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Abstract: The relatively low melting point of a traditional Si bonding layer limits the upper servicing
temperature of environmental barrier coatings (EBC). To explore suitable high temperature bonding
layers and expedite the development of EBC, first-principles calculation was used to evaluate the
mechanical properties and thermal conductivity of HfSi2, HfSi, Hf5Si4, Hf3Si2, and Hf2Si with much
higher melting points than that of Si. Among them, HfSi2 has the lowest modulus capable of good
modulus matching with SiC substrate. In addition, these Hf-Si compounds have much lower high
temperature thermal conductivity with Hf2Si being the lowest of 0.63 W m−1 K−1, which is only half
of Si, capable of improved heat insulation.
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1. Introduction

Si-based non-oxide structured ceramics, such as Si3N4, SiC, and SiC matrix composites,
have great potential for application in gas turbine engines because of their excellent high
temperature mechanical properties [1]. However, Si-based ceramics and their composites
easily react with water vapor to produce Si(OH)4 in the engine operating environment,
leading to its performance decline [2,3]. In order to improve the performance of high
temperature resistance, chemical corrosion resistance, and high gas flow resistance, envi-
ronmental barrier coatings (EBCs) are introduced to protect Si-based ceramics and their
composites [4].

Si has been widely used as a bonding layer due to its beneficial coefficient of thermal
expansion (CTE) (2.6–3.5 × 10−6 ◦C−1) [5] matching with that of SiC (4.5 × 10−6 ◦C−1) [5],
low Young’s modulus, and advantageous adhesion property [6–8]. However, the rel-
atively low melting point (1414 ◦C) of Si limits its upper using temperature [9,10]. In
addition, Si was oxidized into SiO2 at high temperature, which undergoes a β to α phase
transformation at approximately 277 ◦C during cooling and accompanied by a volume
shrinkage of approximately 5% [11,12]. When the high temperature oxidation atmo-
sphere contains water vapor, SiO2 directly reacts with water vapor to form volatilized
Si(OH)4 [13], resulting in the coating’s failure. NASA proposed mixing HfO2 into the
Si bonding layer [7,14–16]. HfO2 not only has a high melting point (2800 ◦C) [17] and
low creep rate at high temperature [18], it also reacts with SiO2 at a high temperature to
produce HfSiO4, which has good phase stability up to 1700 ◦C, and a better matched CTE
(3.3–6.6 × 10−6 ◦C−1) [14,16]. Based on our previous work, the property of Si + HfO2
bonding layer can be improved by optimizing the amount and the distribution state of
HfO2 inside Si [19]. However, the upper-temperature limit has not yet changed.
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Inspired by this, we carefully analyzed the Hf-Si phase diagram [20], and found that
HfSi2, HfSi, Hf5Si4, Hf3Si2, and Hf2Si hafnium silicide are stable phases with much higher
melting points (1543 ◦C, 2142 ◦C, 2315 ◦C, 2480 ◦C and 2360 ◦C, respectively) than that of
Si [21], making them good candidates for a bonding layer used at ahigher temperature.
Among them, HfSi2 was also reported as having good antioxidant capacity [22,23]. In
addition to the high temperature capability, good mechanical properties (such as relatively
low modulus that matched with SiC) and low thermal conductivity are also required for
better stress relaxation and strong thermal insulation ability.

Herein, first-principles calculation was applied to study the mechanical and thermal
properties of the Hf-Si system and hopefully provide valuable insights into the development
of the bonding layers. Based on optimized equilibrium crystal structure and second-order
elastic constants, modulus, sound velocity and Debye temperature are calculated according
to empirical models. At the same time, the ratio of shear modulus to bulk modulus (G/B)
was used to evaluate their ductility. Then, Debye temperature and thermal conductivity of
this Hf-Si system were predicted from Clarke’s model [24,25] and Slack’s model [26]. Our
results demonstrated that, compared with Si, the Hf-Si system is a promising bonding layer
with a high melting point, low G/B value, and thermal conductivity.

