustration.

Target speech signals were mixed with each noise masker at three SNRs as stimuli. As
the two maskers vary in their masking effect as mentioned above, the chosen SNRs were
−9, −4, and 1 dB for SSN and −12, −7, and −2 dB for SMN, determined empirically and
referred to as “low”, “mid”, and “high” hereafter. The chosen three SNRs were expected
to lead to listener intelligibility of approximately 25%, 50%, and 75%, respectively, in each
masker [4,30].

2.4. Model Predictions

The intelligibility of the voices in the noise conditions was estimated using an object
intelligibility model—Distortion-Weighted Glimpse Proportion (DWGP, [31])—as the first
approximation. Target speech and its masking counterpart are taken as the inputs for
DWGP to generate auditory spectro-temporal (S-T) representations for the signals. Auditory
analyses are performed by the model to determine the number of S-T regions in the speech
signal with a local SNR above a 3-dB threshold, known as “glimpses”, at 34 frequencies
that simulate auditory filtering. For each frequency band, the similarity between the clean
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target speech and speech-plus-noise mixture is also measured. The final predictive index is
a logarithmically compressed linear combination of the glimpse quantities weighted by
the similarity scores in their frequency bands. From 0 to 1, greater DWGP scores predict
better intelligibility. Figure 2 displays the DWGP score of the estimated intelligibility as
a function of SNR for the four voices in the chosen noise maskers. In Figure 2, each data
point is an average of DWGP scores from the 100 MSP sentences in the same condition. The
model predicted that “Amazon” performed consistently better than the other three voices
at all SNRs tested in both SSN and SMN. “Google” and “Microsoft” were predicted to have
similar intelligibility; “baseline”, i.e., the natural voice, was the least intelligible.
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Figure 2. Predicted intelligibility scores from DWGP for all four voices in SSN (left) and SMN (right).

3. Listening Experiments
3.1. Participants

Ten native Mandarin Chinese speakers (6 females, 4 males, average age = 23.5 years
with s.d. = 2.3 years) with self-reported NH were recruited. All the participants were
undergraduate or graduate students at the University of Illinois at Urbana-Champaign.
The recruitment and testing methods were approved by the Institutional Review Board
of the university. All the participants were compensated financially or via course credit
for their time. A post-experiment hearing screening was conducted on all the participants
using standard clinical audiometric procedures with an audiometer (Interacoustics AS608e).
Their hearing levels (HL) were measured as pure-tone average (PTA6) over the six octave
frequencies (250, 500, 1000, 2000, 4000, and 8000 Hz). The results showed that one female
participant had subtle hearing loss with a PTA6 above 20 dB HL, leading to her data being
excluded from further analysis.

Eight native Mandarin Chinese speakers (5 females, 3 males, average age = 57.6 years
with s.d. = 6.4 years) with symmetrical sensorineural hearing loss also participated in this
experiment in Jiangsu, China. Of the eight participants, four were daily hearing aid users.
Their HLs were measured using the same equipment and procedure as for the NH cohort.
The PTA6 across the eight symmetrical cases was 36 dB HL for both the left and right ears,
with an interaural difference below 3 dB. The mean HLs in PTA6 for the HI cohort are
presented in Figure 3.
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Figure 3. Average two-ear HLs (dB) of the eight HI listeners with symmetrical hearing loss at six
octave frequencies. The solid circles and shades show the mean levels and the corresponding 95%
confidence intervals, respectively.

3.2. Procedure

A pool of 2400 stimuli (4 voices × 2 noise maskers × 3 SNRs × 100 sentences) was
created. In each stimulus, the clean speech was buffered with 300-ms silences at the
beginning and the end before mixing with the noise. This allowed listeners’ hearing to
adapt to the background noise and reduce the effect of non-simultaneous masking [32].
The actual SNR was calculated only from where the target speech was present.

Given the 4 voices, 2 noise maskers, and 3 SNRs, this design led to a total of
24 conditions. In each condition, a listener heard 4 random sentences, resulting in 96
unique sentences screened throughout the test. As some sentences may be more intrin-
sically intelligible than others, sentences were randomly drawn without placement from
the pool for each condition, in order to minimize such an effect. The sampling was also
validated to make sure none of the 96 sentences was heard twice by the same listener in
different conditions. During the test, sentences were blocked by noise-SNR conditions.
Within each block, the order of the sentences was randomized; the order of the noise-SNR
blocks was also randomized.

For NH listeners, the experiments took place in the same sound-treated audio booth
where the natural voice was recorded, as described in Section 2.2. The stimuli were
presented to listeners over a pair of Sennheiser HD 660S open-back headphones, pre-
amplified by the same audio interface used in recording. The presentation level of speech
was calibrated and fixed to approximately 69 dB SPL—the normal conversational level [33];
the noise level was then adjusted to meet the desired SNRs. Stimulus playback was
administered by a computer program. After a stimulus was played, participants were
instructed to type what they heard from the sentence in Chinese characters using a computer
keyboard. Listeners were not allowed to replay any stimulus. Responses were recorded
and saved automatically as the experiment progressed. Participants were able to complete
the test within 40 min.

Although the HI listeners were recruited at a different site, the experiments were
conducted in an audio booth that had similar acoustic specifications as the one for NH
listeners. All the experiment materials, design, setup, and equipment strictly followed
those for NH listeners, except for the following. All HI listeners wearing hearing aids were
instructed to remove their hearing devices and tested with bare ears. Instead of using
a fixed presentation level for target speech, all participants in this group were allowed
to adjust the speech intensity to a comfortable level (average level = 76.1 dB SPL with
s.d. = 5.7 dB) before the experiment started; they could not adjust the level during the test.
As the participants in this group had a significantly greater age than the NH group, and
some participants were unable to use computers; therefore, the participants responded
to stimuli by orally repeating what they heard after each sentence, which was recorded
simultaneously by a digital audio recorder.
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The intelligibility of the four voices was measured as listener character recognition
rate (CRR) in percentages. As Chinese characters have no predictable pattern to their
corresponding pronunciations, it is possible that a participant will hear the sound correctly
but type a character with the same pronunciation that mismatches the meaning. Thus, both
responses and keys were converted to Hanyu Pinyin (the phonetic symbols for Chinese
characters) before comparing, in order to take homophones into account. The correctness
of the lexical tones in Mandarin Chinese was not taken into account, so the syllables with
the same phonemes as the answer but different tones were still considered to be correct.
Responses of NH listeners were scored automatically using a computer script, while a
manual transcribing and scoring procedure had to be used for HI listeners due to their
responses being saved in audio.

