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Abstract: In this study, a method for producing nitrogen-modified graphene oxide (NMGO) using
hydrothermal synthesis in the presence of triethanolamine is presented. The composition and
structure of NMGO are characterized using X-ray phase analysis (XPA), scanning electron microscopy
(SEM), Fourier transform infrared spectroscopy, and Raman spectroscopy. Ni-based metal matrix
coatings (MMCs) modified with NMGO were obtained from a sulfate-chloride electrolyte in the
galvanostatic mode. The process of electrochemical deposition of these coatings was studied using
chronovoltammetry. The microstructure of Ni–NMGO MMCs was studied using the XPA and SEM
methods. It has been established that the addition of NMGO particles into the Ni matrix results in an
increase in the microhardness of the resulting coatings by an average of 1.30 times. This effect is a
consequence of the refinement of crystallites and high mechanical properties of NMGO phase. The
corrosion-electrochemical behavior of studied electrochemical deposits in 0.5 M sulfuric acid was
analyzed. It has been shown that the corrosion rate of Ni–NMGO MMCs in a 3.5% sodium chloride
environment decreases by approximately 1.50–1.70 times as compared to unmodified Ni coatings.
This is due to NMGO particles that act as a barrier preventing the propagation of the corrosion and
form corrosive galvanic microelements with Ni, promoting anodic polarization.

Keywords: metal matrix coatings; nitrogen-modified graphene oxide; electrodeposition; structure;
microhardness; corrosion

1. Introduction

Electrochemical deposition of coatings based on Ni and its alloys is one of the com-
mon methods for modifying the surface of steel products to protect them from wear and
corrosion [1]. A significant improvement in the characteristics of electrolytic nickel can be
achieved by its co-deposition with various dispersed particles. Electrochemical deposits
modified with the dispersed phase are called composite or metal matrix coatings (MMCs).
Ni-based MMCs have an excellent adhesive properties, high hardness, abrasive resistance,
and can be used in mechanical engineering, chemical and oil and gas industries, medical
equipment, etc. [2–4].

Properties of metal matrix coatings are largely determined by the dispersed phase.
Among the variety of dispersed materials, carbon derivatives attract the considerable
attention of researchers. In particular, nickel MMCs modified with carbon nanotubes [5–7],
fullerenes [8,9], nanodiamonds [10,11], and graphene and its oxide [12–17] have been
obtained. The latter occupy a special place among carbon compounds. Graphene is a two-
dimensional material with a high specific surface area. When it reacts with strong mineral
acids, graphene oxide (GO) is formed. The synthesis of new graphene and graphene oxide
derivatives, as well as their study, remain urgent tasks, and represent undoubted scientific
novelty and significance in connection with the prospects for their practical use. For
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example, as supercapacitors [18,19], for batteries and fuel cells [20,21], and hypersensitive
sensors [22]. GO and its modified analogues are used as reinforcing additives in polymer
materials and cements [23,24], in biological and biomedical applications [25], etc.

In the GO structure, carbon atoms are bonded to oxide functional groups (carbonyl,
carboxyl, epoxy, etc.), due to which it is hydrophilic and forms stable aqueous dispersions.
These compounds are inert in many aggressive environments, which makes them suitable
for corrosion protection [26–28]. Therefore, modifying graphene oxide with various agents,
particularly nitrogen, to enhance its anticorrosion ability is of great interest.

For this purpose, various nitrogen-containing organic compounds can be used, among
which triethanolamine (TEA) is the most notable. This compound is one of the class of
amino alcohols; it is a low-toxic and relatively cheap chemical reagent that can be used
as a corrosion inhibitor in various corrosive environments [29–31]. TEA is highly reac-
tive due to the presence of polar tertiary amine functional groups and alcohol hydroxyl
groups in the molecule. Inhibition of the TEA corrosion process occurs due to the chemical
interaction of TEA functional groups on the metal surface or through electrostatic interac-
tions [32]. In this regard, TEA can act as a modifying agent for nitrogen functionalization
of the GO surface. Therefore, one should expect that nitrogen-modified graphene oxide
(NMGO), when included in the matrix of electrochemical deposits, will help improve their
performance characteristics.

The purpose of this work is to deposit metal-matrix coatings based on nickel with the
dispersed NMGO phase under stationary electrolysis conditions (galvanostatic mode), and
to study the microstructure, physical-mechanical, and corrosion properties of these MMCs.