2. Computation Methods

All the density functional theory (DFT) calculations were performed using the projector
augmented wave (PAW) [27,28] method, which was described by the Vienna Ab-initio
Simulation Package (VASP) [29]. The plane-wave basis setting cutoff energy was fixed to
520 eV for all calculations, and the maximum force of the atom is less than 0.01 eV/A. In
addition, the Brillouin-zone integrations were performed over the 6 × 6 × 6, 8 × 2 × 8,
5 × 10 × 5, 5 × 5 × 3, 5 × 5 × 10 and 5 × 5 × 5 grid sizes for Si, HfSi2, HfSi, Hf5Si4, Hf3Si2
and Hf2Si, respectively. The spin polarization of the electron was taken into account in all
calculations. Finally, structural relaxation used a tolerance of 10−4 eV for the electronic
self-consistent calculations, and 10−5 eV for electronic static computing. In order to obtain
accurate mechanical and thermal properties, the models of the pure Si and Hf-Si system
were fully structurally optimized.

The mechanical stability of all system equilibrium crystals is determined based on
the independent second-order elastic constants calculated from first principles. Then,
combined with the following empirical formulas, the mechanical and thermal properties of
the stable system were analyzed. The specific calculation process is as follows:

Elastic properties, such as bulk modulus B and shear modulus G, are calculated using
the Voigt-Reuss-Hill averaging scheme as described in Korabelnikov et al. [30]. For the
cubic, orthomorphic, and tetragonal lattices, the upper bulk (BV) and shear modulus (GV)
are bounded by the Voigt approximation as below [31], respectively.

BV =
1
9
(C11 + C22 + C33) +

2
9
(C12 + C13 + C23) (1)

GV =
1

15
(C11 + C22 + C33 − C12 − C13 − C23) +

1
5
(C44 + C55 + C66) (2)

where the Cij are second-order elastic constants. Then, Reuss proposed the approximation
of the lower bound of volume (BR) and shear modulus (GR) [32]:

BR =
1

(S11 + S22 + S33) + 2(S12 + S13 + S23)
(3)

GR =
15

4(S11 + S22 + S33)− 4(S12 + S13 + S23) + 3(S44 + S55 + S66)
(4)

where the Sij are the compliance constants [33]:

S11 + S12 = C33/C, S11 + S12 = 1/(C11 − C12),
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S13 = −C13/C, S33 = (C11 + C12)/C, S44 = 1/C44, S66 = 1/C66 (5)

where
C = C33

(
C11 + C12 − 2C2

13

)
(6)

Considering the energy density, Hill suggested using the average values of upper
and lower bounds of effective bulk and shear moduli as the modulus of polycrystalline
materials [30].

B =
1
2
(BV + BR), G =

1
2
(GV + GR) (7)

In order to calculate the average value of the Young’s modulus E and Poisson’s ratio µ,
the following expressions are used [34]:

E =
9BG

(3B + G)
, µ =

3B − 2G
2(3B + G)

(8)

The Vickers hardness is determined according to the expression [35]:

H = 0.92
(

G
B

)1.137
G0.708 (9)

The average values of the transverse vT and longitudinal vL components of the speed
of sound could be estimated using the values of bulk modulus B, shear modulus G, and
density ρ of the crystal.

vT =

(
G
ρ

) 1
2
, vL =

(
B + 4

3 G
ρ

) 1
2

(10)

The average sound velocity vm is bounded from above by [36]:

vm

[
1
3

(
2

v3
T
+

1
v3

L

)]− 1
3

(11)

Thus the Debye temperature ΘD is written as [36]:

ΘD =
h

kB

[
3n
4π

(
NAρ

M

)] 1
3
vm (12)

where ρ is the density of the crystal, n is the number of atoms in the formula unit, h is the
Planck constant, kB is the Boltzmann constant, NA is the Avogadro constant, and M is the
molecular weight.

In addition, the dependence of thermal conductivity on the temperature is calculated
from Slack’s model [26]:

k = A
MΘ3

Dδ

γ2n
2
3 T

(13)

where δ3 is the average volume of the atom, M is the average mass of the atoms in the
crystal, and A is a physical constant (A = 3.1 × 10−6 if k is in W m−1 L−1, and δ in

.
A). In

addition, γ is the high-temperature limit of the acoustic phonon mode Grüneisen parameter,
which could be derived from the sound velocity [37]:

γ =
9
(

v2
L −

4
3 v2

T

)
2
(
v2

L − 2v2
T
) =

3(1 + vm)

2(2 − 3vm)
(14)

Unfortunately, using the Slack’s model can only predict thermal conductivity in low
temperature regions (0.5 ΘD < T < 1.6 ΘD). At very high temperatures, the thermal
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conductivity is independent of temperature and tends to be stable (i.e., minimum thermal
conductivity), which can be estimated according to Clarke’s model [24]:

kmin = 0.257k2
Bℏ−1⟨M⟩−

1
3 ρ

1
3 ΘD (15)

where <M> is the average atomic mass equal to M/NAn (n is the number of atoms in a
molecule), ℏ is the reduced Planck constant (h/2π).