4. Results

Figures 4 and 5 show the average CRRs of participants for the four voices in different
noise conditions for NH and HI listeners. For NH listeners, in SSN, “baseline” appears to
be the least intelligible at the low and mid SNRs, with CRRs of 4% and 38%. This is broadly
consistent with DWGP predictions in Section 2.4. “Amazon”, on the other hand, leads to
noticeably higher intelligibility (38%) than “Microsoft” (13%) and “Google” (8%) at low
SNR. “Amazon” (85%) is also more intelligible than “Microsoft” (55%) at the mid SNR, but
it no longer outperforms “Google” (86%). At the high SNR, all voices lead to CRRs of no
lower than 83%, with “Microsoft” being the worst (83%) and “Google” being the best (98%).
In SMN, which has a much stronger fluctuation in amplitude than SSN, “Microsoft” is seen
to be the least intelligible instead of “baseline” at all SNRs. The advantage of “Amazon”
(54%) over other voices (“Google” (47%) and “baseline” (33%)) at the low SNR is less
evident than in SSN; the same pattern can also be observed at the mid SNR.

C
R

R
 (%

)

C
R

R
 (%

)

Figure 4. Mean NH intelligibility of synthetic speech generated by three commercial synthesizers
and natural speech at three SNRs in SSN (left) and SMN (right). Error bars indicate 95% confidence
intervals. Numbers above error bars show the actual CRR readings in percentage for conditions.

For HI listeners, the intelligibility of all voices is unsurprisingly lower than that of
their NH counterpart in all conditions, with average decreases of 37.4 percentage points
(ppts) in SSN and 38.3 ppts in SMN across SNRs and voices. The variance in performance
also tends to be greater in several conditions as indicated by the extended error bars, as
exhibited in Figure 5. Interestingly, HI listeners did not benefit from “Amazon” or “Google”
as much as their NH counterparts did at the low and mid SNRs in both noise maskers.
Compared to “baseline” in SSN, the CRR gain of “Amazon” is merely 2 and −1 ppts for HI
listeners at the two lower SNRs, respectively, down from 34 and 47 ppt for the NH cohort
in the corresponding conditions. The advantage of synthetic voices over “baseline” further
diminishes, with the largest intelligibility gain of only 8 ppts achieved by “Google” at the
mid SNR.
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Figure 5. Mean HI intelligibility of synthetic speech generated by three commercial synthesizers
and natural speech at three SNRs in SSN (left) and SMN (right). Error bars indicate 95% confidence
intervals. Numbers above error bars show the actual CRR readings in percentage for conditions.

Listener performance in CRR of both NH and HI groups was further analyzed together
using a multi-level linear mixed effects model (LMM) to account for the within-group and
between-group variability. The LMM was implemented using the “lme4” package [34] in
R [35], with CRR as the dependent variable and subject variability as the random effect. The
four independent variables—group (“NH” and “HI”), noise type (“SSN” and “SMN”), SNR
(“low”, “mid”, and “high”) and voice (“Amazon”, “Google”, “Microsoft”, and “baseline”)—
and their interactions were included as fixed effects. Since all independent variables were
categorical, a dummy coding scheme was employed, with group: “NH”, noise type: “SSN”,
SNR: “low”, and voice: “baseline” being the reference level in each variable.

A series of linear models was built using a step-wise sequential approach with a
forward direction, where the independent variables and their interactions were added
incrementally, starting with only the random effect. Table 2 shows the models whose fitting
significantly improved over previous models. The results suggested that all independent
variables (group, noise, SNR, and voice) had a significant impact on listeners’ CRR per-
formance [∀χ2 ≥ 10.399, ∀p < 0.01]. Most of the two-way and three-way interactions
between the independent variables were also significant [χ2 ≥ 9.464, p < 0.01], and so was
their four-way interaction [χ2(50) = 3.213, p < 0.001]. The final LMM, therefore, included
12 terms, as shown in Table. 2.

Table 2. Step-wise build-up of the LMM. The models were assessed by the Akaike information
criterion (AIC), Bayesian information criterion (BIC), log-likelihood (LogLik), and the likelihood ratio
with the degrees of freedom (χ2(d f )) and significance level (SL ***: p < 0.001; **: p < 0.01). Only
significant factors and interactions are listed.

Model AIC BIC LogLik χ2(d f ) SL

rand. intercept 3940.455 3952.489 −1967.228
group 3903.007 3919.052 −1947.504 39.448 (4) ***
noise 3894.608 3914.664 −1942.304 10.399 (5) **
SNR 3413.510 3441.589 −1699.755 485.098 (7) ***
voice 3350.052 3390.165 −1665.026 69.458 (10) ***
noise:SNR 3344.588 3392.723 −1660.294 9.464 (12) **
SNR:voice 3328.338 3400.541 −1646.169 28.250 (18) ***
group:SNR 3268.592 3348.817 −1614.296 63.746 (20) ***
group:voice 3204.020 3296.279 −1579.010 70.572 (23) ***
noise:SNR:group 3172.665 3276.958 −1560.333 37.355 (26) ***
SNR:voice:group 3161.487 3289.848 −1548.744 23.178 (32) ***
group:noise:SNR:voice 3145.784 3346.347 −1522.892 51.704 (50) ***
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The significant four-way interaction, i.e., group × noise type × SNR × voice, indicates
that the voices varied in intelligibility at different SNRs in the two noise maskers between
NH and HI listeners. Contrasts were used to break down this interaction in order to gain
better insights into the data. All the significant contrasts and their parameters for this
interaction are listed in Table 3 and 4, respectively. Contrast 1 shows that the intelligibility
gain from “Amazon” over “baseline” was different at the mid SNR in the two noise maskers
for NH and HI listeners. For “Microsoft”, while it was more intelligible than “baseline” at
the low SNR in SSN, its intelligibility was lower than “baseline” at the same SNR in SMN
for NH cohorts; the difference in intelligibility between the two voices was, however, less
sizable for HI listeners. A similar relationship was also observed at the mid SNR in the two
maskers for “Microsoft”, but the overall intelligibility level of this voice was higher than
that at the lower SNR, as suggested by Contrasts 2 and 3. Contrast 4 indicates a similar
result for “Google” at the mid SNR in the two noise maskers for the two cohorts of listeners
as for Contrast 1 for “Amazon”.