2. Materials and Methods

(a) Modification of GO

GO was synthesized electrochemically according to the procedure described in [33].
Electrochemical oxidation of graphite was carried out in galvanostatic mode with a current
of 0.4 A, in 83% sulfuric acid with subsequent hydrolysis of oxidized graphite to pH 6
for 1 h and dried at a temperature of 90 ◦C. The resulting GO (0.1 g) was dispersed in
100 mL of distilled water under ultrasonication for 2 h. After this, the dispersed GO and
10 mL of triethanolamine were carried into a fluoroplastic liner which was placed into
a steel autoclave. Hydrothermal synthesis proceeded for 20 h at 180 ◦C. The resulting
nitrogen-modified graphene oxide (NMGO) was washed with 250 mL of distilled water
and dried at 80 ◦C for 10 h (Figure 1). The hydrothermal method of graphene oxide
modification with triethanolamine has also been used in [32].

(b) Electrodeposition of Ni coatings

Ni–NMGO metal matrix coatings were deposited onto a steel substrate (45 steel)
from a Watts-type sulfate-chloride electrolyte (Table 1). The substrate (cathode) was
positioned vertically.

Table 1. Electrolyte bath composition and electrolysis parameters.

Electrolyte Bath Concentration, g/L Deposition Parameters

NiSO4·7H2O 220 Temperature t = 45 ◦C, pH ≈ 4.5
NiCl2·6H2O 40 Constant stirring
CH3COONa 30 Cathode current densities

NMGO 1 ic = 7, 8, 9, 10 A/dm2

The NMGO powder was dispersed in the electrochemical cell before starting the
deposition process. Electrochemical coatings with pure nickel were prepared from the
above-mentioned solution without the dispersed NMGO phase. The thickness of coatings
was 20 µm. Preliminary preparation of the specimen surface included mechanical cleaning
with sandpaper, anodic etching in 48% phosphoric acid with a lead counter electrode, and
washing in bi-distilled water.
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Figure 1. Scheme of nitrogen-modified graphene oxide synthesis.

(c) Study of structure and properties

To record diffraction patterns, the ARL X’TRA device (Thermo Scientific, Ecublens,
Switzerland) was used by applying CuKα radiation (λ = 0.15412 nm). Diffraction patterns
were recorded in the 2θ range from 5◦ to 50◦ at a scanning speed of 2◦/min. Operating
mode of the X-ray tube: voltage U = 40 kV, electric current I = 40 mA. The phase analysis of
the samples was performed in the PDMS software package using the international database
of diffraction standards ICDD PDF-2 Release 2014.

The surface and microstructure of particles of nitrogen-modified graphene oxide, as
well as nickel coatings, were studied using a scanning electron microscope (SEM) with a
built-in energy-dispersive analyzer Explorer (ASPEX, Framingham, MA, USA).

Fourier transform infrared spectroscopy (FTIR) was performed using FT-801 FTIR
spectrometer (Simex, Novosibirsk, Russia) in the range of 4000–500 cm−1 at a temperature
of 20 ◦C.

Raman spectra were recorded using a spectrometer with a DXR Raman Microscope
confocal microscope (Thermo Fisher Scientific, Waltham, MA, USA). A laser line with a
wavelength of 532 nm was used as an excitation source. To record the spectra the exposure
time of 60 s was used at power of 1%.

Electrochemical measurements were performed using a P-30J potentiostat (Elins,
Moscow, Russia) with a three-electrode cell. The potentials were set relative to a saturated
silver chloride reference electrode and then recalculated using a standard hydrogen electrode.

Vickers microhardness (HV) was measured using the PMT-3 device (JSC LOMO, Saint-
Petersbourg, Russia), by statical pressing a tetrahedral diamond pyramid with an angle of
136◦ into electrolytic nickel coatings under a load of 100 g.

The corrosion-electrochemical behavior of nickel coatings was assessed by the na-
ture of the anodic potentiodynamic curves in 0.5 M sulfuric acid (potential sweep rate
Vp = 8 mV/s). Studies of the corrosion rate were carried out in a 3.5% sodium
chloride solution.

3. Results and Discussion
3.1. Structural Studies of NMGO

The dispersed phase of various natures can electrochemically co-precipitate with
nickel. The properties of the resulting metal-matrix coatings are largely determined by
the structure of the particles embedded in nickel. Figure 2 shows the X-ray diffraction
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(XRD) pattern of NMGO. A signal is recorded on the X-ray image with a maximum peak at
2θ = 26.41◦. However, the basal GO peak at 11.86◦ is absent on the XRD of NMGO.
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Figure 2. XRD patterns of GO modified with triethanolamine.