3. Results and Discussion
3.1. Structural Properties

Crystal structures of the Hf-Si system are shown in Figure 1, where the calculated
material was all a unit cell. For Si, Hf2Si, Hf5Si3, Hf3Si2, Hf5Si4, HfSi, and HfSi2 with
Fd3m1, I4/mcm, P63/mcm, P4/mbm, P41212, Pnma, and Cmcm space groups, their
structural parameters were optimized, and all lattice parameters and ionic positions were
fully relaxed during the geometry optimization. The calculated lattice parameters, along
with the corresponding JCPDS card data are presented in Table 1. It can be clearly seen that
the calculated parameters of the Hf-Si system were in agreement with the available JCPDS
card data. Relative errors of lattice constants of this Hf-Si system are also shown in Figure 2,
from which the accuracy of the calculation can be directly observed. The maximum relative
error was 1.505% for Hf2Si crystal, and the minimum relative error was only 0.062%. This
further explained the accuracy of the calculation results.
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Figure 1. Crystal structures of the Hf-Si system: (a) Si, (b) HfSi2, (c) HfSi, (d) Hf3Si2, (e) Hf2Si,
(f) Hf5Si4 (the blue represented Si atoms and the brown represented Hf atoms).

Table 1. The equilibrium lattice parameters (Å) of the Hf-Si system compared with the JCPDS
card data.

Materials a (
.

A) b (
.

A) c (
.

A)

Si 5.450 5.450 5.450
Si (27-1402) 5.431 5.431 5.431

HfSi2 3.656 14.640 3.670
HfSi2 (38-1373) 3.680 14.556 3.649

HfSi 6.896 3.788 5.249
HfSi (13-0369) 6.885 3.753 5.191

Hf5Si4 7.067 7.067 12.877
Hf5Si4 (42-1166) 7.039 7.039 12.869

Hf3Si2 7.014 7.014 3.681
Hf3Si2 (14-0427) 7.000 7.000 3.671

Hf2Si 6.579 6.579 5.180
Hf2Si (12-0467) 6.480 6.480 5.210
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3.2. Elastic and Mechanical Properties

The calculated elastic constants are listed in Table 2. Si is a cubic crystal system with
three independent elastic constants, Hf5Si4, Hf3Si2, and Hf2Si, which are tetragonal system
with six independent elastic constants, and the rest (HfSi2 and HfSi) are orthomorphic
system with nine independent elastic constants. Before further calculation, it is necessary
to evaluate whether the above system can resist external deformation and restore its
own structure during calculation, namely mechanical stability. The formula suitable for
determining the mechanical stability of cubic crystals (Si) [38] is:

(C11 − C12) > 0, (C11 + 2C12) > 0, C44 > 0 (16)

Table 2. Calculated independent second-order elastic constants Cij (in GPa) for the Hf-Si system.

Materials C11 C12 C13 C22 C23 C33 C44 C55 C66

Si 138 52 69
HfSi2 237 57 113 156 97 258 111 92 104
HfSi 238 109 83 250 86 316 139 81 92

Hf5Si4 272 91 88 255 99 81
Hf3Si2 294 62 100 185 84 117
Hf2Si 250 86 80 272 83 114

The requirements of mechanical stability for the Hf-Si system are provided by Born’s
conditions for tetragonal (Equation (17)) and orthorhombic (Equation (18)) structures as
follows [39,40]:

(C11 − C12) > 0, (C11 + C33 − 2C13) > 0, C11 > 0, C33 > 0, C44 > 0, C66 > 0, (2C11 + C33 + 2C12 + 4C13) > 0 (17)

(C11 + C22 − 2C12) > 0, (C11 + C33 − 2C13) > 0, (C22 + C33 − 2C23) > 0, C11 > 0,
C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0, (C11 + C22 + C33 + 2C12 + 2C13 + 2C23) > 0

(18)
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According to the calculated elastic constants of the Si and Hf-Si system, they are
all mechanically stable. Therefore, the mechanical properties of the above systems are
analyzed below.