Table 3. Significant contrasts for the four-way interaction in the LMM model.

Contrast Index Fixed Effect (Group : Noise Type : SNR : Voice)

1 (NH vs. HI) : (SSN vs. SMN) : (mid) : (baseline vs. Amazon)
2 (NH vs. HI) : (SSN vs. SMN) : (low) : (baseline vs. Microsoft)
3 (NH vs. HI) : (SSN vs. SMN) : (mid) : (baseline vs. Microsoft)
4 (NH vs. HI) : (SSN vs. SMN) : (mid) : (baseline vs. Google)

Table 4. Parameters estimated from the LMM for the contrasts shown in Table 3, including linear
coefficient (β), standard error (SE), low and high confidence interval (CI), t value, effect size (r), and
significance level (SL ***: p < 0.001; **: p < 0.01; *: p < 0.05).

Contrast Index β SE Low CI High CI t Value r SL

1 27.728 9.366 9.327 46.129 2.961 0.148 **
2 23.611 9.366 5.210 42.012 2.521 0.126 *
3 23.760 9.366 5.359 42.161 2.537 0.127 *
4 35.665 9.366 17.264 54.066 3.808 0.189 ***

Post hoc pairwise comparisons with the Bonferroni adjustment conformed with the
visual impressions received from Figures 4 and 5. In the temporarily-stationary noise
(i.e., SSN) , at the low and mid SNRs, “Amazon” is substantially more intelligible than
“baseline” and “Microsoft” for NH [∀p < 0.001]. “Google” is also more intelligible than
“baseline” and “Microsoft” for NH [∀p < 0.001] at the mid SNR. In the fluctuating noise
(i.e., SMN), at the low SNR, “Microsoft” is the least intelligible voice compared to other
voices [∀p < 0.001] for NH, but not at the mid SNR, where its intelligibility is comparable
to “baseline” [p = 1.000] but worse than “Google” [p < 0.01] and “Amazon” [p < 0.001].
In both noise maskers, all the voices are similarly intelligible at the high SNR [∀p = 1.000]
for NH, where intelligibility reaches the ceiling. For HI, listener performance shows that
there are no voices significantly more intelligible than the others at all SNRs [∀p = 1.000].

5. Acoustic Analyses

The acoustics of the speech signals were analyzed to explain the listeners’ different
performances when perceiving the four voices. Speaking rate, fundamental frequencies,
harmonic-to-noise ratio, vowel–consonant duration ratio, spectral tilt, and vowel space
were analyzed for sentences in each voice. The Montreal Forced Aligner [36] was used
to generate phoneme- and word-level speech segments from the WAV files, followed by
further manual checking and adjustment of the segment boundaries.

– Speaking rate. The speaking rate was measured as the count of spoken syllables
per second. As each sentence in this corpus consists of seven words (syllables), the
speaking rate for a sentence was calculated by dividing the duration of speech in
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seconds by seven. Measurements for the four voices are shown in Figure 6a. Pairwise
comparisons using the Bonferroni method suggest that the voices significantly differ
in speaking rate [∀p < 0.001], with the difference between “baseline” and “Amazon”
being the smallest [p < 0.05].

– Fundamental frequency (F0). F0 for each sentence was calculated as the mean F0 over
all vowels in the sentence. As a tonal language, the F0 for a syllable in Mandarin can
fluctuate greatly and take a sharp upturn, downturn, or both. In order to take tone
differences into account, F0s were measured at the beginning, middle, and end of each
vowel; the F0 for the vowel was calculated as the mean of F0s at these three points.
Since every sentence contains seven monosyllabic vowels, the F0s of the vowels were
further averaged and computed as the F0 for the sentence. As shown in Figure 6b, all
the voices differ from each other in F0 [∀p < 0.001]. Since “baseline” and “Amazon”
are female voices, their mean F0s are significantly higher than those of “Microsoft”
and “Google” [∀p < 0.001], which are male voices.

– Harmonic-to-noise ratio (HNR). HNR is the ratio of periodic to non-periodic com-
ponents in a voiced segment of speech in decibels (dB). It is usually used to show
the hoarseness and breathiness of a voice; it is also measured as one aspect of voice
quality. For each sentence, the HNR was computed as the mean HNR of the seven
monosyllabic vowels. The measurements are shown below in Figure 6c. The com-
parisons suggest that all the voices also differed in HNR [∀p < 0.001]. Interestingly,
“baseline”—the natural voice—had significantly better HNR than all synthetic voices.

– Vowel–consonant (VC) ratio. The VC ratio for each sentence was measured by di-
viding the total duration of all vowels by the total duration of all consonants in the
sentence. The statistics are shown below in Figure 6d. It appears that the VC ratio
varies greatly across sentences, as suggested by the expanded confidence intervals.
While “Microsoft”, “Google”, and “Amazon”, the three synthetic voices, see no sig-
nificant difference in VC ratio [∀p > 0.06], “baseline” has a significantly lower VC
ratio than “Amazon” [p < 0.01], but not than “Microsoft” [p = 0.074] or “Google”
[p = 0.359].

– Spectral tilt. Spectral tilt is one way to quantify how rapidly energy decreases as
frequency increases in a speech signal. For analysis in this study, it was measured as the
decrease in energy per unit frequency (dB/Hz); that is, the energy difference between
the first formant (F1) and the second formant (F2) over the frequency difference
between F1 and F2 on the long-term average spectrum of the signal. Therefore, it
was the slope of the straight line connecting the two data points of F1 and F2 on
the spectrum. The flatter the slope is, the more energy there is at high frequencies
relative to that at low frequencies. From “baseline” to “Google” in Figure 6d, spectral
tilt increases successively with significant changes [∀p < 0.001]. Consistent with the
visual intuition also, the spectral tilt of “Amazon” is evidently the lowest among the
four voices [∀p < 0.001].