The IR spectrum of NMGO (Figure 3a) shows peaks of stretching vibrations of –CH2-at
2900 and 2880 cm−1, and stretching vibrations of the N-H fragment at 1572 cm−1. The
vibration intensity of the C=C fragment at 1602 cm−1 decreases. The low-intensity peak of
the epoxy functional group shifts to 986 cm−1, which indicates partial interaction of TEA
with the epoxy group.
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In the Raman spectrum of NMGO (Figure 3b), a shift of the peaks is observed; there is
a D band with a peak maximum of 1350 cm−1 and a G band with a maximum of 1584 cm−1.
The G band of NMGO is shifted towards lower wave numbers, which confirms the presence
of defects in the graphene layers as a result of the removal of oxygen and restoration of the
graphene plane [34]. The band intensity ratio is ID/IG = 1.22. The presence of a shoulder
peak to the right of the G-band 2D peak in NMGO is due to the presence of defective
graphite structures formed during hydrothermal modification processes. The shape of the
spectrum and the observation of 2D and D+G peaks show that the particles are composed
of more than two layers of NMGO.

It can be assumed that during hydrothermal modification of GO with triethanolamine,
partial reduction of multilayer graphene oxide occurs, since the presence of surface oxy-
gen groups contributes to the particle agglomeration. Studies using the SEM method
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(Figure 4a,b) allow us to establish that micrographs of NMGO exhibit deformed planes of
carbon particles (such effects are shown by red arrows). This leads to an increase in the
concentration of surface defects on which water is likely to be adsorbed.
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3.2. Electrodeposition of Ni Coatings

The addition of powder of the NMGO dispersed phase into a Watts-type sulfate-
chloride nickel plating electrolyte (Table 1) significantly affects the rate of cathode reactions.
In the presence of nitrogen-modified graphene oxide, the chronovoltammogram shifts
toward less-negative potentials (Figure 5). Accordingly, the deposition currents of Ni–
NMGO MMCs increase compared to pure nickel, which indicates an increase in the speed
of the electrode process.
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It is likely that the addition of NMGO particles into the coating occurs through
two mechanisms. Firstly, due to the convection mixing of the electrolyte, the dispersed
phase is brought to the cathode, captured by the growing coating, and penetrates into the
intercrystalline space of the Ni matrix. Secondly, electrolyte cations can be adsorbed on the
surface of NMGO, which contributes to the electrophoretic transfer of particles because of
the potential gradient and their subsequent embedding into the Ni deposit.

3.3. Microstructural Studies of Ni Coatings

Studying the morphology of coatings using SEM allows to find out that pure nickel
is characterized by a disordered amorphous surface (Figure 6a), while the microstructure
of Ni–NMGO MMC is dense and finely crystalline (Figure 6b). Therefore, it can be as-
sumed that particles of nitrogen-modified graphene oxide act as crystallization centers
during the formation of a nickel deposit and contribute to its uniform distribution over the
cathode surface.
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×10,000).

X-ray phase analysis (XPA) of Ni coating and Ni–NMGO MMC shows that under
the influence of a dispersed additive of nitrogen-modified graphene oxide, a significant
change in the crystalline structure of nickel occurs. The peak in the diffraction patter of
pure nickel at 39◦ corresponds to the direction of growth of the nickel crystal lattice towards
the plane (100), the peak at 44◦ corresponds to the plane (111), and the peaks at 52◦ and
67◦ indicate the growth of the nickel crystal in the direction of the plane (200) (Figure 7).
Another peak in the diffraction pattern at 65◦ is likely to correspond to the (220) plane,
which under normal conditions is formed at 76◦, but due to residual stresses in the crystal,
its shift could occur. In the presence of NMGO, the nickel crystal lattice undergoes some
changes in growth. In both cases, the preferable orientation of the lattice growth is towards
the (111) plane; however, in the case of MMC, the intensity of growth in this direction
increases significantly. A similar increase in peak intensity is observed at 39◦, 52◦, and
67◦ in the direction of the (100) and (200) planes. The appearance of a carbon peak in
the diffraction pattern of Ni–NMGO MMC confirms the inclusion of a dispersed phase of
nitrogen-modified graphene oxide in the Ni matrix.
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3.4. Microhardness

Particles of the dispersed phase, penetrating into the metal matrix, not only change
the structure of the forming MMCs, but also affect their functional properties. One of the
important applied characteristics of electrochemical coatings is their microhardness. Studies
have shown that the Vickers microhardness of Ni–GO coatings increases by 1.20 times
whereas this parameter of Ni–NMGO MMCs increases on average by 1.30 times compared
to unmodified Ni deposits (Table 2). Obviously, the identified effect is a consequence of
several factors at once. First of all, it is necessary to highlight the refinement of crystallites,
leading to dispersion strengthening of the Ni matrix in the presence of particles of nitrogen-
modified graphene oxide (Figure 5). The crystallite size of the studied coatings was
calculated based on the XPA data (Figure 6) at the intensity of the crystal lattice (111)
according to Scherrer’s Equation [35]:

d =
0.9λ
bcosθ

(1)

where d is the crystallite size, λ is the wavelength of the radiation used (λ = 0.15412 nm), θ
is the diffraction angle, b is the full-width half maximum at the peak of 2θ.