The calculated mechanical properties of the Hf-Si system are tabulated in Table 3. First
of all, the order of B in the Hf-Si system was HfSi > Hf5Si4 > Hf3Si2 > Hf2Si > HfSi2, and
they were much larger than that of Si. Liu et al. once used first principles to calculate the
bulk modulus of the Hf-Si system, and found that HfSi had the largest value and HfSi2 had
the smallest [41], which is the same as the results in this work. B represents the elasticity
of a substance over an elastic range, so among the above materials, HfSi has the strongest
incompressible properties. Secondly, G describes a material’s resistance to shape change.
The order of G in the Hf-Si system was Hf2Si > HfSi > Hf3Si2 > Hf5Si4 > HfSi2 > Si. For these
materials, the G value was obviously smaller than B (Table 3), which had good ductility
and machinability. In addition, lower E is preferred as a thermal coating material, because
it has good bonding properties and can reduce the influence of thermal stress [42]. Lee et al.
calculated the Young’s modulus of Si ‹001› nanowires by using first-principles calculations
to be 122.8 GPa [43], which is relatively close to the value calculated here (139 Gpa). This
suggests that the calculation result is reliable. The calculated E of Si (139 GPa) was much
smaller than that of the Hf-Si system, so Si was better than the Hf-Si system in resistance
to thermal stress. In all, the modulus of Si was much smaller than that of the other five
materials, which showed that alloying Hf element into Si can increase modulus.

Table 3. Calculated bulk modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa),
Poisson’s ratio (µ), and Hardness (H) of Hf-Si system.

Materials B (GPa) G (GPa) E (GPa) µ H (HV) G/B

Si 80 57 139 0.213 11 0.722
HfSi2 125 83 204 0.229 13 0.664
HfSi 150 94 234 0.241 13 0.627

Hf5Si4 148 88 219 0.253 12 0.595
Hf3Si2 142 93 229 0.231 14 0.655
Hf2Si 140 96 235 0.221 15 0.686

Plasticity is also important for the materials used as EBCs because plastic mate-
rials can effectively dissipate thermal stress through plastic deformation. According
to the value of Poisson’s ratio, compounds with µ > 0.26 exhibit plasticity [44], which
was calculated from Equation (8). Poisson’s ratios of these substances were all smaller
than 0.26 as shown in Table 3. This showed that these materials are brittle materi-
als, where the Poisson ratio of Hf5Si4 and HfSi is closer to 0.26 and their plasticity
is relatively better. Liu et al. also found that the brittleness of Hf2Si, Hf3Si2, and
HfSi2 is obvious, while the brittleness of HfSi and Hf5Si4 is not, preferring ductile
materials [41]. It also can be seen that the Hf-Si system has a higher value of Pois-
son’s ratio than that of Si, and thus improved plasticity. The hardness sequence of
the Si and Hf-Si system was Hf2Si > Hf3Si2 > HfSi = HfSi2 > Hf5Si4 > Si at zero temper-
ature and zero pressure. Finally, the G/B values of the Hf-Si system were ordered as
Si > Hf2Si > HfSi2 > Hf3Si2 > HfSi > Hf5Si4. A smaller G/B indicates good ductility and
damage tolerance, which ensures the integrity of the coating against foreign particles
and thermal cycling by avoiding crack formation. In conclusion, these Hf-Si silicides
exhibited enhanced plasticity and damage tolerance as compared with Si, which is
beneficial to protect SiC composites at high temperatures.

The Young’s modulus, E, describes the resistance of materials against uniaxial tension.
To obtain a clear and complete representation of the elastic anisotropy of these materials,
the variation of E as a function of crystal orientation is necessary. The direction-dependent
E for the Hf-Si system is shown in the following equation [45]:
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1
E
= l4

1 + 2l2
1 l2

2S12 + 2l2
1 l2

3S13 + l4
2S22 + 2l2

2 l2
3S23 + l4

3S33 + l2
2 l2

3S44 + l2
1 l2

3S55 + l2
1 l2

2S66 (19)

where Sij is the elastic compliance, and then l1, l2, and l3 are the directional cosines of angles
with the three principal directions, respectively.