– Vowel space. The vowel spaces and their visualizations for the voices were calculated
and drawn using the R package “phonR” [37]. The vowel spaces were calculated
by plotting three corner vowels on an F1–F2 chart and finding the smallest polygon
that covers the vowels. The three corner vowels are [i], [a], and [u]. These three
vowels are frequently supplied as corner vowels in vowel space drawing [11,38] and
are all present in Mandarin as monophthongs. These graphs are shown in Figure 7.
The vowel space areas (VSAs) of “Amazon”, “Microsoft”, “baseline”, and “Google”
are 1,365,952, 1,195,746, 1,096,042, and 981,738, respectively, in descending order. A
greater VSA may indicate better speech-motor control and more distinctive articulatory
positions for different sounds. To further measure the quality of individual vowels
and their overlaps, between- and within-vowel dispersions and their ratios were
also measured from the three groups of sound for the four voices. The greater the
between-vowel dispersion, the further the different sounds are from each other, hence
the less likely they would be confused by the listeners. Meanwhile, a smaller within-
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vowel dispersion suggests fewer variations for the same vowel, hence a more robust
and consistent pronunciation of the vowel. As illustrated in Figure 7 and further
confirmed by Table 5, the three vowels in “baseline” were most distinctive from each
other (the largest between-vowel dispersion) and were pronounced most consistently
(the smallest within-vowel dispersion), followed by “Amazon”. The between-within-
vowel dispersion ratio, on the other hand, showed that “Google” had the lowest vowel
quality, which is in line with its smallest VSA.
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Figure 6. Speaking rate (a), F0 (b), HNR (c), VC ratio (d), and spectral tilt (e) of the natural and three
synthetic voices. Error bars show 95% confidence intervals of the means.

Figure 7. Vowel spaces for the “Amazon”, “Microsoft”, “Google”, and “baseline” voices.

Two general linear models (GLMs) were fitted on the NH and HI data separately
to inspect how well speaking rate, F0, HNR, VC ratio, and spectral tilt as independent
variables predicted listener performance in the four voices. The measurements of vowel
spaces were not included because, instead of at the sentence level, they were derived
at the corpus level for each voice. The values of each predictor were centered to have
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a mean of zero, further scaled by their standard deviation. For NH listeners, the pre-
dictions made by the GLM had a significant correlation with the intelligibility in CRR
[R2 = 0.130, F(210) = 6.299, p < 0.001]. The linear coefficients of the predictors, β, and
their SLs displayed in Table 6 suggest that speaking rate, F0, and spectral tilt played sig-
nificant roles in estimating the intelligibility of the voices, but including HNRs and VC
ratios did not significantly improve the model performance. For HI listeners, the chosen
predictors together, however, were unable to make predictions significantly correlated
with the CRR [R2 = 0.010, F(186) = 1.385, p = 0.232], although including F0, HNR, and
spectral tilt, but not others, still significantly improved the model fitting, as indicated by
their β values in Table 7.

Table 5. Vowel quality in the four voices measured for [a], [i], and [u] using between-vowel dispersion
ξb, within-vowel dispersion ξw, and their ratio ξb

ξw
.

Voice ξb ξw
ξb
ξw

Amazon 52,729.0 248.7 212.0
Microsoft 49,979.0 250.3 199.7

Google 40,661.0 249.6 162.9
baseline 60,517.0 214.2 282.5

Table 6. Parameters estimated for the linear regression on the NH data, including linear coefficient
(β), standard error (SE), low and high confidence interval (CI), t value, effect size (r), and significance
level (SL ***: p < 0.001; *: p < 0.05).

Predictor β SE Low CI High CI t Value r SL

Intercept 62.169 2.083 58.063 66.276 29.843 0.900 ***
Speaking rate −13.577 3.582 −20.640 −6.515 −3.790 0.253 ***

F0 −32.653 14.180 −60.605 −4.700 −2.303 0.157 *
HNR 10.318 10.087 −9.566 30.202 1.023 0.070

VC ratio 2.145 2.226 −2.244 6.533 0.963 0.066
Spectral tilt 17.466 6.745 4.170 30.762 2.590 0.176 *

Table 7. Parameters estimated for the linear regression on the HI data, including linear coefficient (β),
standard error (SE), low and high confidence interval (CI), t value, effect size (r), and significance
level (SL ***: p < 0.001; *: p < 0.05).

Predictor β SE Low CI High CI t Value r SL

Intercept 24.353 1.708 20.983 27.723 14.255 0.723 ***
Speaker rate −2.945 2.974 −8.812 2.921 -0.990 0.072

F0 −26.429 11.299 −48.720 −4.138 −2.339 0.169 *
HNR 16.836 7.930 1.193 32.480 2.123 0.153 *

VC ratio 1.026 1.850 −2.623 4.676 0.555 0.041
Spectral tilt 12.000 5.446 1.255 22.745 2.203 0.159 *

6. Discussion

This study examined the intelligibility of speech generated by three commercial
synthesizers for NH and HI listeners in different noise conditions. The results were
somewhat unexpected but encouraging when compared to listeners’ performance in CRR
on natural speech produced by a female speaker, as initially predicted by the DWGP model
[R2 = 0.748, p < 0.001]. Previously, the intelligibility of natural speech was substantially
better than that of synthetic speech in noise for NH listeners [2–4]. Listener performance
in our experiments, however, showed that the natural voice was the least intelligible
among the four voices evaluated in many conditions, especially in the stationary masker
(speech-shaped noise or SSN), suggesting that, in the last decade, deep learning-based
synthetic speech has improved tremendously in terms of its quality [7] and intelligibility



J. Otorhinolaryngol. Hear. Balance Med. 2024, 5, 5 13 of 17

over that which previously used concatenation, a vocoder, and statistical models. In the
temporally-fluctuating noise masker (speech-modulated noise or SMN), the advantage
of the synthetic voices over “baseline” was noticeably reduced at the low and mid SNRs.
Speech temporal modulation is known to be important to intelligibility. One possibility
is that the interference due to the masker’s modulation on the target temporal envelope
cancelled some benefits from other aspects (see below) and that synthetic modulation could
be more susceptible to noise than that of natural speech. “Microsoft” is an example of
this, as it appeared to be more intelligible than “baseline” at the low and high SNRs in
SSN, but was significantly less intelligible than “baseline” at the low SNR in SMN. Further
modulation analysis on the signals may help with understanding this issue better.