Table 2. Microhardness HV0.10 in MPa of Ni coatings.

Cathode Current Density ic, A/dm2 Ni Ni–GO Ni–NMGO

7 1938 2200 2350
8 2150 2520 2639
9 2350 2938 3140

10 2459 3076 3235

Calculations show that the crystallite size decreases from 69.0 nm in the case of Ni
without the dispersed phase to 18.4 nm for Ni–NMGO MMC, i.e., 3.75 times. Due to the
refinement of crystallites, the length of grain boundaries increases, which prevents the
movement of dislocations and other stacking faults along the crystal lattice. Secondly, it
should be noted that NMGO particles embedded in the Ni matrix have high mechanical
properties and are distributed predominantly along grain boundaries, acting as a bar-
rier to the propagation of slip planes. In addition, the inclusion of the dispersed phase
of nitrogen-modified graphene oxide in the coating leads to the effect of strengthening
thin crystals.
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3.5. Corrosion Studies

In addition to mechanical strength, anti-corrosion properties of electrolytic deposits
are of significant practical importance. The corrosion-electrochemical behavior of nickel
coatings was studied by recording anodic potentiodynamic curves in a 0.5 M sulfuric acid
solution. Analysis of chronovoltammograms (Figure 8) shows a notable broadening of the
passive region of Ni–NMGO MMC compared to electrochemical Ni not modified by the
dispersed phase. In general, the rate of anodic dissolution of the metal depends slightly on
the potential value and changes insignificantly when E shifts to positive values. Obviously,
the broadening of the passive region of the metal matrix coating is determined by the
influence of nitrogen-modified graphene oxide. The results of studies in 0.5 M H2SO4 let
us assume that the rate of corrosion processes on Ni–NMGO MMCs will be lower than on
electrolytic deposits of pure Ni.
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Figure 8. Chronovoltammograms of Ni (1) and Ni−NMGO MMC (2) in 0.5 M H2SO4 (coatings
obtained at ic = 10 A/dm2).

The corrosion rate was determined by the weight loss of the coatings under study
when they were kept in 3.5% NaCl for 24 h (the electrodes were weighed before and after
immersion in saline solution) according to the formula [36,37]:

Corrosion rate =
KW
ATD

(2)

where K is constant (8.76 × 104), W is mass loss in g, A is the working surface area of
the studied electrodes (1 cm2), T is immersion time in hours, and D is nickel density
(8.90 g/cm3).

Tests in the sodium chloride environment showed that the corrosion rate of Ni–NMGO
MMCs was reduced by approximately 1.50–1.70 times compared to pure Ni deposits
(Table 3). The improvement in the corrosion properties of metal matrix coatings can
be explained by the influence of several factors. The nitrogen-modified graphene oxide
particles in the nickel matrix will act as a barrier preventing the initiation and propagation
of the corrosion process. In addition, they will form corrosive galvanic microelements
with Ni, promoting anodic polarization. Since Ni–NMGO MMCs have a fine-crystalline
structure (Figure 5), the presence of these trace elements in their composition will contribute
to the uniform distribution of the corrosion current over the surface. The susceptibility of an
electrochemical coating to corrosion damage also depends on its texture, which determines
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the free energy per unit surface area. Closed-packed crystal planes often dissolve faster due
to the lower energy required to break the bond (predominant dissolution of metal atoms
occurs in a certain direction). According to the XPA data, the (111) planes are more densely
packed for the studied nickel coatings than the (200) planes. This probably also contributes
to the improvement of the corrosion properties of Ni–NMGO MMCs.

Table 3. Corrosion rates in mm/year of Ni coatings.

Cathode Current Density ic, A/dm2 Ni Ni–GO Ni–NMGO

7 0.656 0.492 0.430
8 0.574 0.410 0.369
9 0.451 0.328 0.287

10 0.328 0.205 0.185

4. Conclusions

We have developed a method for the production of nitrogen-modified graphene oxide
by hydrothermal synthesis in the presence of triethanolamine. It has been shown that by
adding NMGO dispersion into the composition of a Watts-type nickel sulfate–chloride
electrolyte, metal-matrix coatings are deposited. The modification of electrolytic Ni by
NMGO particles resulted in changes in the microstructure and functional properties of
the forming MMCs. The surface of Ni–NMGO deposits is fine-crystalline and ordered.
The microhardness of Ni–NMGO coatings increases, on average, by 1.30 times, and their
corrosion rate decreases by approximately 1.50 times compared to Ni deposits that do
not contain NMGO phase. Ni–NMGO MMC obtained at ic = 10 A/dm2 has optimal
performance properties.
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