The surface contour of the E of Si is shown in Figure 3a, and the planar projections of E
for (100), (010), and (001) crystallographic planes are also shown in Figure 3b. For different
crystallographic planes, A and B directions represented different crystallographic directions:
A direction represented [100] and B represented [001] for (010) plane, respectively. In the
case of the (001) plane, they were [100] and [010] directions; while for (100) plane, they were
[001] and [010] directions, respectively [46]. Figure 3a,b clearly illustrates the stereogram of
the elastic modulus of Si. Here, it can be seen that the anisotropy of E in the three planes is
the same (Figure 3b). In addition, it can be seen that the minimum and maximum E of Si
crystal is parallel to <111> and <010> directions, respectively.
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The result of surface contour of the E of Hf-Si system and their planar projections of E
to (100), (010), and (001) crystallographic planes is shown in Figure 4a–e,a1–e1. For HfSi2
(Figure 4a,a1) and HfSi (Figure 4b,b1), the anisotropy of Young’s modulus on the (100) plane
is stronger than that on the other two planes. For Hf5Si4 (Figure 4c,c1), Hf3Si2 (Figure 4d,d1),
and Hf2Si (Figure 4e,e1), the anisotropy of (100) and (010) faces was the same. In addition,
the minimum Young’s modulus of HfSi2 and Hf2Si is parallel to the (010) direction, and the
minimum ones of HfSi, Hf5Si4 and Hf3Si2 are parallel to the (001) direction. Finally, the
maximum Young’s modulus of Hf5Si4 is parallel to the (110) direction. The above analysis
shows that the anisotropy of the Young’s modulus of the material is closely related to the
crystal symmetry. Mohapatra and Eckhardt [47] believe that the anisotropy of the elastic
modulus is mainly affected by the non-diagonal elements of the flexibility matrix. When
calculating Young’s modulus of different crystallization directions, if the non-diagonal
elements (i.e., S12, S13, S23, in this case) are ignored, the degree of anisotropy of the elastic
modulus will be significantly reduced. For simplicity, this procedure was not presented
here. This confirms that the anisotropy of the Young’s modulus of Si was the lowest
among the above substances. Anyway, Figures 3 and 4 showed the anisotropy of the
elastic properties of Hf-Si system. Using this information, the most important directions of
mechanical property measurements and applications were defined.
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3.3. Thermal Conductivity

The behavior of thermal transportation over different temperature ranges is an
important factor to consider when selecting an applicable EBC material. As shown
in Equation (15), the estimation of the intrinsic thermal conductivity of Hf-Si system
depended on the knowledge of vL, vT, vm and ΘD. According to the calculated elastic
moduli and density of the equilibrium structure, the vL, vT, vm and ΘD were derived by
Equations (10)–(12). The calculated parameters for Hf-Si system are listed in Table 4.
First of all, it shows that the sound velocities of Si (values of vL, vT and vm were 4.42,
2.67 and 2.94 m/s, respectively) are significantly lower than those of the Hf-Si system.
In addition, Si also has the highest ΘD (488 K), which is ranked as Si > HfSi2 > HfSi >
Hf5Si4 > Hf3Si2 > Hf2Si.

Table 4. Sound velocities (vL, vT, vm, in km s−1), Debye temperature ΘD (in K), and minimum thermal
conductivity kmin (in W m−1 K−1) of Hf-Si system.

Materials vL (m/s) vT (m/s) vm (m/s) ΘD (K) kmin (w/(m·k))

Si 4.42 2.67 2.94 488 1.26
HfSi2 5.42 3.21 3.56 418 0.77
HfSi 5.21 3.05 3.38 391 0.71

Hf5Si4 5.02 2.88 3.20 366 0.65
Hf3Si2 4.93 2.91 3.23 361 0.65
Hf2Si 4.83 2.89 3.20 359 0.63