For the HI cohort, the correlation between DWGP estimations and listeners’ perfor-
mance [R2 = 0.616, p < 0.001] was much lower than that for their NH counterpart. This
is not surprising because DWGP makes predictions using parameters, e.g., the outer-ear
transfer function and the HL, for NH listeners. Notably, HI listeners’ speech understanding
did not benefit from any of the state-of-the-art synthesizers as NH did. Nevertheless, it is
worth remarking that their intelligibility did not suffer from synthetic speech either com-
pared to natural speech. This shows that modern speech synthesizers are already capable of
producing speech sounds that may replace the natural human voice without compromising
intelligibility, at least for listeners with normal or even mild hearing loss. Since all hearing
aid users were tested without their hearing devices, it is unclear if they could achieve better
listening performance with their hearing aids on. Often, hearing devices are fitted to a
listener’s hearing profile in order to maximize their performance. Therefore, there could
also be a possibility that synthetic sounds interact with their hearing devices acoustically,
e.g., overly boost or attenuate certain frequencies, leading to the processed sounds having
mismatching frequencies for the listener, hence reduced intelligibility.

Further acoustic analyses revealed that speaking rate was one of the significant factors
that explained the NH listeners’ intelligibility in this study. It was suggested that NH
listener performance benefited from a lower speaker rate [β = −13.577, p < 0.001] in
general, but this was not the case for HI listeners [β = −2.945, p = 0.323]. This finding is
consistent with what was observed in [23] for NH. With a lower speaker rate, listeners may
have more time to process and decode the information conveyed by the sounds, especially
when perceiving speech in noise, which usually demands higher cognitive loads [39]. This
may partly explain the benefit of “Amazon” to listener intelligibility (Figures 4 and 6a).
Among the four voices, the lowest speaking rate was approximately 4.12 syllables/s, which
is consistent with the normal speaking rate—4.08 syllables/s [40]—for native Mandarin
Chinese speakers. It appears that the speaking rates tested in this study were too high for
HI listeners to benefit from. Cognitive decline associated with aging, e.g., [41] of the HI
group (average age = 57.6 yrs) might be another factor contributing to their reduced acuity
in speech perception. F0 alone was not seen to be correlated with listener intelligibility for
NH [R2 < 0.001, p = 0.901] or HI [R2 < 0.001, p = 0.880], but including it in the GLMs
improved the model prediction. There is no direct evidence showing that solo F0 changes
have a significant impact on intelligibility for NH [42,43] or HI listeners [44]. For Lombard
speech, which is often produced when a listener speaks in noise and is understood to
be more intelligible than speech produced in quiet, increased F0 was indeed observed
together with many other acoustic changes, such as reduced spectral tilt and elongated
vowel sounds [45], in relevant studies. Therefore, it is possible that F0’s contribution to
intelligibility is only manifested in the presence of other prominent acoustic correlates.
Meanwhile, it is well-documented that solely reducing spectral tilt can lead to improved
speech intelligibility for NH listeners, e.g., [17,46], which is also observed in the current
study [R2 < 0.034, p < 0.01], especially for “Amazon”. In the GLM, it also indicates that
intelligibility is proportional to spectral tilt [β = 17.466, p < 0.05]. Despite the significant
effect in the GLM model for HI, like F0, spectral tilt was not correlated with intelligibility
for HI [R2 = 0.002, p = 0.551]. In SSN and SMN, which have a similar spectrum as
speech signals, voices with reduced spectral tilt often stand a better chance of escaping
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from masking since more energy is located at high frequencies of speech. NH listeners can
exploit the unmasking at high frequencies for better intelligibility. As shown in Figure 3, the
majority of HI participants in this study had more severe hearing loss at high frequencies,
which led to them not being able to take as much of an advantage as NH listeners did.

VSA and vowel quality were not found to have an evident correlation with intelli-
gibility in this study. In general, “Google” was the second most intelligible voice after
“Amazon” across all conditions and sometimes appeared to be even better than “Amazon”
(Figures 4 and 5). However, the VSA, between-vowel dispersion, and between-within-
vowel dispersion ratio of “Google” were the smallest among the four voices. The findings
in terms of the relationship between VSA and its pertinent measures and intelligibility are
mixed. While expanded VSA was reported in some studies on clear speech, e.g., [10,47],
and on Lombard speech compared to normal speech, e.g., [10], reduced VSA was also found
in Lombard speech in other studies [48,49]. Therefore, the current findings lean towards
the conclusion that VSA and vowel quality do not have a direct impact on the intelligibility
of synthetic speech, despite the plausible speculation that little overlap between sounds
and consistent pronunciation may reduce confusion between sounds.

This study has a few limitations. First, only six acoustic features were analyzed.
There are several other properties that also correlate with intelligibility, including emphasis
and prosody [50,51]. Two acoustic measures that can indicate emphasis are F0 contour
and maximum intensity of the signals [52], as they give strong cues to listeners of what
to expect in the speech. On the same note, the DWGP model predicted intelligibility
well, implying that there could be other acoustic aspects accounted for by the DWGP
model but not analyzed in this study. For example, no evidence was found to explain the
intelligibility ranking for “Google”, which led to comparable intelligibility as “Amazon”
in several conditions but considerably differed in acoustic measurements analyzed in this
study. Second, only a limited number of synthetic voices was evaluated. Including more
voices could exhibit different intelligibility and analytical results. Third, the number of
participants in both groups was relatively small, which might lead to weak statistical power
in the analyses.

7. Conclusions

In this study, the intelligibility of synthetic speech generated by three modern com-
mercial synthesizers was evaluated along with a natural female voice for both NH and HI
listeners in noise conditions. For NH listeners, some synthetic voices were significantly
more intelligible than natural speech, especially in more adverse conditions, showing that
synthetic speech has improved tremendously in both naturalness and intelligibility over the
last decade. Subsequent acoustic analyses on the voices revealed that synthetic speech with
a slower speaking rate and reduced spectral tilt tends to be more intelligible than others
for NH listeners. HI listeners, however, benefited little from those acoustic changes due
to their hearing loss at high frequencies and potential cognitive decline with aging. These
findings may provide a guideline for future customizable speech synthesis techniques that
aim to generate voices according to listeners’ hearing profiles.

Author Contributions: All authors were involved in conceptualization, data analysis, and reviewing
and editing the manuscript; Y.M. was responsible for conducting the experiments on the NH listeners
and composing the original draft; Y.T. sought external assistance to repeat the same experiments on
the HI cohort and helped with further improving the writing. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of the University of Illinois Urbana-
Champaign (protocol number 22138, approved on 10 August 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.



J. Otorhinolaryngol. Hear. Balance Med. 2024, 5, 5 15 of 17

Data Availability Statement: The data presented in this study may be available on request from the
corresponding author.

Acknowledgments: The authors would like to thank Jian Gong for recruiting and repeating the
experiments on the HI participants.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AIC Akaike information criterion
BIC Bayesian information criterion
CI confidence interval
CRR character recognition rate
DWGP Distortion-Weighted Glimpse Proportion
F0 fundamental frequency
F1 the first formant
F2 the second formant
GLM general linear model
HNR harmonic-to-noise ratio
NH normal hearing
HI hearing-impaired
HL hearing level
LMM linear mixed-effect model
PTA pure tone average
SI speech intelligibility
SL significance level
SNR speech-to-noise ratio
SII Speech Intelligibility Index
SSN speech-shaped noise
SPS statistical parametric synthesis
SMN speech-modulated noise
TTS text-to-speech
VC vowel–consonant
VSA vowel space area

References
1. Fant, C.G.M. Analysis and Synthesis of Speech Processes; North-Holland Publishing Comp.: Amsterdam, The Netherlands, 1968;

pp. 32–58.
2. Clark, J.E. Intelligibility comparisons for two synthetic and one natural speech source. J. Phon. 1983, 11, 37–49. [CrossRef]
3. Nixon, C.W.; Anderson, T.R.; Moore, T.J. The Perception of Synthetic Speech in Noise. In Basic and Applied Aspects of Noise-Induced

Hearing Loss; NATO ASI Series; Salvi, R., Henderson, D., Hamernik, R., Colletti, V., Eds.; Springer, Boston, MA, USA, 2007;
Volume 111, pp. 32–58.

4. Cooke, C.; Mayo, C.; Valentini-Botinhao, C.; Stylianou, Y.; Sauert, B.; Tang, Y. Evaluating the intelligibility benefit of speech
modifications in known noise conditions. Speech Commun. 2013, 55, 572–585. [CrossRef]

5. Black, A.W.; Zen, H.; Tokuda, K. Statistical Parametric Speech Synthesis. In Proceedings of the ICASSP, Honolulu, HI, USA,
15–20 April 2007; Volume 4, pp. IV1229–IV1232.

6. Taylor, P. Text-to-Speech Synthesis; Cambridge University Press: Cambridge, UK, 2009.
7. Tan, X.; Qin, T.; Soong, F.; Liu, T.Y. A Survey on Neural Speech Synthesis. 2021. Available online: https://arxiv.org/abs/2106.15561

(accessed on 12 February 2024).
8. van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu,

K. WaveNet: A Generative Model for Raw Audio. 2016. Available online: https://arxiv.org/abs/1609.03499 (accessed on 25
January 2024).

9. Bergeson, T.R.; Miller, R.J.; McCune, K. Mothers’ Speech to Hearing-Impaired Infants and Children With Cochlear Implants.
Infancy 2006, 10, 221–240. [CrossRef]

10. Tang, P.; Xu Rattanasone, N.; Yuen, I.; Demuth, K. Phonetic enhancement of Mandarin vowels and tones: Infant-directed speech
and Lombard speech. J. Acoust. Soc. Am. 2017, 142, 493–503. [CrossRef] [PubMed]

11. Turner, G.; Tjaden, K.; Weismer, G. The influence of speaking rate on vowel space and speech intelligibility for individuals with
amyotrophic lateral sclerosis. J. Speech Lang. Hear. Res. 1995, 38, 1001–1013. [CrossRef] [PubMed]

http://doi.org/10.1016/S0095-4470(19)30775-2
http://dx.doi.org/10.1016/j.specom.2013.01.001
https://arxiv.org/abs/2106.15561
https://arxiv.org/abs/1609.03499
http://dx.doi.org/10.1207/s15327078in1003_2
http://dx.doi.org/10.1121/1.4995998
http://www.ncbi.nlm.nih.gov/pubmed/28863611
http://dx.doi.org/10.1044/jshr.3805.1001
http://www.ncbi.nlm.nih.gov/pubmed/8558870


J. Otorhinolaryngol. Hear. Balance Med. 2024, 5, 5 16 of 17

12. Bradley, J.S.; Reich, R.D.; Norcross, S.G. On the combined effects of signal-to-noise ratio and room acoustics on speech intelligibility.
J. Acoust. Soc. Am. 1999, 106, 1820–1828. [CrossRef] [PubMed]

13. Freyman, R.L.; Griffin, A.M.; Oxenham, A.J. Intelligibility of whispered speech in stationary and modulated noise maskers. J.
Acoust. Soc. Am. 2012, 132, 2514–2523. [CrossRef] [PubMed]

14. Latham, H.G. The signal-to-noise ratio for speech intelligibility – An auditorium acoustics design index. Appl. Acoust. 1979,
12, 253–320. [CrossRef]

15. Junqua, J.C. The influence of acoustics on speech production: A noise-induced stress phenomenon known as the Lombard reflex.
Speech Commun. 1996, 20, 13–22. [CrossRef]

16. Castellanos, A.; Benedí, J.; Casacuberta, F. An analysis of general acoustic-phonetic features for Spanish speech produced with
the Lombard effect. Speech Commun. 1996, 20, 23–35. [CrossRef]

17. Lu, Y.; Cooke, M. The contribution of changes in F0 and spectral tilt to increased intelligibility of speech produced in noise. Speech
Commun. 2009, 51, 1253–1262. [CrossRef]

18. Valentini-Botinhao, C.; Yamagishi, J.; King, S. Intelligibility Enhancement of Speech in Noise. In Proceedings of the the Institute
of Acoustics, Birmingham, UK, 14–15 October 2014; Volume 36.