The thermal conductivity includes electron and lattice thermal conductivity. Since
the contribution of electrons to the thermal conductivity of semiconductor materials (such
as Si and Ge) is relatively small [26], we calculated the lattice thermal conductivity of
Hf-Si system here. The intrinsic lattice thermal conductivity k of a material is determined
by different phonon scattering mechanisms in different temperature ranges [24]. Firstly,
when the temperature is not too high, the main mechanism of phonon scattering is the
Umklapp processes, where the acoustic phonon branches interact with each other to
transport heat. In this case, Slack’s model [i.e., Equation (14)] [48] is a suitable way to
describe the temperature-dependent thermal conductivity. Based on this, the coefficient kp
of the Hf-Si system obtained from Equation (13) is listed in Table 5, and Equation (13) can
be written as follows:

k = A
Mθ3

Dδ

γ2n
2
3 T

=
kp

T
(20)

Table 5. The coefficient kp (equivalent to A Mθ3
Dδ

γ2n
2
3 T

) in Equation (13) of Hf-Si system.

Materials Si HfSi2 HfSi Hf5Si4 Hf3Si2 Hf2Si

kp 1025.82 811.96 996.11 771.05 878.01 792.10

The lower the kp, the lower the thermal conductivity of the substance at the same
temperature. From Table 5, the thermal conductivity of Si (1025.82 W m−1) was much
greater than that of Hf-Si system (sorted as Si > HfSi > Hf3Si2 >HfSi2 > Hf2Si> Hf5Si4).
Therefore, according to Slack’s model, the Hf-Si system has reduced thermal conductivity
than that of Si. In addition, among the Hf-Si system, the E value of HfSi2 is the closest
to Si. So for simplicity, taking Si and HfSi2 as examples, their temperature-dependent
thermal conductivity estimated from Slack’s model is shown in Figure 5. With the in-
crease in temperature, the thermal conductivity of Si and HfSi2 declined as k = 1025.82/T
and k = 811.96/T, respectively. If the temperature is further increased, the phonon mean-
free path decreases to the average atomic distance, and thus the thermal conductivity
approaches its minimum [24].
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Slack’s model lacks rigorous theories for high-temperature thermal conductivity, so
the minimum thermal conductivity kmin is evaluated by the modified Clarke’s model, as
illustrated by Equation (15). Compared to the perfect crystal in the calculation, there are
inevitable defects in the real Si material. In addition, lattice thermal conductivity was
only calculated in this paper, ignoring the contribution of electrons to the thermal
conductivity. So, the experimental value of the minimum thermal conductivity of
single-crystal Si (2.87 W m−1 K−1) [48] is larger than the calculated value in this paper
(1.26 W m−1 K−1). As can be seen in Table 4, the minimum thermal conductivity of the
Hf-Si system ordered as Si > HfSi2 > HfSi > Hf5Si4 = Hf3Si2 > Hf2Si, where the thermal
conductivity of Hf2Si (0.63 W m−1 K−1) was only half of that of Si (1.26 W m−1 K−1).
Clarke found that mixing ions of different atomic masses reduces the minimum thermal
conductivity of the system [24]. This explains the decrease in thermal conductivity
caused by the incorporation of Hf elements into Si. According to the above, the Hf-Si
system could reduce the thermal conductivity and improve the heat insulation ability.

4. Conclusions

In this work, from the first-principles calculations, elastic properties of the Hf-Si system
were predicted in a well-approved model. The elastic constants were calculated and the
values of the bulk, shear, and Young’s modulus, sound velocities, the Debye temperature
and the thermal conductivity coefficient were estimated. The structural parameters of the
Hf-Si system obtained by structural optimization were consistent with the existing JCPDS
card data. The analysis of the mechanical and thermal properties was as follows:

(1) The Hf-Si system has improved plasticity and hardness as compared to Si, and reduced
G/B value, which benefits in minimizing the thermal stress on the substrate, and
increases their thermal shock resistance. In addition, the Young’s modulus of Hf-Si
system is higher than that of Si.

(2) The addition of the Hf element to Si forming silicide can increase the sound velocities
and reduce the Debye temperature, and thus reduce the thermal conductivity. Com-
pared with Si, the theoretical minimum thermal conductivity of the Hf-Si system was
substantially small, which was only 0.63 W m−1 K−1 for Hf2Si with improved heat
insulation ability than that of Si.
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(3) The calculation results show that HfSi2 in the Hf-Si system has the lowest Young’s
modulus and good plasticity, making it a good candidate as a bond layer for EBCs
used at a high temperature.
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