19. Tang, Y.; Arnold, C.; Cox, T.J. A Study on the Relationship between the Intelligibility and Quality of Algorithmically-Modified
Speech for Normal Hearing Listeners. J. Otorhinolaryngol. Hear. Balance Med. 2017, 1, 5. [CrossRef]

20. Kangas, K.; Allen, G. Intelligibility of synthetic speech for normal-hearing and hearing-impaired listeners. J. Speech Hear. Disord.
1990, 55, 751–755. [CrossRef] [PubMed]

21. Humes, L.E.; Nelson, K.J.; Pisoni, D.B. Recognition of synthetic speech by hearing-impaired elderly listeners. J. Speech Hear. Res.
1991, 34, 1180–1184. [CrossRef] [PubMed]

22. Wolters, M.; Campbell, P.; DePlacido, C.; Liddell, A.; Owens, D. The Effect of Hearing Loss on the Intelligibility of Synthetic
Speech. In Proceedings of the 16th ICPhS, Saarbrücken, Germany, 6–10 August 2007; pp. 673–675.

23. Ji, C.; Galvin, J.J.I.; Xu, A.; Fu, Q.J. Effect of Speaking Rate on Recognition of Synthetic and Natural Speech by Normal-Hearing
and Cochlear Implant Listeners. Ear Hear. 2013, 34, 313–323. [CrossRef] [PubMed]

24. Neural TTS. 2024. Available online: https://docs.aws.amazon.com/polly/latest/dg/NTTS-main.html (accessed on 25 Jan-
uary 2024).

25. Liao, Q.Y.; Li, B.H.; Liu, Y.Q.; Tan, X.; Zhao, S. Introducing the Latest Technology Advancement in Azure Neural TTS: Uni-TTSv3.
2021. Available online: https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/introducing-the-latest-technology-
advancement-in-azure-neural/ba-p/2595922 (accessed on 8 February 2024).

26. Ren, Y.; Hu, C.; Tan, X.; Qin, T.; Zhao, S.; Zhao, Z.; Liu, T.Y. FastSpeech 2: Fast and High-Quality End-to-End Text to Speech. 2022.
Available online: https://arxiv.org/abs/2006.04558 (accessed on 8 February 2024).

27. Aharon, D. Introducing Cloud Text-to-Speech Powered by DeepMind WaveNet Technology. 2018. Available on-
line: https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-text-to-speech-powered-by-deepmind-
wavenet-technology (accessed on 25 January 2024).

28. WaveNet: A Generative Model for Raw Audio. 2016. Available online: https://deepmind.google/discover/blog/wavenet-a-
generative-model-for-raw-audio (accessed on 25 January 2024).

29. Fu, Q.J.; Zhu, M.; Wang, X. Development and validation of the Mandarin speech perception test. J. Acoust. Soc. Am. 2011,
129, EL267–EL273. [CrossRef] [PubMed]

30. Tang, Y.; Cooke, M. Learning static spectral weightings for speech intelligibility enhancement in noise. Comput. Speech Lang. 2018,
49, 1–16. [CrossRef]

31. Tang, Y.; Cooke, M.; Fazenda, B.M.; Cox, T.J. A metric for predicting binaural speech intelligibility in stationary noise and
competing speech maskers. J. Acoust. Soc. Am. 2016, 140, 1858–1870. [CrossRef] [PubMed]

32. Marrufo-Pérez, M.I.; del Pilar Sturla-Carreto, D.; Eustaquio-Martín, A.; Lopez-Poveda, E.A. Adaptation to Noise in Human
Speech Recognition Depends on Noise-Level Statistics and Fast Dynamic-Range Compression. J. Neurosci. 2020, 40, 6613–6623.
[CrossRef] [PubMed]

33. ANSI S3.5-1997; Methods for the Calculation of the Speech Intelligibility Index. American National Standards Institute, Inc.:
Washington, DC, USA, 1997.

34. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48.
[CrossRef]

35. R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, Vienna, Austria, 2022;
pp. 32–58.

36. McAuliffe, M.; Socolof, M.; Mihuc, S.; Wagner, M.; Sonderegger, M. Montreal Forced Aligner: Trainable text-speech alignment
using Kaldi. In Proceedings of the Interspeech, Stockholm, Sweden, 20–24 August 2017; pp. 498–502.

37. McCloy, D.R. phonR: Tools for Phoneticians and Phonologists, R package version 1.0-7. 2016. Available online: https://www.r-
project.org (accessed on 21 February 2024).

38. Verbrugge, R.R.; Strange, W.; Shankweiler, D.P.; Edman, T.R. What information enables a listener to map a talker’s vowel space?
J. Acoust. Soc. Am. 1976, 60, 198–212. [CrossRef] [PubMed]

39. Zekveld, A.A.; Kramer, S.E.; Festen, J.M. Cognitive Load During Speech Perception in Noise: The Influence of Age, Hearing Loss,
and Cognition on the Pupil Response. Ear Hear. 2011, 32, 498–510. [CrossRef] [PubMed]

http://dx.doi.org/10.1121/1.427932
http://www.ncbi.nlm.nih.gov/pubmed/10530010
http://dx.doi.org/10.1121/1.4747614
http://www.ncbi.nlm.nih.gov/pubmed/23039445
http://dx.doi.org/10.1016/0003-682X(79)90008-2
http://dx.doi.org/10.1016/S0167-6393(96)00041-6
http://dx.doi.org/10.1016/S0167-6393(96)00042-8
http://dx.doi.org/10.1016/j.specom.2009.07.002
http://dx.doi.org/10.3390/ohbm1010005
http://dx.doi.org/10.1044/jshd.5504.751
http://www.ncbi.nlm.nih.gov/pubmed/2146443
http://dx.doi.org/10.1044/jshr.3405.1180
http://www.ncbi.nlm.nih.gov/pubmed/1836244
http://dx.doi.org/10.1097/AUD.0b013e31826fe79e
http://www.ncbi.nlm.nih.gov/pubmed/23238527
https://docs.aws.amazon.com/polly/latest/dg/NTTS-main.htm
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/introducing-the-latest-technology-advancement-in-azure-neural/ba-p/2595922
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/introducing-the-latest-technology-advancement-in-azure-neural/ba-p/2595922
https://arxiv.org/abs/2006.04558
https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-text-to-speech-powered-by-deepmind-wavenet-technology
https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-text-to-speech-powered-by-deepmind-wavenet-technology
https://deepmind.google/discover/blog/wavenet-a-generative-model-for-raw-audio
https://deepmind.google/discover/blog/wavenet-a-generative-model-for-raw-audio
http://dx.doi.org/10.1121/1.3590739
http://www.ncbi.nlm.nih.gov/pubmed/21682363
http://dx.doi.org/10.1016/j.csl.2017.10.003
http://dx.doi.org/10.1121/1.4962484
http://www.ncbi.nlm.nih.gov/pubmed/27914424
http://dx.doi.org/10.1523/JNEUROSCI.0469-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/32680938
http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.1121/1.381065
http://www.ncbi.nlm.nih.gov/pubmed/956527
http://dx.doi.org/10.1097/AUD.0b013e31820512bb
http://www.ncbi.nlm.nih.gov/pubmed/21233711


J. Otorhinolaryngol. Hear. Balance Med. 2024, 5, 5 17 of 17

40. Baese-Berk, M.M.; Morrill, T.H. Speaking rate consistency in native and non-native speakers of English. J. Acoust. Soc. Am. 2015,
138, EL223–EL228. [CrossRef] [PubMed]

41. Ronnlund, M.; Nyberg, L.; Backman, L.; Nilsson, L.G. Stability, growth, and decline in adult life span development of declarative
memory: Cross-sectional and longitudinal data from a population-based study. Psychol. Aging 2005, 20, 3–18. [CrossRef]
[PubMed]

42. Summers, V.; Leek, M.R. F0 Processing and the Separation of Competing Speech Signals by Listeners With Normal Hearing and
With Hearing Loss. J. Speech Lang. Hear. Res. 1998, 41, 1294–1306. [CrossRef] [PubMed]

43. Madsen, S.M.K.; Dau, T.; Oxenham, A.J. No interaction between fundamental-frequency differences and spectral region when
perceiving speech in a speech background. PLoS ONE 2021, 16, e0249654. [CrossRef] [PubMed]

44. Stickney, G.S.; Assmann, P.F.; Chang, J.; Zeng, F.G. Effects of cochlear implant processing and fundamental frequency on the
intelligibility of competing sentences). J. Acoust. Soc. Am. 2007, 122, 1069–1078. [CrossRef] [PubMed]

45. Garnier, M.; Dohen, M.; Loevenbruck, H.; Welby, P.; Bailly, L. The Lombard Effect: A physiological reflex or a controlled
intelligibility enhancement? In Proceedings of the 7th International Seminar on Speech Production, Ubatuba, Brazil, 13–15
December 2006; pp. 255–262.

46. Cooke, M.; Lu, Y. Spectral and temporal changes to speech produced in the presence of energetic and informational maskers). J.
Acoust. Soc. Am. 2010, 128, 2059–2069. [CrossRef]

47. Pettinato, M.; Tuomainen, O.; Granlund, S.; Hazan, V. Vowel space area in later childhood and adolescence: Effects of age, sex
and ease of communication. J. Phon. 2016, 54, 1–14. [CrossRef]

48. Cowley, C.M. The Effects of Distracting Background Audio on Speech Production. Master’s Thesis, Brigham Young Universit,
Provo, Utah, 2020.

49. Le, G.; Tang, Y. The Lombard Effect on the Vowel Space of Northern Vietnamese. In Proceedings of the 20th ICPhS, Prague,
Czech Republi, 7–11 August 2023; pp. 1167–1171.

50. Derwing, T.M.; Munro, M.J. Accent, Intelligibility, and Comprehensibility: Evidence from Four L1s. Stud. Second Lang Acquis
1997, 19, 1–16. [CrossRef]

51. Miller, S.E.; Schlauch, R.S.; Watson, P.J. The effects of fundamental frequency contour manipulations on speech intelligibility in
background noisea. J. Acoust. Soc. Am. 2010, 128, 435–443. [CrossRef]

52. Brenier, J.; Cer, D.; Jurafsky, D. The detection of emphatic words using acoustic and lexical features. In Proceedings of the
Interspeech, Lisbon, Portugal, 4–8 September 2005; pp. 3297–3300.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1121/1.4929622
http://www.ncbi.nlm.nih.gov/pubmed/26428817
http://dx.doi.org/10.1037/0882-7974.20.1.3
http://www.ncbi.nlm.nih.gov/pubmed/15769210
http://dx.doi.org/10.1044/jslhr.4106.1294
http://www.ncbi.nlm.nih.gov/pubmed/9859885
http://dx.doi.org/10.1371/journal.pone.0249654
http://www.ncbi.nlm.nih.gov/pubmed/33826663
http://dx.doi.org/10.1121/1.2750159
http://www.ncbi.nlm.nih.gov/pubmed/17672654
http://dx.doi.org/10.1121/1.3478775
http://dx.doi.org/10.1016/j.wocn.2015.07.002
http://dx.doi.org/10.1017/S0272263197001010
http://dx.doi.org/10.1121/1.3397384

	Introduction
	Speech Stimuli and Conditions
	Speech Synthesizers
	Speech Materials
	Noise Maskers and Stimuli
	Model Predictions

	Listening Experiments
	Participants
	Procedure

	Results
	Acoustic Analyses
	Discussion
	Conclusions
	References

